
Set Manipulation with Boolean Functional Vectors
for Symbolic Reachability Analysis

Amit Goel
Department of ECE,

Carnegie Mellon University, PA. 15213. USA.
agoel@ece.cmu.edu

Randal E. Bryant
Computer Science Department,

Carnegie Mellon University, PA. 1513. USA.
Randal.Bryant@cs.cmu.edu

Abstract

Symbolic techniques usually use characteristic functions
for representing sets of states. Boolean functional vectors
provide an alternate set representation which is suitable
for symbolic simulation. Their use in symbolic reacha-
bility analysis and model checking is limited, however, by
the lack of algorithms for performing set operations. We
present algorithms for set union, intersection and quantifi-
cation that work with a canonical Boolean functional vector
representation and show how this enables efficient symbolic
simulation based reachability analysis. Our experimental
results for reachability analysis indicate that the Boolean
functional vector representation is often more compact than
the corresponding characteristic function, thus giving sig-
nificant performance improvements on some benchmarks.

1. Introduction

Binary Decision Diagrams(BDDs) [3] enabled the effi-
cient representation and manipulation of boolean functions.
Symbolic techniques use BDDs to encode and manipulate
sets of states for automatic verification techniques based on
state-traversal, such as symbolic model checking. The most
common encoding used for state-sets is the characteristic
function representation. Boolean functional vectors provide
an alternate, though not as widely used, representation.

Boolean functional vectors represent a bit-level decom-
position of the state-set which is suitable for symbolic sim-
ulation. The decomposition is often more compact than the
equivalent characteristic function representation. However,
while there are straight-forward algorithms for set manipu-
lations with characteristic functions, similar algorithms do
not exist for Boolean functional vectors.

In an early paper on symbolic state traversal, Coudert,
Berthet and Madre [6] used symbolic simulation for the
image-computation step in reachability analysis, as shown

in Figure 1. Starting with the set of initial states, they itera-
tively perform image computation on a given circuit model.
The union of the obtained image and the previously reached
states gives the set of reached states for that iteration. The
procedure stops (Loop Control) when no new states are dis-
covered, i.e., a fix-point is reached. A selection heuristic is
used to choose the smaller of the newly discovered states
and all the discovered states for the next iteration.

The image computation was performed by symbolic sim-
ulation with Boolean functional vectors. However, all set-
manipulation was done with characteristic functions. The
conversion between the two representations is costly and
since it creates the characteristic function anyway, there are
no benefits to using Boolean functional vectors.

In [7], Coudert and Madre replaced the symbolic simula-
tion with a range computation by constraining the transition
functions with the characteristic function. This avoids the
conversion from characteristic functions to Boolean func-
tion vectors. To convert the Boolean functional vector (ob-
tained from the range computation) to a characteristic func-
tion, they proposed two algorithms based on recursively
splitting the vector. While most state-traversal programs
today use the transition relation approach with partitioned
transition relations and early quantification [8], the tran-
sition function approach of recursive splitting is still used
sometimes, e.g., in [11] where a hybrid approach is used ef-
fectively. However, in almost all reachability analysis, the
characteristic function is used as the primary set represen-
tation. McMillan’s conjunctive decomposition [10] is one
approach where this is not the case. As we show in Sec-
tion 2.7, this decomposition is closely related to the Boolean
functional vector representation.

Boolean functional vectors are also used in Symbolic
Trajectory Evaluation (STE)[4] which is a symbolic simula-
tion based model checking technique. However, the speci-
fication language is restricted and does not require fix-point
computations, thus avoiding the need for set manipulations.

In this paper we present algorithms for set union, inter-
section and quantification that work directly on a canonical

Characteristic
Function

to
BFV

Symbolic
Simulator

BFV
to

Characteristic
Function

Set
Union

Reached
States

=

Fix
Point?

Loop
Control

Initial
State

Selection
Heuristic

Circuit
Model

Figure 1. Reachability Analysis with the Coudert, Berthet, Madre [6] approach. State-sets are represented by their characteristic
functions for set manipulation and Boolean functional vectors (BFVs) for image-computation by symbolic simulation.

Boolean functional vector representation (we do not have a
negation algorithm). These algorithms do not construct the
characteristic function either explicitly or implicitly, thus
enabling a symbolic simulation based state-traversal using
Boolean functional vectors without paying the price for un-
necessary conversions.

2 Set Representation and Manipulation

A characteristic function represents a constraint which
must be satisfied for a vector to be in the encoded set. Con-
sider the set of vectors S � � 000 � 001 � 010 � 011 � 100 � 101 �
(we abbreviate bit-vectors with bit-strings, e.g., 000 for�
0 � 0 � 0 �). In our example, if we use variables v1 � v2 and v3

for the first, second and third bits respectively, the charac-
teristic function is χS

��� v1 � � v2 (Table 1). This expresses
the constraint that the first two bits cannot both be 1.

Formally, given variables V �
	 v0 ���
���
� vn � and B ��
0 � 1 � , a characteristic function χS

	 V � represents the set:

S � � X � Bn � χS
	 X � � 1 �

Boolean functional vectors, on the other hand, map a
given input vector to a vector in the encoded set. For exam-
ple, the set S � � 000 � 001 � 010 � 011 � 100 � 101 � can be repre-
sented by the Boolean functional vector F � � v1 � � v1v2 � v3 �
as shown in Table 1.

In general, a Boolean functional vector represents the set
of Boolean vectors given by its range. Formally, given vari-
ables V ��	 v1 �
������� vm � and B � � 0 � 1 � , the Boolean func-
tional vector F � � f1

	 V � �
������� fn
	 V � � represents the set:

Range 	 F � � � X � Bn � � Y � Bm � F 	 Y � � X �

2.1 Canonical Representation

Unlike the characteristic function, the Boolean func-
tional vector representation of a set is not unique. The vec-

v1 v2 v3 χS F
0 0 0 1 000
0 0 1 1 001
0 1 0 1 010
0 1 1 1 011
1 0 0 1 100
1 0 1 1 101
1 1 0 0 100
1 1 1 0 101

Table 1. Representing a set by its characteristic function
and a Boolean functional vector

tors
�
v1 � � v1v2 � v3 � and

�
v1
� v2 � v2 � v3 � v4 � both represent the

set
�
000 � 001 � 010 � 011 � 100 � 101 � . Also, there is no Boolean

functional vector for the empty set.
However, for non-empty sets, it is possible to obtain a

canonical Boolean functional vector representation by plac-
ing some restrictions [6, 13]. The empty set can be treated
as a special case.

Firstly, we use exactly the same number of variables as
the number of vector components. Each variable corre-
sponds to a choice for one component. The functional vec-
tor then represents a mapping from the set of all n length
vectors onto the set being represented.

The second restriction placed is that a vector which is in
the set must be mapped to itself. Thirdly, we use a distance
metric to map vectors not in the set to the nearest vector in
the set. For vectors X � � x1 �����
�
� xn � and Y � � y1 �����
�
� yn � the
distance is defined by d 	 X � Y � � ∑n

i � 1 2n � i 	 xi � yi � .
The distance metric ensures uniqueness, i.e., no two vec-

tors are equi-distant from a given vector. Note that we have
assigned decreasing weights to the bits, starting with the
first bit. In general, a different ordering could be used to as-
sign weights. This corresponds to a permutation of the bits.
We refer to this order as the component order.

For the set S � � 000 � 001 � 010 � 011 � 100 � 101 � , if we use
the choice variables v1 � v2 and v3 for the first, second and
third bits (vector components) respectively, we get the
canonical symbolic encoding F � � v1 � � v1v2 � v3 � , shown in
Table 1.

Given a characteristic function for a set, the correspond-
ing Boolean functional vector can be obtained by using the
conversion algorithms of Coudert, Berthet and Madre [6] or
the parameterization procedure of [1]. In our usage, how-
ever, we start with the canonical vectors for elementary sets
and build other vectors by the set manipulation algorithms
discussed below. The distance metric is never used explic-
itly, but the nearest distance property is maintained by the
algorithms.

2.2 Interpreting Boolean Functional Vectors

In developing the set manipulation algorithms for
Boolean functional vectors, we found it useful to interpret a
Boolean functional vector as an ordered selection process,
starting with the highest weighted component.

For S � �
000 � 001 � 010 � 011 � 100 � 101 � , we can choose

the first bit to be either 0 or 1. We use the choice variable v1

to represent this free-choice. The value of the second bit is
restricted by our selection of the first bit. When the first bit
is chosen to be 0, the second bit can be either 0 or 1. How-
ever, if the first bit is chosen to be 1, the second bit is forced
to be 0. This dependency is captured by the second com-
ponent function � v1v2. The third bit value, which can be
chosen independent of the first two choices, is represented
by the choice variable v3.

In general, the i-th component will depend on the first i
variables only. The i-th component can be represented as
fi
� f 1

i � f c
i vi where vi is the i-th choice variable and f 1

i
and f c

i are functions of the first 	 i � 1 � variables. The func-
tion f 1

i represents the condition under which fi is forced-
to-one because of previous selection choices. f c

i represent
the condition under which we have a free-choice for fi. The
forced-to-zero (f 0

i) condition does not appear in fi but is
easily computed since the three conditions are mutually ex-
clusive and complete. Any two of the three functions f 1

i � f 0
i

and f c
i are sufficient to define the i-th component.

2.3 Set Union

With the selection interpretation of Boolean functional
vectors, a naive union algorithm suggests itself. In selecting
a vector from the union, we can choose from either of the
operand sets. Hence, the i-th component is forced to a value
in the union only when it is forced to that value in both sets.
If we have a free-choice in either set, or if one set allows
us to choose 1 and the other 0, we have a free-choice in the
union for that component.

Consider computing the union S of the sets S0
� � 000 �

and S1
� �

011 � , represented by the functional vectors�
0 � 0 � 0 � and

�
0 � 1 � 1 � respectively. Since the first compo-

nent is forced-to-zero in both sets, it is forced-to-zero in
the union as well. For the second component, we get a free-
choice since one set allows 0 while the other allows 1. Sim-
ilarly, by our naive algorithm we would get a free-choice for
the third component to give us the Boolean functional vec-
tor

�
0 � v2 � v3 � corresponding to the set

�
000 � 001 � 010 � 011 � ,

an over-approximation of the correct union.
The problem occurs because after we make a choice for

the second bit in our example, we restrict ourselves to one
of the two sets and, hence, we do not have a free choice for
the third bit which is forced to one or zero depending on the
choice made with v2.

In order to compute the Boolean functional vector H cor-
responding to the union of (the sets represented by) F and
G, we compute exclusion conditions F x and Gx. Initially,
neither set is excluded.

f x
1

� 0
gx

1
� 0

Whenever we do make a choice that restricts us to one of
the sets, we update the exclusion conditions to restrict the
selection procedure to the remaining set. A set is excluded
while selecting the i � 1 component either if it has already
been excluded earlier or its i-th component is forced to a
value and we selected the other value:

f x
i

�
1
� f x

i � f 0
i � hi � f 1

i �
� hi

gx
i

�
1
� gx

i � g0
i � hi � g1

i �
� hi

The union can now be computed as:

h1
i
� f 1

i � g1
i � f 1

i � gx
i � f x

i � g1
i

h0
i
� f 0

i � g0
i � f 0

i � gx
i � f x

i � g0
i

The i-th bit is forced-to-one in the union if it is forced-
to-one in both the sets or if one set is excluded and the bit is
forced-to-one in the other set. The forced-to-zero computa-
tion is similar.

2.4 Set Intersection

Consider the sets S0
� �

000 � 010 � and S1
��

001 � 010 � 011 � represented by the vectors F � �
0 � v2 � 0 �

and G � �
0 � v2 � � v2 � v3 � respectively. While selecting a

vector for the intersection, we cannot choose the second bit
to be 0 since that would give conflicting values for the third
bit.

A conflict is introduced when a bit is forced-to-one in
one set and forced-to-zero in the other. To handle these con-
flicts, we introduce elimination conditions E. The function
ei represents the conditions which lead to a conflict down-
stream, irrespective of the remaining choices. Since there

are no downstream components for the n-th bit, it’s elim-
ination condition en is 0. The elimination condition ei � 1

includes conflicting choices for the i-th bit position and also
further downstream conflicts which cannot be resolved by
either value of the i-th choice variable vi:

en
� 0

ei � 1
� f 0

i � g1
i � f 1

i � g0
i �
�

vi � ei

For our example, the elimination conditions are E ��
0 � � v2 � 0 � .

Before computing the intersection, we should normal-
ize the operand sets by propagating the constraints imposed
by the elimination conditions to remove the conflict induc-
ing choices. In the example, we would get the normalized
sets Fn

� � 0 � 1 � 0 � and Gn
� �

0 � 1 � v3 � by substituting 1 for
v2 to eliminate vectors with the second bit 0. However, we
can compute an approximation to the intersection with the
original sets and then make a final (forward) pass to prop-
agate the elimination constraints. The approximation K is
obtained by:

k1
i

� f 1
i � g1

i � ei � vi � 0

k0
i

� f 0
i � g0

i � ei � vi � 1

The correct intersection is obtained by substituting the
restricted choices for the choice variables:

h1
1
� k1

1
h0

1
� k0

1
h1

i
�

1
� k1

i
�

1
�
v j � h j � 1 � j � i

h0
i

�
1
� k0

i
�

1
�
v j � h j � 1 � j � i

The intersection algorithm requires a quadratic number
of BDD operations. In symbolic reachability analysis (Fig-
ure 2), however, we use symbolic simulation for image
computation and thus avoid intersection as part of the re-
lational cross product.

2.5 Cofactors and Quantification

We can compute the Shannon-cofactors of vector F by
cofactoring the individual components, i.e.,

F� x � c
� � f1 � x � c ���
����� fn � x � c �

where c is either 0 or 1. This corresponds to fixing a value
for a choice variable.

Existential and universal quantification (set smoothing
and consensus) can then be computed by the union and in-
tersection of the cofactors with respect to the variable being
quantified 1

� x � F � F� x � 0 � F� x � 1�
x � F � F� x � 0 � F� x � 1

1This is the same expansion as the domain partitioning in [6, 7]. How-
ever, since we have a union algorithm, we do not necessarily have to split
recursively.

In reachability analysis (Figure 2), we will existentially
quantify out the variables corresponding to the inputs and
the choice variables for the current state elements as part of
the re-parameterization procedure described below.

2.6 Re-Parameterization

Starting with a canonical representation of the inputs, we
can obtain a Boolean functional vector for the outputs of a
circuit by symbolic simulation. This vector, which repre-
sents each output value as a function of the input choice
variables, must be re-parameterized to obtain a canonical
representation for the output.

The re-parameterization is done by existentially quan-
tifying the input choice variables. In general, any non-
canonical Boolean functional vector can be made canonical
by this procedure, by quantifying out the variables used in
the non-canonical form.

2.7 Related Work

In [10], McMillan considers a canonical conjunctive de-
composition of characteristic functions. We now show that
this decomposition is closely related to the Boolean func-
tional vector.

Given the choice variables V � 	 v1 ���
����� vn � and the
(canonical) Boolean functional vector F � � f1 ���
����� fn � , the
vector F̃ � �

v1 � f1 ���
����� vn � fn � represents a conjunc-
tive decomposition of the characteristic function for the set,
i.e., χIMG � F 	 ��
 n

i � 1
	 vi � fi � . The difference between F

and F̃ is that F maps an input vector to a vector in the
represented set while F̃ represents a vector of constraints,
one for each bit, which must be satisfied for set mem-
bership. Thus, fi

� f 1
i � f c

i vi evaluates the i-th bit while
f̃i
� f 1

i vi � f 0
i
� vi � f c

i is a constraint for the i-th bit.
The paper also gives algorithms for set manipulation us-

ing the conjunctive decomposition which, given the connec-
tion above, are in essence performing the same operations
as our algorithms. The algorithms for the conjunctive de-
composition are based on the generalized cofactor operation
[6]. When the component order and the BDD variable order
are the same, the BDD constrain operator can be used for
the generalized cofactor. In this case, the algorithms with
the conjunctive decomposition require fewer BDD opera-
tions than with Boolean functional vectors and are, hence,
more efficient.

In [14], the authors present an algorithm to convert a
non-canonical Boolean functional vector into a canonical
form. They do so by maintaining a relation between the
non-canonical and canonical expressions for each compo-
nent. They also mention a possible optimization. However,
without more details, it is hard to compare their algorithm
with our re-parameterization procedure.

Re-

parametrize

Model

Set
Union

Reached
States

Fix
Point?

Circuit Heuristic

Symbolic
Simulation

=

Selection

State
Initial

Control
Loop

Figure 2. Reachability Analysis with Boolean Functional Vectors. Our algorithms make it unnecessary to convert to characteristic
functions for set manipulations, as is done in Figure 1.

3 Symbolic Reachability Analysis with
Boolean Functional Vectors

Our approach to symbolic reachability analysis is shown
in Figure 2. Unlike Figure 1, we do not convert to
the characteristic function at any stage. Instead, the
re-parameterization and set union are performed on the
Boolean functional vectors using either our algorithms or
by converting to the conjunctive decomposition.

In our experiments described below, we used fixed vari-
able orderings. The reason is that in addition to BDD vari-
able ordering, we need to develop component reordering for
the components of the Boolean functional vector. We used
the same order for component ordering and BDD variable
ordering. In this case, it is more efficient to use the algo-
rithms from [10], as explained in Section 2.7.

We performed reachability experiments on some of the
non-trivial ISCAS89 benchmark circuits. Table 2 shows the
results obtained and compares them with the reachability
analysis implemented in VIS [2] , using the IWLS95 set of
heuristics [12] with default settings. The results for our ap-
proach are listed under BFV. Each row in the table lists the
name of the circuit, the variable ordering used, the runtime
in seconds and the peak live BDD node count in thousands.
The variable orders we used2 were the static ordering ob-
tained from VIS (S1), the static ordering obtained from our
tool (S2), an ordering obtained after a VIS run with dynamic
ordering enabled (D), orders from the pdtexp distribution
[5] (P) and others (O) available to us3. The experiments
were run on an UltraSPARC-II 336MHz with the memory
limit set to 1GB and the time limit set to 10 hours.

From the table we see that the new approach performs

2We only list those cases where at least one of the two tools completed
3D and P are biased in favor of characteristic functions

well with s3271 and s4863 but cannot complete s3330. On
the other hand, we were able to complete s3330 with VIS,
but not s3271. For s1512, BFV was much slower than VIS.

The two approaches differ in several aspects, e.g., we use
a dynamic quantification schedule based on a simple sup-
port based cost heuristic. (Computing the cost dynamically
does not impose much additional overhead, since we com-
pute supports to avoid BDD operations on vector compo-
nents that do not depend on the variable being quantified).
The variable ordering requirements for the two representa-
tions can be quite different. For characteristic functions, it is
essential that related variables occur together in the variable
order. With Boolean functional vectors, the requirement is
mainly that the important variables occur early in the order.
Functional dependencies [9] are automatically factored out
by the representation. Consider the characteristic function
χ � 	 v1 � v2 ��� 	 v3 � v4 ��� 	 v5 � v6 � where a good vari-
able ordering is one in which the pairs 	 v1 � v2 � , 	 v3 � v4 � and	 v5 � v6 � occur together. With the Boolean functional vector,
all orderings are good in this case. We believe this property
makes the variable ordering requirements less restrictive for
Boolean functional vectors, e.g., in Table 2, BFV is able to
complete the reachability of three of the benchmarks using
a statically generated variable ordering (S1 or S2).

It is often the case that the Boolean functional vector rep-
resentation is much smaller than the corresponding charac-
teristic function. Table 3 lists the sizes of the characteristic
function and the Boolean functional vector for the reachable
states of s4863 (the size of the characteristic function BDD
was obtained by converting the Boolean functional vector
to the corresponding characteristic function). The size for
BFV is the shared size of all the components; the individual
components are usually much smaller, which can help avoid
the intermediate blowup, e.g. in s4863 with order O, since

VIS - IWLS BFV
Name Order time(s) Peak(K) time(s) Peak(K)

s1269 D 600 5958 1185 5691
P 2135 14221 8656 29637
O 8273 9384 592 2210

s1512 S2 11393 2551 18997 784
D 990 1509 T.O.
O 13872 1889 18963 784

s3271 S2 T.O. 1531 2196
D T.O. 28414 16673
P T.O. 1617 1578

s3330 P 8866 3415 M.O.
O 4797 19120 T.O.

s4863 S1 T.O. 30 220
D 51 2413 4481 17314
P 1108 2514 17 175
O M.O. 19 102

Table 2. Results for Reachability Analysis with fixed vari-
able orders for some ISCAS89 circuits using VIS and with
Boolean functional vectors. T.O.(M.O.) indicates that the
time (memory) limit was exceeded.

Order S1 D P O
Char.Fn. 1455093 3387 8241 8515
BFV 19686 9817 6864 8851

Table 3. Sizes of the BDD for the characteristic function
and the shared size of the BDDs for the Boolean functional
vector for the reachable sets of s4863

.

the algorithms work on one component at a time.
In summary, the Boolean functional vector approach

forms a viable alternative to the traditional reachability
analysis method. The property of Boolean functional vec-
tors to factor out functional dependencies can often reduce
the variable ordering requirements.

4 Conclusions

We have presented algorithms for set union, intersection
and quantification that work directly on a canonical Boolean
functional vector representation. These algorithms enable
efficient symbolic simulation based state-traversal. Our ex-
periments indicate that in many cases, the Boolean func-
tional vector representation is much more compact than the
corresponding characteristic function. This results in sig-
nificant performance gains.

In future work, we would like to develop a component
reordering technique for components of the functional vec-
tor. We would also like to develop a symbolic simulation

based model checker.
We would like to thank Fabio Somenzi and the anony-

mous reviewers for valuable comments.

References

[1] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Formal
Verification Using Parametric Representations of Boolean
Constraints. In Proceedings of the 36th Design Automation
Conference (DAC’ 99), pages 402–407, June 1999.

[2] R. K. Brayton, et al. VIS: a System for Verification and Syn-
thesis. In Proceedings of the Eighth International Confer-
ence on Computer Aided Verification (CAV’96), pages 428–
432, New Brunswick, NJ, USA, July/Aug. 1996.

[3] R. E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[4] R. E. Bryant and C.-J. H. Seger. Digital Circuit Verifica-
tion using Partially-Ordered State Models. In International
Symposium on Multi-Valued Logic, pages 2–7, May 1994.

[5] http://staff.polito.it/ � ˜cabodi,˜quer � .
[6] O. Coudert, C. Berthet, and J. C. Madre. Verification of

Synchronous Sequential Machines Based on Symbolic Exe-
cution. In Workshop on Automatic Verification Methods for
Finite State Systems, pages 365–373, 1989.

[7] O. Coudert and J. C. Madre. A Unified Framework for the
Formal Verification of Sequential Circuits. In Proceedings
of the IEEE International Conference on Computer-Aided
Design, pages 126–129, 1990.

[8] R. Hojati, S. Krishnan, and R. Brayton. Early quantifi-
cation and partitioned transition relations. In Proceedings
of the IEEE International Conference on Computer De-
sign(ICCD’96) , pages 12–19, Oct. 1996.

[9] A. J. Hu and D. L. Dill. Reducing BDD size by exploit-
ing functional dependencies. In Proceedings of the 30th
Design Automation Conference (DAC’93), pages 266–271,
June 1993.

[10] K. L. McMillan. A Conjunctively Decomposed Boolean
Representation for Symbolic Model Checking. In Proceed-
ings of the Eighth International Conference on Computer
Aided Verification (CAV’96), pages 13–24, 1996.

[11] I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To
Split or to Conjoin: the Question in Image Computation.
In Proceedings of the 37th Design Automation Conference
(DAC’00), pages 23–28, 2000.

[12] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley.
Efficient BDD Algorithms for FSM Synthesis and Verifica-
tion. In Workshop Notes of Intl. Workshop on Logic Synthe-
sis (IWLS’95), May 1995.

[13] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit State Enumeration of
Finite State Machines Using BDDs. In Proceedings of the
IEEE International Conference on Computer-Aided Design
(ICCAD’90), pages 130–133, Santa Clara, CA, Nov. 1990.

[14] J. Yang and C.-J. H. Seger. Generalized Symbolic Trajectory
Evaluation - Abstraction in Action. In Formal Methods in
Computer-Aided Design (FMCAD’02), Nov. 2002.

