Appears in the proceedings @bmputer-Aided Verification ‘970. Grumberg, ed.,
LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

Efficient Modeling of MemoryArrays in Symbolic

Simulation®
Mir oslav N. Veley Randal E. Bryant Alok Jain
Department of Electrical and School of Computer Science Department of Electrical and
Computer Engineering Carngjie Mellon Unversity Computer Engineering
Carngjie Mellon Unversity Pittsturgh, FA 15213 Carngjie Mellon Unversity
Pittshurgh, A 15213 randy. bryant @s. crmu. edu Pittshurgh, ;A 15213
nmvel ev@ce. cnu. edu al ok. j ai n@ce. cru. edu

Abstract. This paper enables symbolic simulation of systems witifelambedded memories.
Each memory array is replaced with a hatial model, where the nhumber of symboliriv

ables used to characterize the initial state of the memory is proportional to the number of mem-
ory accesses. The memory state is represented by a list containing entries of tite dormi

wherec is a Booleanxpression denoting the set of conditions for which the entry is defirged,

an addressxpression denoting a memory location, ahid a datapression denoting the con-

tents of this location. Address and dat@ressions are represented &ttors of Boolean
expressions. The list interacts with the rest of the circuit by means of aassivterace deel-

oped as part of the symbolic simulation engine. The Bxtermonitors the control lines of the
memory array and translates read and write conditions into accesses to the list. This memory
model was also incorporated into the Symboli@j€ctory Ewaluation technique for formakvi-

fication. Experimental results slidhat the n& model significantly outperforms the transistor
level memory model whenevifying a simple pipelined data path.

1. Intr oduction

Simulation is widely used toalidate systems atavious leels of design abstraction
such as the transistagate, and behéoral levels. The normal simulation models for
memory arrays at all thesevéds eplicitly represent each memory bit. This is not a
problem for comentional simulation which uses a single logidue to denote the state
of a memory bit. Haever, symbolic simulation wuld require a symbolicariable for
every bit of the memoryin addition, bit-le¢el symbolic model checkingould need
the net-state function for each memory bit. Therefore, the numberanébles in
symbolic computation is proportional to the size of the mepaorg is prohibitie for
large memory arrays.

This paper shes a vay to avercome this limitation by replacing each memory
array with an Hicient Memory Model (EMM). The EMM is a bebiaral model,
which allonvs the number of symbolicaviables used to be proportional to the number
of memory accesses rather than to the size of the meiapased on the observ
tion that a singlexecution sequence typically contains a limited number of memory
accesses.

Symbolic Tajectory Ewaluation (STE) is anxtension of symbolic simulation
that has been used to formallgrify circuits [8]. STE has been applied on tleeifica-
tion of a simple pipelined data path [2]. Incorporation of the EMM in STE enabled us

1. This research as supported in part by the SRC under contract 96-DC-068.

to verify the pipelined data path with a significantly larger register file than previously
possible.

Symbolic model checking has also been used to verify a pipelined data path [3].
However, the limitation of the method is that it requires the next-state relation for the
entire circuit, which leads to introducing two symbolic variables for every state hit in
the circuit. Burch, Clarke, and Long [4] represent the transition relation as an implicit
conjunction of transition relations for parts of the circuit. In thisway, they avoid build-
ing amonolithic BDD for the transition relation of the entire circuit, but still need two
symbolic variables for each memory bit. Clarke, Grumberg, and Long [6] propose a
method for using abstraction in order to reduce the complexity of symbolic model
checking. They show how abstraction functions can be applied to produce an abstract
model whose state space is a subset of that of the original model, such that if certain
properties hold on the abstract model, they will also be true for the original one. How-
ever, thisrequires a careful choice of abstraction functions by the user.

A symbolic representation of memory arrays has been used by Burch and Dill [5].
Their technique is also based on symbolic simulation. However, it verifies only the
control, assuming that the combinational logic in the data path is correct. On the other
hand, our method verifies the entire circuit. While Burch and Dill use uninterpreted
functions with equality, which abstract away the details of the data path, we use BDDs
and model fully the entire circuit, but that |eads to greater memory and CPU time con-
sumption. The logic of uninterpreted functions with equality allows them to introduce
only a single symbolic variable for denoting the initial state of a memory array. The
need to have data at the bit level in order to verify the data path, requires the user of our
method to introduce symbolic variables proportional to the number of memory array
accesses. Given area circuit, their method would require the user to provide the dis-
tinction between the control and the data path. Ours would need only an identification
of the memory arrays. Finally, we perform the verification at the circuit level of the
implementation, while they operate on an abstracted high level model of the control
and require the availability of an appropriate compiler to automatically extract the con-
trol from the real circuit.

This paper advocates a two step approach for the verification of circuits with large
embedded memories. The first step isto use STE to verify the transistor level memory
arrays independently from the rest of the circuit. Pandey and Bryant have combined
symmetry reductions and STE to enable the verification of very large memory arrays at
the transistor level [7]. The second step is to use STE to verify the circuit after the
memory arrays are replaced by EMMs.

Section 2 describes the symbolic domain used in our algorithms. Section 3 givesa
brief overview of STE. Sections 4 presents the EMM and section 5 introduces its
underlying algorithms. Section 6 explains the way to incorporate the EMM into STE.
Experimental results are presented in Section 7, and plans for future work are outlined
in Section 8.

2. Symbolic Domain

We will consider three diérent domains - Boolean, address, and data - corresponding
respectiely to the control, address, and data information that can be applied at the
inputs of a memory arraySymbolic \ariables will be introduced in each of the
domains and will be used ixgression generation. Address and dagaessions will

be represented byegtors of Booleanxpressions hang width n andw, respectiely,

for a memory withN = 2" locations, each holding aond consisting ofv bits. The
typesBExpr, AExpr, andDExpr will denote respectely Boolean, address, and data
expressions in the algorithms to be presented.

We will use the terntontext to refer to an assignment adlues to the symbolic
variables. A Booleanx@ression can be vieed as defining a set of cortg, namely
those for which thexpression ealuates tdrue.

The selection operatdTE (for “If-Then-Else”), when applied on three Boolean
expressions, is defined as

ITE(b,t,@ = (bOY)O(=-bOe (1)
Address comparison is then implemented as:

n
Al=A2 = - \/ AL OA2 (2)
i=1
while address selectiohl — ITE(b, A2, A3 is implemented by selecting the corre-
sponding bits:

AL ~ ITE(b, A2, A3 = AL - (bOA2)O(=bOA3), i=1,..,n (3)
The definition of data operations is simjleut over vectors of widthw.

Although we hae used BDDs to represent the Boolegpressions in our imple-
mentation, there is nothing about thisnk that intrinsically requires it to be BDD
based. Ag canonical representation of Booleapssions can be substituted.

3. STE Background

STE is a formal erification technique based on symbolic simulatiar. the purpose
of this paperit would sufice to say that STE is capable @frifying circuit properties,
described amssertions of the form A “f7°° C. The anteceden® specifies con-
straints on the inputs and the internal state of the circuit, anmbtis2quen€ speci-

fies the set ofxpected outputs and state transitions. BathndC are formulas that
can be defined recuvsly as:

1) a simple pedicate the three possibilities beingdde n = boolean_gpression,
or (node vector N = address gpression, or (node vector N =
data_epression, where in the last tavcases each node of the nodetarN
gets associated with its corresponding bieléBoolean rpression of the gen
address or datapression;

2) a conjunction of two formula&, OF, is a formula ifF; andF, are formulas;

3) a domain restriction: (boolean_expression — F) isaformulaif F isaformula,
meaning that F should hold for the contextsin which boolean_expression is
true;

4) a next time operator: NF isaformulaif F is aformula, meaning that F should
hold in the next time period.

A shorthand notation for k nested next time operators is NK. A formulais said to be
instantaneous if it does not contain any next time operators. Any formula F can be
rewritten into the form Fo O NF; O N2F, 0. . . O NXF,, where each formula F; is
instantaneous. For simplicity in the current presentation, we will assume that the ante-
cedent isfree of self inconsistencies, i.e. it cannot have a node asserted to two comple-
mentary logic values simultaneously.

STE maintain two global Boolean expressions OK and OK¢, which are initial-
ized to be true. The STE agorithm updates the circuit node values and the global
Boolean expressions at every simulation time step. The antecedent defines the stimuli
and the consequent defines the set of acceptable responses for the circuit. The expres-
sion OK, maintains the condition under which the circuit node values are compatible
with the values specified by the antecedent. The expression OK maintains the condi-
tion under which the circuit node values belong to the set of acceptable values speci-
fied by the conseguent. The Boolean expression ~OK, [OK defines the condition
under which the assertion holds for the circuit.

4. Efficient Modeling of Memory Arrays

The main assumption of our approach is that every memory array can be represented,
possibly after the introduction of some extra logic, as a memory with only write and
read ports, al of which have the same numbers of address and data bhits, as shown in
Figure 1.

n
——W+—>Address READ WRITE Addr ess <T
~4—r—— Dat a PORT 0 PORT 0 Dat a |€——
——>|Enabl e MEMORY ARRAY Enabl e |e—

(N=2" addresses | ———
— égggess READ of w bits each) | WRITE Addlrjgtsz —F—
——»|Enable PORT Q e Enabl e

Figure 1. Mlew of a memory array, according to our model.

The interaction of the memory array with the rest of the circuit is assumed to take
place on the rising edge of a port Enabl e signal. In case of multiple port Enabl es
having rising edges simultaneously, the resulting accesses to the memory array will be
ordered according to the priority of the ports.

During symbolic simulation, the memory state is represented by a list containing
entries of the form [¢, a, d[J where c is a Boolean expression denoting the set of con-

texts for which the entry is defined, a is an address expression denoting a memory
location, and d is a data expression denoting the contents of this location. The context
information isincluded for modeling memory systems where the Write and Read oper-
ations may be performed conditionally depending on the value of a control signal. Ini-
tially thelist is empty.

The list interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the port
Enabl e lines. Should arising edge occur at aport Enabl e, aWrite or a Read opera-
tion will result, as determined by the type of the port. The Boolean expression c for the
contexts of the memory operation will be formed as the condition for arising edge on
the port Enabl e. The operation will be performed if ¢ is a non-zero Boolean expres-
sion. The Addr ess and Dat a lines of the port will be scanned in order to obtain the
address expression a and the data expression d, respectively. A Write operation com-
pletes with the insertion of the entry [¢, a, dlin the list. A Read operation retrieves
from the list a data expression rd that represents the data contents read from the mem-
ory at address a given the contexts c. The software interface compl etes the Read oper-
ation by asserting the Dat a lines of the port to the data expression ITE(c, rd, d), i.e. to
the retrieved data expression rd under the contexts c of the operation and to the old
data expression d otherwise. The routines needed by the software interface for access-
ing the list are presented next.

5. Implementation of Memory Operations
5.1 Support Operations

Thelist entries are kept in order from head (low priority) to tail (high priority). Entries
may beinserted at either end, using procedures InsertHead and InsertTail, and may be
deleted using procedure Delete. The function Valid, when applied to a Boolean expres-
sion, returns true if the expression is valid, i.e., true for all contexts, and false other-
wise. Note that in al of the algorithms, a Boolean expression cannot be used as a
control decision in the code, since it will have a symbolic representation. On the other
hand, we can make control decisions based on whether or not an expressionisvalid.

The function GenDataExpr generates a new data expression, whose variables are
used to denote the initial state of memory locations that are read before ever being
written.

5.2 Implementation of Memory Read and Write Oper ations

The Write operation, shown as a procedure in Figure 2, takes as arguments a memory
list, a Boolean expression denoting the contexts for which the write should be per-
formed, and address and data expressions denoting the memory location and its
desired contents, respectively. As the code shows, it is implemented by simply insert-
ing an element into the tail (high priority) end of the list, indicating that this entry
should overwrite any other entries for this address. As an optimization, it removes any
list elements that for all contexts are overwritten by this operation. Note that this opti-
mization need not be performed, as will become apparent after the definition of the

Read operation. W could safely lea ary overwritten element in the list.

procedure Write(List mem, BExpr ¢, AExpr a, DExpr d)
{ Write datad to locationa under contets c }

{ Optional optimization }

for each [éc, ea, eddJin memdo

if Valid(ec O [c Oa=ea]) then
Delete(mem, [éc, ea, edl)
{ Perform Write }
InsertTail(mem, [¢, a, d))

Figure 2. Implementation of the Write operation.

TheRead operation is shan in Figure 3 as a function whichygh a memory list,
a Boolean gpression denoting the comte for which the read should be performed,
and an addresscgression, returns a datapeession indicating the contents of this
location.

function Read(List mem, BExpr ¢, AExpr a): DExpr
{ Read from locatiora under contetsc }

g « GenDataExpr()

return ReadWithDefault(mem, c, a, g)

function ReadWithDefault(List mem, BExpr ¢, AExpr a, DExpr d): DExpr
{ Attempt to read from locatiom, usingd for contexts where no &lue found }
rd—d
found ~ false
for each [éc, ea, eddin mem from head to taitlo
match — ec Ja=ea
rd — ITE(match, ed, rd)
found ~ found OO match
if = Valid(found) then
InsertHead(mem, (¢, a, d)
returnrd

Figure 3. Implementation of the Read operation.

The main part of th®ead operation is implemented with the functiBeadWith-
Default, which will also be used in the implementation obt&TE procedures, to be
presented in Section 6. The purpos&eddWthDefault is to construct a datxeres-
sion gving the contents of the memory location denoted by wsiraent address
expression. It does this by scanning through the list fronedb to highest priority
adding a selection operator to theeession that chooses between the list element’

data epression and the priously formed datax@ression, based on the match condi-
tion. It also generates a Booleatpressiornfound indicating the contds for which a
matching list element has been encounteReddWthDefault has as its fourth gu-
ment a “dedult” data &pression to be used when no matching list element is found.
When this case arises, annkst element is inserted into tiead (low priority) end of

the list.

The Read operation is implemented by callirgegadWithDefault with a nevly
generated symbolic datagressiorg as the defult. The contets for whichReadWith-
Default does not find a matching address in the list are those for which the addressed
memory location has mer been accessed by either a read or a write. Thexja&se
sion g is then returned to indicate that the location may contain arbitrary data. By
inserting the entryie, a, dlinto the list, we ensure that subsequent reads of this loca-
tion will return the samexg@ression. Note that computing and testing thkdity of
found is optional. V& could safely insert the list element unconditionallthough at
an increased memory usage.

6. Incorporation into STE

Efficient modeling of memory arrays in STE requires that formulas of the form
(c - (mem[a] = d)), wherec is a Booleanxpressiona is an Addressx@ressiond is

a Data gpression, andemis a memory arraype incorporated into the STE algorithm
described in Section 3. When such formulas occur in the antecedgrahithad result
in asserting the memory state at locagdn datad given contgtsc, and are processed
by procedureédssertMem, presented in Figure 6. Similariwhen such formulas occur
in the consequent, theshould result in checking the memory state at locadidor
having datad given contgts ¢, and are processed by procedGheckMem, presented
in Figure 7. The latter is a modifiedrgion of functiorReadWithDefault, with the dif-
ference being that it does not insert & matry into the list when thexpressiorfound

is not\alid.

procedure AssertMem(List mem, BExpr ¢, AExpr a, DExpr d)

{ Determine conditions under which locatiarwas asserted to datiegiven
contets ¢, and reflect them 0®K,, the Boolean gression indicating
the absence of an antecedexilufe }

rd — ReadWithDefault(mem, c, a, d)
OKp « OKpO(cO [rd=d])

Figure 6. Implementation of the STE procedure AssertMem.

ProcedureAssertMem uses the functioReadWithDefault in order to assert loca-
tion a of memto datad under the contés c. OK, maintains the condition under which

the assertedalue is consistent with the current state of the mentotye case of pro-
cedureCheckMem, OK uses the Boolearxpressionfound in order to maintain the

condition under whiclmem has datal in locationa given contats c.

7.

procedure CheckMem(List mem, BExpr ¢, AExpr a, DExpr d)

{ Determine conditions under which locatiamvas checkd to hae dated
given contets ¢, and reflect them 0BK, the Booleanxgression
indicating the absence of a consequaittife}

rd d

found — false

for eachléc, ea, edllin mem from head to taitio
match — ec Ja=ea
rd — ITE(match, ed, rd)
found ~ found O match

OK¢ « OK¢ O(c O [found O rd=d])

Figure 7. Implementation of the STE pocedure CheckMem.

Experimental Results

Experiments were performed on the pipelined addressable accumulatoriaheig-

ure 8. One mode of operation of the circuit is that of initialization of thister file
with data from the input n, through the addeand then through thidol d register

For this purpose th€l ear signal is set to 1, so as to clear tledue at the second
input of the addemwhile the destination location in thegister file is specified by the
address inputAddr . A second mode of operation of the circuit is that of accumula-
tion. Then, the address inpdidr specifies a location in thegister file, whose con-
tents is to be added to thalwe supplied at the inpun. In this case th€l ear signal

is set to 0, so as to ensure that the dalaevfrom the output of thegister file will be
passed unchanged to the adder

Addr

Addr previous Addr
(from Control)

READ WRITE
PORT | MEMORY| PpORT

| Addr ess ARRAY | Addr ess | e
Dat a Dat a |-
——»| Enabl e Enabl e | ——
phi 1 phi 2
to the from the
multiplexor Hol d register

@) (b)

Figure 8. (a) The pipelined addessable accumulator; (b) the connections of
its register file when eplaced by an EMM. The thick lines indicate uses,
while the thin ones are of a single bit.

In order to speed up the accumulation mode by avoiding the latency of the register
file, the addressable accumulator is pipelined by the introduction of a Hol d register, a
multiplexor (with the ability to choose between the outputs of the register file and the
Hol d register), and some extra circuitry in the control logic. This extra circuitry con-
sists of aregister to store the previous address and a comparator to determine whether
that address is identical with the current address at the Addr input. Should the two
addresses match, the control signal of the multiplexor is set so as to select the output of
the Hol d register. Hence, a bypassing of the register file takes effect.

For the experiments with the EMM, the dual-ported register file is removed from
the circuit. The software interface ensures that a Read operation takes place on phi 1
and a Write operation takes place on phi 2, according to the register file connections
shown in Figure 8.(b).

The specifications necessary for verifying the pipelined addressable accumulator,
are presented in (4), (5), and (6). Note that Reg[i] and Reg[j] in (5) and (6), respec-
tively, are instances of symbolic indexing [1], which resultsin the total number of sym-
bolic variables being logarithmic in the number of address |ocations. We construct the
antecedents by first defining the operation of the clocks. Shorthand notation for the
possible signals applied to the clocks is presented next:

CIkol = (phi 1 =0) O(phi 2 =1)
CIkoO = (phi 1 =0) O(phi 2 =0)
CIk10 = (phi 1 =1) O(phi 2 =0)

The clocking behavior of the entire circuit over 4, 8, and 12 time periods, respec-
tively, is described by:

Clocks 4 = CIkO1 ON(CIk00) O N?(CIk10) O N3(CIk00)

Clocks 8 = Clocks 4 [IN*(Clocks 4)

Clocks 12 = Clocks 4 ON%Clocks_4) CN&(Clocks_4)

The first assertion (4) verifies that the Hol d register can be initialized with data
from the input | n of the pipelined addressable accumulator. Namely, if the Cl ear
signal is high, the Addr input has an address expression i, and the input | n has adata
expression a, then the output Qut of the adder will get the data expression a, and so

will the Hol d register, according to the timing details of the implementation (see the
timing diagram on Figure 9).

Clocks 8 O NZ((CI ear =1) O (Addr =i) O (In=4a))

U7 N4ut = a) O NS(Hol d = a) @)

The second assertion (5) verifies the adder in the pipelined addressable accumula-
tor. It checksthat if the Addr input has an address expression k and later, according to
the timing details of the implementation, an address expression i, such that then the
C ear signal islow, and the input | n has a data expression a, the result will be that
the output Qut of the adder will get the data expression a + b, and so will the Hol d
register. Note that the Hol d register is asserted to data expression b conditionally on

the address equality i == k, and that location i of the register file is also asserted to data
expression b, however conditionally on the address inequality i !'= k. If the control
logic works properly, it should set the control signal of the multiplexor so as to select
the data from the Hol d register in the event that i ==k in order to bypass the register
file. Otherwise, the data from location i of the register file will be selected. Altogether,
the output of the multiplexor will be equal to ITE(i ==k, b, b) = b, which will be the
data expression at the second adder input. The timing diagram for this assertion can be
seen on Figure 9.

Clocks 12 ON%(Addr =k) O N%i==k - Hold=b) O
N6((C| ear =0) O (Addr =i) D(ln=a) O(i'=k - Reg[i] =b))

B N&out = a+b) ONYHol d = a + b) ®)

phi 1 [ﬂ phi 1 [1 I_I_
phi2 [1 phiz [1
d ear 1] d ear Lo]
Addr (i) Addr i]
In [a) I'n ©
Hol d Reg[] =k 2 (P
Cut Hol d i== ’?m
Tme 01 2345 6 7 Tme 01 2 3 45 6 7 8 9 1011
Assertion (4) Assertion (5)

Figure 9. Timing diagrams for assertions (4) and (5). The solid areas denote
asserted signals, while the shaded ones represent the expected results.

Thelast assertion (6) verifies that the register file can maintain its state in the pipe-
lined addressable accumulator. If the Addr input has an address expression k and | ater,
an address expression i, such that then a different location j of the register file has data
expression b, then the data expression at that location will remain unchanged. The
value b in the Hol d register, asserted conditionally on j == k, alows testing the bus
from the Hol d register to the register file by using the same check of the memory
State.

Clocks 12 O N%i!=j - Addr=K) O N%(i'=j0j==K) - Hol d =b) 0
Ne((i1=j - Addr =i) O(('=j0j!=K) - Reg[j] =b))
O N 1=) - Reg[]]=b) (©)

The experiments were performed on an IBM RS/6000 58H running AIX 4.1.3
with 512 MB of physical memory. As can be seen from Table 1, the EMM outper-

10

forms the transistor level model (TLM) of the memory array in the pipelined address-
able accumulator. A 7-15x speedup and a 2-8x reduction in memory were obtained,
with the EMM advantage increasing with the memory size.

CPU Time (s) Memory (MB)
Addresses | Data
Bits TLM | EMM | TLM/EMM || TLM EMM | TLM /EMM
16 16 557 81 6.9 4.2 22 19
32 1095 161 6.8 7.3 32 2.3
64 2188 315 6.9 13.6 52 2.6
128 4391 628 7.0 26.3 9.2 29
32 16 1030 100 10.3 8.2 30 2.7
32 2048 195 10.5 153 4.7 33
64 4102 388 10.6 29.5 8.2 36
128 8278 781 10.6 57.7 15.2 3.8
64 16 1992 144 13.8 16.0 45 3.6
32 3999 283 141 30.7 7.8 39
64 7924 566 14.0 59.8 8.3 7.2
128 15824 1154 13.7 118.0 15.3 7.7
128 16 3907 248 15.8 31.6 4.6 6.9
32 7923 496 16.0 61.6 79 7.8
64 || 15547 1003 155 1211 145 8.4
128 || 31079 2031 153 2417 27.6 8.8

Table 1. Experimental results.

The asymptotic growth of STE, when used together with the TLM and the EMM,
is summarized in Table 2, which also does a comparison with symbolic model check-
ing, combined with either a partitioned transition relation [4] or with abstraction func-
tions[6].

Symbolic Model Checking STE
Crterion itioned Abstraction
TranzgtrigtrzoFr{]el ation | Functions LM EMM
CPU Time w.rt. # DataBits quadratic linear linear linear
CPU Time w.r.t. # Addresses cubic linear linear sublinear
Memory w.rt. # DataBits linear - linear sublinear
Memory w.rt. # Addresses subcubic -—- linear sublinear

Table 2. Asymptotic growth comparison of symbolic model checking and
STE when verifying simple pipelined data paths.

11

However, it should be pointed out that there is a slight difference in the pipelined
data path used for the experiments in [4] and [6], as compared with the one used in this
paper.Also, the memory requirements of symbolic model checking combined with
abstraction functions were not reported in [6].

Hence, the ng method for dfcient modeling of memory arrays has yea to be
extremely promising. It wuld enable the symbolic simulation of memory arrays f
larger than preiously possible.

8. FutureWork

We plan to impree the EMM softvare interce by including mechanisms to monitor
the assumptions for correct operation of the model and to guarantee thatldt w
behae as a conseative approximation of the replaced memory arfayrthermore,
we will examine the intgration of the dicient memory model with the symmetry-
based technique foevification of transistetevel memory arrays, proposed bgriele/
and Bryant [7], as a stepwards hierarchicalerification of systems containing ¢gr
embedded memories.

Furthermore, we plan txtend the approach in order to suppantfication meth-
odologies based on comparing théef that tvo execution sequences Y& on the
state of a memory arragimilar to the wrk by Burch and Dill [5]. In other wrds,
given two sequences of memory operations, we wish to test whetlyeyitié identi-
cal behaiors. The assumption is that theatv@equences start with matching initial
memory states. d¢ each gternally visibleReadoperation in the first sequence, its
counterpart in the second sequence must return the sduge #lso, the final states
resulting from the tw sequences must matcto implement this, we require both a
mechanism for guaranteeing that consistaeies are used for the initial contents of
the two memories and an algorithm for comparing the contentsamfrtemories.

References

[1] D.L.BeattyR. E. Bryant, and C.-J. H. &&; “Synchronous Circuit &tification by Symbolic Simula-
tion: An lllustration’; Sixth MIT Confeznce on Advanced Reseain VLS| 1990, pp. 98-112.

[2] R. E.Bryant, D. E. Beattyand C.-J. H. Sger, “Formal Hardvare \érification by Symbolic &rnary
Trajectory Ewaluation’; 28th Design Atomation Confernce June, 1991, pp. 297-402.

[3] J. R. Burch, E. M. Clak K. L. McMillan, and D. L. Dill, “Sequential CircuitéYification Using
Symbolic Model Checking,27th Design Atomation Confemce June, 1990, pp. 46-51.

[4] J. R. Burch, E. M. Clak and D. E. Long, “Representing Circuits Mordidi#ntly in Symbolic
Model Checkingd, 28th Design Atomation Confance June, 1991, pp. 403-407.

[5] J.R. Burch, and D. L. Dill,Automated ¥érification of Pipelined Microprocessor ConttaLAV ‘94,
D. L. Dill, ed., LNCS 818, Springe¥erlag, June, 1994, pp. 68-80.

[6] E. M. Clarle, O. Grumbey, and D. E. Long, “Model Checking and Abstracti@é8th Annual £M
Symposium on Principles ofdgramming Languges 1992, pp. 343-354.

[7]1 M. Pandg, and R. E. Bryant, “Exploiting Symmetry Whernifying TransistotLevel Circuits by
Symbolic Tajectory Ealuation; CAV ‘97, June, 1997.

[8] C.-J. H. Sger, and R. E. Bryant, ‘6rmal \erification by Symbolic Esuation of Rrtially-Ordered
Trajectories, Formal Methods in System Desjgfol. 6, No. 2 (March, 1995), pp. 147-190.

12

