
Term-Level Verification of a Pipelined CISC
Microprocessor

Randal E. Bryant

December, 2005
CMU-CS-05-195

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This work was supported by the Semiconductor Research Corporation under contract 2002-
TJ-1029.

Keywords: Formal verification, Microprocessor verification, UCLID

Abstract

By abstracting the details of the data representations and operations in a microprocessor,term-level
verificationcan formally prove that a pipelined microprocessor faithfully implements its sequen-
tial, instruction-set architecture specification. Previous efforts in this area have focused on reduced
instruction set computer (RISC) and very-large instruction word (VLIW) processors.
This work reports on the verification of a complex instruction set computer (CISC) processor styled
after the Intel IA32 instruction set using theUCLID term-level verifier. Unlike many case studies
for term-level verification, this processor was not designed specifically for formal verification. In
addition, most of the control logic was given in a simplified hardware description language. We
developed a methodology in which the control logic is translated intoUCLID format automatically,
and the pipelined processor and the sequential reference version were described with as much
modularity as possible. The latter feature was made especially difficult by UCLID ’s limited support
for modularity.
A key objective of this case study was to understand the strengths and weaknesses ofUCLID

for describing hardware designs and for supporting the formal verification process. Although
ultimately successful, we identified several ways in whichUCLID could be improved.

1 Introduction

This report describes a case study in using theUCLID verifier to formally verify several versions
of the Y86 pipelined microprocessor presented in Bryant andO’Hallaron’s computer systems text-
book [4]. The purpose of this exercise was 1) to make sure the designs are actually correct, and
2) to evaluate the strengths and weaknesses ofUCLID for modeling and verifying an actual hard-
ware design. We ultimately succeeded in this effort, findingand correcting one serious bug in one
version. We were able to prove both the safety and the liveness of our designs.

1.1 Background

Microprocessors have a succinct specifications of their intended behavior, given by their Instruc-
tion Set Architecture (ISA) models. The ISA describes the effect of each instruction on the micro-
processor’sarchitectural state, comprising its registers, the program counter (PC), and the mem-
ory. Such a specification is based on a sequential model of processing, where instructions are
executed in strict, sequential order.

Most microprocessor implementations use forms of pipelining to enhance performance, over-
lapping the execution of multiple instructions. Various forms of interlocking and data forwarding
are used to ensure that the pipelined execution faithfully implements the sequential semantics of
the ISA. The task of formal microprocessor verification is prove that this semantic relationship
indeed holds. That is, for any possible instruction sequence, the microprocessor will obtain the
same result as would a purely sequential implementation of the ISA model.

Although the development of techniques for formally verification microprocessors has a history
dating back over 20 years [6], the key ideas used in our verification effort are based on ideas
developed by Burch and Dill in 1994 [5]. The main effort in their approach is to prove that
there is some abstraction functionα mapping states of the microprocessor to architectural states,
such that this mapping is maintained by each cycle of processor operation. Burch and Dill’s
key contribution was to show that this abstraction functioncould be computed automatically by
symbolically simulating the microprocessor as itflushesinstructions out of the pipeline. For a
single-issue microprocessor, the verification task becomes one of proving the equivalence of two
symbolic simulations: one in which the pipeline is flushed and then a single instruction is executed
in the ISA model, and the other in which the pipeline operatesfor a normal cycle and then flushes.
We call this approach to verificationcorrespondence checking.

Burch and Dill also demonstrated the value ofterm-level modelingfor their style of micropro-
cessor verification. With term-level modeling, the detailsof data representations and operations are
abstracted away, viewing data values as symbolicterms. The precise functionality of operations of
units such as the instruction decoders and the ALU are abstracted away asuninterpreted functions.
Even such parameters as the number of program registers, thenumber of memory words, and the
widths of different data types are abstracted away. These abstractions allow the verifier to focus

1

its efforts on the complexities of the pipeline control logic. Although these abstractions had long
been used when applying automatic theorem provers to hardware verification [6, 12], Burch and
Dill were the first to show their use in an automated microprocessor verification tool.

Our research group followed Burch and Dill’s lead, developing microprocessor verification
tools that operated at both with bit-level [14] and term-level [15] representations. Even with term-
level modeling, our tools operate by reducing the equivalence condition to a Boolean satisfiability
problem, and then applying either Binary Decision Diagrams[1] or a SAT solver [17] to prove
the equivalence or to generate a counterexample in the case of inequivalence. These earlier tools
were restricted to the logic ofEquality with Uninterpreted Functions and Memories, where the
only operations on terms were to test them for equality and toapply uninterpreted functions, and
where memories were modeled with interpreted read and writeoperations. The tools were also
customized to the specific task of verifying microprocessors using correspondence checking.

Burch-Dill verification proves thesafetyof a pipelined processor design—that every cycle of
processor operation has an effect consistent with some number of stepsk of the ISA model. This
includes the case wherek = 0, i.e., that the cycle did not cause any progress in the program
execution. This is indeed a possibility with our designs, when the pipeline stalls to deal with
a hazard condition, or when some instructions are canceled due to a mispredicted branch. This
implies, however, that a processor that deadlocks can pass the verification. In fact, a device that
does absolutely nothing will pass.

To complete the verification, we must also verifyliveness—that the processor cannot get in a
state where it never makes forward progress. This issue has not been addressed in most micro-
processor verification efforts, due to a perception that such bugs are highly unlikely and that this
form of verification would be difficult. Velev [13] is the onlypublished account of a liveness check
using automated verification techniques. His approach involves proving a modified version of the
correctness statement, stating that when the pipeline operating forn cycles has behavior consistent
with completingk steps of the ISA model, wheren is chosen large enough to be sure thatk > 0.
In this report, we describe a very simple and effective approach to proving liveness.

1.2 UCLID

We developed theUCLID verifier to generalize both the modeling capabilities and the range of
verification tasks that the we can perform [3] at the term level. UCLID extends the underlying
logic to support a limited set of integer operations, namelyaddition by a constant and ordered
comparisons. It replaces the specialized read and write functions for modeling memories with a
more general ability to define functions with a simple lambdanotation. The combination of integer
operations and lambda notation makes it possible to expressa wide variety of memory structures,
including random-access, content-addressed, queues, andvarious hybrids. It can also be used to
model systems containing arrays of identical processes andprogram interpreters.

2

UCLID supports several different types of verification, including bounded property checking,
correspondence checking, invariant checking [8] and automatic predicate abstraction [7].

The input toUCLID [11] consists of the description of a system in theUCLID modeling lan-
guage, followed by a series of symbolic simulation commandsto perform the actual verification.
WhenUCLID determines that a verification condition does not hold, it generates a counterexample
trace, showing an execution of the model that violates the condition.

Correspondence checking is implemented inUCLID using a combination of model construction
and command script. The model consists of both the pipelinedprocessor and a reference version
that directly implements the ISA. External control signalsdirect which of these two components
are active, and allows the state from the architectural state elements of the pipeline to be copied
over to the corresponding state elements in the reference version. The command script performs
two runs of the system and then invokes a decision procedure to check the final verification condi-
tion stating the conditions under which the two runs should yield identical results.

1.3 Project Objectives

An important priority for this study was to better understand the applicability of term-level mod-
eling in general, andUCLID in particular, to hardware verification. Most uses ofUCLID to date
have been to verify models that were specifically constructed with UCLID ’s modeling in mind and
for the purpose of demonstratingUCLID ’s abilities. By contrast, the Y86 microprocessor was de-
signed without formal verification in mind, and hence presents a more realistic case study. Y86
also has some attributes of a complex instruction set computer (CISC) instruction set, including a
byte-oriented instruction encoding and greater use of the stack for implementing procedure calls
and returns. This requires a more detailed model than do the highly stylized reduced instruction set
computer (RISC) processors that have been previously verified with term-level verification tools.

The Bryant and O’Hallaron textbook presents two different approaches to implementing a Y86
processor. TheSEQ implementation corresponds directly to the ISA model. It executes one com-
plete instruction per clock cycle. ThePIPE implementation, of which there are seven slightly
different versions, uses a 5-stage, single-issue pipeline. Having these two implementations makes
our verification task easy to formulate: determine whether or not SEQ and (all seven versions of)
PIPE are functionally equivalent. The task is further simplifiedby the fact that the two implemen-
tations share many functional elements, such as the instruction decoding logic and the ALU. They
differ only in the additional pipeline registers and the control logic required byPIPE.

The control logic for bothSEQ and PIPE are described in a simplified hardware description
language, calledHCL, for “Hardware Control Language.” Translators had previously been written
from HCL to C to construct simulation models of the two processors, as well as from HCL to
Verilog to construct versions suitable for generating actual implementations by logic synthesis.

Our previous experience with formal verification tools has shown us that maintainingmodel
fidelity—the assurance that the model being verified is a faithful representation of the actual design

3

and that it is being verified over its full range of operation—is surprisingly difficult. The numerous
cycles of editing the model, running the verifier, and analyzing the results often lead to errors being
introduced that cause inexplicable verification errors. When there is a manual translation between
the original design description and the verification model,the two descriptions can easily become
inconsistent. Even worse, it is common to restrict the rangeof operation (e.g., by limiting the set of
initial states) in order to isolate bugs. If these restrictions are not later removed, the verifier could
overlook bugs that occur under more general conditions. This runs totally contrary to the aims of
formal verification.

Given this background, we formulated the following objectives for this case study:

• Modularity

– A common description of the function blocks should be created and then instantiated
in the models for the two different processor designs.

– We should be able to construct separate verification files forSEQ and PIPE, so that
properties of the two designs can be verified directly ratherthan only by correspon-
dence checking.

• Automation and Version Control

– The HCL control logic should be translated automatically into UCLID format.

– A systematic way should be created to automatically assemble the different parts of the
model—the functional blocks, the control logic, the two data paths, and the connecting
logic—into a single verification model.

– Any restricted operation of the processor model should be expressed as antecedents to
the verification condition, localizing the restriction to asingle point in the input file.
There should be no alterations of the initial state expressions for the state elements.

• Modeling Abstraction

– The designs should follow the earlier simulation and Verilog models. The HCL files
should be modified only to fix bugs. No tricks should be played just to improve the
verifier performance.

– We should use a “natural” term-level abstraction, using symbolic terms and uninter-
preted functions wherever possible, but using the integer arithmetic capabilities of
UCLID to capture the byte-oriented instruction encoding of Y86, and any special fea-
tures of the arithmetic operations that are required.

As these goals indicate, our objective in this project is notsimply to verify a particular micro-
processor, but to formulate a set of “best practices” for usingUCLID, and to identify ways in which
UCLID could be easier and more effective to use.

4

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

RF: Program
registers

ZF SF OFZF SF OF

CC:
Condition

codes

PC

DMEM: Memory

EXC: Exception Status

Figure 1: Y86 programmer-visible state. As with IA32, programs for Y86 access and modify
the program registers, the condition code, the program counter (PC), and the data memory. The
additional exception status word is used to handle exceptional conditions.

2 The Y86 Processor

The Y86 instruction set architecture adapts many of the features of the Intel IA32 instruction set
(known informally as “x86”), although it is far simpler. It is not intended to be a full processor im-
plementation, but rather to provide the starting point for aworking model of how microprocessors
are designed and implemented.

2.1 Instruction Set Architecture

Figure 1 illustrates the architectural state of the processor. As with x86, there are eight program
registers, which we refer to collectively as the register file RF. Of these registers, only the stack
pointer%esp1 has any special status. There are three bits of condition codes, referred to as CC, for
controlling conditional branches. There is a program counter PC, and a data memory DMEM. We
also introduce an exception status register EXC to indicatethe program status. With the formal ver-
ification model, the only two exceptional conditions are when an invalid instruction is encountered
or when a halt instruction is executed.

Figure 2 illustrates the instructions in the Y86 ISA. These instruction range between one
and six bytes long. Simple instructions such asnop (No Operation) andhalt require only a
single byte. The x86 data movement instruction is split intofour cases:rrmovl for register-
register,irmovl for immediate-register,rmmovl for register-memory, andmrmovl for memory
to register. Memory referencing uses a register plus displacement address computation.

The OPl instruction shown in the figure represents four different arithmetic operations, with
the operation encoded in the field labeledfn . These instructions have registersrA and rB as
source operands andrB as destination.

The jXX instruction shown in the figure represents seven different branch instructions, where
the branch condition is encoded in the field labeledfn . Branching is based on the setting of the

1We following the naming and assembly code formatting conventions used by theGCC compiler, rather than Intel
notation.

5

Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 0 0

halt 1 0

Byte 0 1 2 3 4 5Byte 0 1 2 3 4 50 1 2 3 4 5

pushl rA A 0 rA 8pushl rA A 0A 0 rA 8rA 8

jXX Dest 7 fn DestjXX Dest 7 fn7 fn Dest

popl rA B 0 rA 8popl rA B 0B 0 rA 8rA 8

call Dest 8 0 Destcall Dest 8 08 0 Dest

rrmovl rA, rB 2 0 rA rBrrmovl rA, rB 2 02 0 rA rBrA rB

irmovl V, rB 3 0 8 rB Virmovl V, rB 3 03 0 8 rB8 rB V

rmmovl rA, D(rB) 4 0 rA rB Drmmovl rA, D(rB) 4 04 0 rA rBrA rB D

mrmovl D(rB), rA 5 0 rA rB Dmrmovl D(rB), rA 5 05 0 rA rBrA rB D

OPl rA, rB 6 fn rA rBOPl rA, rB 6 fn6 fn rA rBrA rB

ret 9 0ret 9 09 0

nop 0 0nop 0 00 0

halt 1 0halt 1 01 0

iaddl V, rB C 0C 0 8 rB8 rB V

leave D 0leave D 0D 0

Optional

Standard

Figure 2:Y86 instruction set. Instruction encodings range between 1 and 6 bytes. An instruction
consists of a one-byte instruction specifier, possibly a one-byte register specifier, and possibly a
four-byte constant word. Field fn specifies a particular integer operation (OPl) or a particular
branch condition (jXX). All numeric values are shown in hexadecimal. (From [4, Fig. 4.2]).

6

condition codes by the arithmetic instructions.

Thepushl andpopl instructions push and pop 4-byte words onto and off of the stack. As
with IA32, pushing involves first decrementing the stack pointer by four and then writing a word
to the address given by the stack pointer. Popping involves reading the top word on the stack and
then incrementing the stack pointer by four.

Thecall andret instructions implement procedure calls and returns. Thecall instruction
pushes the return address onto the stack and then jumps to thedestination. Theret instruction
pops the return address from the stack and jumps to that location.

The final two instructions are not part of the standard Y86 instruction set, but given to imple-
ment as homework exercises in [4]. One of our versions of Y86 implements these instructions. The
iaddl instruction adds an immediate value to the value in its destination register. Theleave
instruction prepares the stack frame for procedure return.It is equivalent to the two instruction
sequence

rrmovl %ebp, %esp
popl %ebp

where%ebp is the program register used as a frame pointer.

We see that Y86 contains some features typical of CISC instruction sets:

• The instruction encodings are of variable length.

• Arithmetic and logical instructions have the side effect ofsetting condition codes.

• The condition codes control conditional branching.

• Some instructions (pushl andpopl) both operate on memory and alter register values as
side effects.

• The procedure call mechanism uses the stack to save the return pointer.

On the other hand, we see some of the simplifying features commonly seen in RISC instruction
sets:

• Arithmetic and logical instructions operate only on register data.

• Only simple, base plus displacement addressing is supported.

• The bit encodings of the instructions are very simple. The different fields are used in consis-
tent ways across multiple instructions.

7

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC ALUALU

Data
memory

Data
memory

New
PC

rB

dstE dstM

ALU
A

ALU
B

Mem.
control

Addr

srcA srcB

read

write

ALU
fun.

Fetch

Decode

Execute

Memory

Write back

data out

Register fileRegister file
A B

M

E

Bch

dstE dstM srcA srcB

icode ifun rA

PC

valC valP

valBvalA

Data

valE

valM

PC

newPC

EXC

Instr
valid

Gen.
Exc.

CC

DMEM

RF

Figure 3:Hardware structure of SEQ. This design was used as the sequential reference version.

8

2.2 Sequential Implementation

Figure 3 illustratesSEQ, a sequential implementation of the Y86 ISA, where each cycle of execu-
tion carries out the complete execution of a single instruction. The only state elements are those
that hold the Y86 architectural state. The data path also contains functional blocks to decode the
instruction, to increment the PC, to perform arithmetic andlogical operations (ALU). The control
logic is implemented by a number of blocks, shown as shaded boxes in the figure. Their detailed
functionality is described in HCL, a simple language for describing control logic.

The overall flow during a clock cycle occurs from the bottom ofthe figure to the top. Starting
with the current program counter value, six bytes are fetched from memory (not all are used), and
the PC is incremented to the next sequential instruction. Upto two values are then read from
the register file. The ALU operates on some combination of thevalues read from the registers,
immediate data from the instruction, and numeric constants. It can perform either addition or the
operation called for by an arithmetic or logical instruction. A value can be written to or read from
the data memory, and some combination of memory result and the ALU result is written to the
registers. Finally, the PC is set to the address of the next instruction, either from the incremented
value of the old PC, a branch target, or a return address read from the memory.

2.3 Pipelined Implementation

Figure 4 illustrates a five-stage pipeline, calledPIPE, implementing the Y86 instruction set. Note
the similarities betweenSEQ and PIPE—both partition the computation into similar stages, and
both use the same set of functional blocks. PIPE contains additional state elements in the form of
pipeline registers, to enable up to five instructions to flow through the pipeline simultaneously, each
in a different stage. Additional data connections and control logic is required to resolve different
hazardconditions, where either data or control must pass between two instructions in the pipeline.

There are a total of seven versions ofPIPE. The basic implementation STD is illustrated in the
figure and described in detail in [4]. The others are presented in the book as homework exercises,
where our versions are the official solutions to these problems. They involve adding, modifying, or
removing some of the instructions, forwarding paths, branch prediction policies, or register ports
from the basic design.

STD This is the standard implementation illustrated in Figure 4. Data hazards for arguments
required by the execute stage are handled by forwarding intothe decode stage. A one-cycle
stall in the decode stage is required when a load/use hazard is present, and a three-cycle
stall is required for the return instruction. Branches are predicted as taken, with up to two
instructions canceled when a misprediction is detected.

FULL Implements theiaddl andleave instructions listed as optional in Figure 2. Verification
is performed against a version ofSEQ that also implements these two instructions.

9

M

F

D

Instruction
memory

Instruction
memory

PC
increment

PC
increment

Register
file

Register
file

CCCC ALUALU

Data
memory

Data
memory

Select
PC

rB

dstE dstM

ALU
A

ALU
B

Mem.
control

Addr

srcA srcB

read

write

ALU
fun.

Fetch

Decode

Execute

Memory

Write back

data out

data in

A B
M

E

M_valA

W_valE

W_valM

W_valE

M_valA

W_valM

f_PC

Predict
PC

Bchicode valE valA dstE dstM

E icode ifun valC valA valB dstE dstM srcA srcBE icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcBd_srcA

e_Bch

M_Bch

Sel+Fwd
A

Fwd
B

W icode valE valM dstE dstM

m_valM

W_valM

M_valE

e_valE

exc

exc

exc

exc

EXC

DMEM

CC

RF

Figure 4:Hardware structure of PIPE, the pipelined implementation to be verified. Some of
the connections are not shown.

10

STALL No data forwarding is used by the pipeline. Instead, an instruction stalls in the decode
stage for up to three cycles whenever an instruction furtherdown the pipeline imposes a data
hazard.

NT The branch prediction logic is modified to predict that branches will not be taken, unless they
are unconditional. Up to two instructions are canceled if the branch was mispredicted.

BTFNT Similar to NT, except that branches to lower addresses are predicted as being taken, while
those to higher addresses are predicted to not be taken, unless they are unconditional. Up to
two instructions must be canceled if the branch is mispredicted.

LF An additional forwarding path is added between the data memory output and the pipeline
register feeding the data memory input. This allows some forms of load/use hazards to be
resolved by data forwarding rather than stalling.

SW The register file is simplified to have only a single write port, with a multiplexor selecting
between the two sources. This requires splitting the execution of thepopl instruction into
two cycles: one to update the stack pointer and one to read from memory.

3 GeneratingUCLID Models

3.1 Data Types

Our first task was to determine an appropriate level of abstraction for the term-level model. UCLID

supports five different data types:

Truth Boolean values, having possible values 0 and 1.

Term Term values. These are assumed to be values from some arbitrary, infinite domain. A
limited set of integer operations on terms is also supported.

Enumerated The user can declare a data type consisting of an enumerated set of values. UCLID

implements these using term values.

Function These are mappings from terms to terms. They are either uninterpreted, defined by
lambda expressions, or one of the integer operations.

Predicate These are mappings from terms to Boolean values. They are either uninterpreted, de-
fined by lambda expressions, or a test for integer equality orordering.

We wish to formulate a model that maximizes the use of term-level abstraction, in order to
maximize the generality of the model and the performance of the verifier. To achieve this goal,

11

it is better to encode a signal as a symbolic term rather than an enumerated type. It is better to
use uninterpreted functions and predicates rather than lambda expressions or integer operations.
However, if we overdo the level of abstraction, then we can get verification errors that would not
be possible in the actual system. For example, the values of an enumerated type are guaranteed
to be distinct, whereas the verifier will consider two different symbolic term constants as possibly
having the same value.

Based on this goal, we formulated the following representations:

• An enumerated type was introduced for the instruction code (icode) fields. Their values are
based on the instruction names shown in Figure 2. For example, IHALT is the instruction
code for thehalt instruction, whileIOPL and IJXX are the instruction codes for the
arithmetic and logical operations and the jump instructions, respectively.

• All other fields in the instruction are modeled as symbolic terms: the function code (for
arithmetic and logical operations and for jump instructions), the register identifiers, and the
constant data.

• Symbolic constants were introduced to designate special term values: register identifiers
RESP(stack pointer) andRNONE(indicating no register accessed and shown encoded as
numeric value 8 in Figure 2), ALU operationALUADD, and data constantCZERO(UCLID

does not have any designated numeric constants).

• An enumerated type was introduced for the exception status values. These are namedEAOK
(normal operation),EHLT (halted), andEINS (invalid instruction exception). We added a
fourth possibilityEBUBto indicate a bubble at some stage in the pipeline. This valuewill
never arise as part of the architectural state.

• Program addresses are considered to be integers. The instruction decoding logic increments
the PC using integer arithmetic.

• The register file is implemented as a function mapping register identifiers to data values. A
lambda expression describes how the function changes when aregister is written.

• The set of condition codes is modeled as a single symbolic term. Uninterpreted functions
are introduced to specify how the value should be updated. Anuninterpreted predicate
determines whether a particular combination of branch condition and condition code value
should cause a jump. With this level of abstraction, we ignore the number of condition code
bits as well as their specific interpretations.

• The data memory is modeled as a single symbolic term, with uninterpreted functions mod-
eling the read and write operations. This abstraction is adequate for modeling processors in
which memory operations occur in program order [2].

Some aspects ofUCLID make it difficult to make the best use of its data abstraction capabilities.

12

• Symbolic constants of enumerated type are not supported. This makes it impossible to de-
clare lambda expressions having enumerated types as arguments.

• Uninterpreted functions yielding enumerated types are notsupported. This requires a workaround
to model instruction decoding, where the instruction code is extracted from the high order
bits of the first instruction byte. Instead, we must use a workaround where the instruction de-
coder consists of a lambda expression that yields differentinstruction code values depending
on the integer value given by an uninterpreted function.

3.2 Modularity

UCLID has limited support for modularity:

• Portions of the system can be grouped into modules. However,nesting of modules is not
supported, and so the hierarchy is very shallow.

• Functional blocks can be abstracted as lambda expressions.Lambda expressions can yield
results of the three scalar types: Boolean, term, and enumerated. However, their arguments
must be terms or Booleans, limiting the class of blocks for which they are useful.

• The DEFINE section of module and overall descriptions make it possible to introduce in-
termediate values in the next state expression. This makes it possible to define blocks of
combinational logic separately, using the intermediate signals as the connection points.

Besides the above noted restrictions, other aspects ofUCLID make modularity difficult:

• The signal definitions in the DEFINE section must be ordered such that any signal is defined
before it is used. Although this is a natural requirement foran imperative programming
language, it makes it harder to decompose the logic into independent blocks, since it induces
an ordering restriction on the block definitions.

We achieved our goals for modularity and automation by partitioning the description into mul-
tiple files, and then merging them automatically via the process illustrated in Figure 5. As this
figure indicates, we create models for bothPIPE and SEQ and then merge them with a frame-
work that supports correspondence checking. Several of thefiles are identical for the two models,
ensuring that the two models remain consistent.

To generate a model for either theSEQor PIPEprocessor, our code merges a general framework,
defining the state variables, with declarations of the connection points for the function blocks and
the overall logic describing how each state variable shouldbe updated. This logic comes from three
sources: the HCL descriptions of the control logic, translated toUCLID by the programHCL2U,
descriptions of the functional blocks, and descriptions ofthe connections between them. These

13

hcl2u
Topo.

Order

Topo.

Order

Merge

Merge

SEQ HCL

SEQ connections

hcl2uPIPE HCL

PIPE connections

block definitionsblock definitions
block

variables

SEQ

framework

PIPE

framework

declarations

verification framework

SEQ

model

PIPE

model

Merge

UCLID

file

Figure 5:Generating complete verification file. The merging steps ensure that a common set
of definitions is used for both the SEQ and PIPE models.

definitions must occur in an appropriate order, and so they are merged using topological sorting.
Other merging is done using the C compiler preprocessorCPP, with #include statements de-
scribing the nesting of files. The models forPIPE and forSEQ are declared as separate modules.
This makes it possible to have distinct signals with the samenames in the two modules.

The blocks labeledHCL2U translate the HCL descriptions of the control logic intoUCLID signal
definitions. This translation is fairly straightforward, since the two formats use similar semantic
models. Both HCL andUCLID formats use case expressions to define data values (integersin the
case of HCL, and terms or enumerated types in the case ofUCLID) and Boolean expressions to
define Boolean values. Both require each signal to be defined in its entirety as a single expression,
a style both formats inherit from the original SMV model checker [9]. By contrast, hardware
description languages such as Verilog follow more of an imperative programming style, where
assignment statements for a signal can appear in multiple locations in a program, with conditional
constructs determining which, if any, are executed for a particular combination of state and input
values. To extract a network representation from such a description, logic synthesis tools must
symbolically simulate the operation of the system and derive the next state expression for each
signal.

Figure 6A provides a sample HCL description to illustrate its translation intoUCLID. This
code describes how the A input to the ALU is selected inSEQ based on the instruction code. The
HCL case expression, delimited by square brackets, consists of a list of expression pairs. The first
element in the pair evaluates to a Boolean value, while the second gives the resulting data value
for the expression. Expressions are evaluated in sequence,where the value returned is given by the
first case that evaluates to 1. We can see in this expression that the possible values for this ALU
input arevalA , read from the register file,valC , read from the instruction sequence, or constant
values+4 or−4.

14

A). HCL description

Select input A to ALU
int aluA = [

icode in { IRRMOVL, IOPL } : valA;
icode in { IIRMOVL, IRMMOVL, IMRMOVL } : valC;
icode in { ICALL, IPUSHL } : -4;
icode in { IRET, IPOPL } : 4;
Other instructions don’t need ALU

];

B). GeneratedUCLID code

(* $define aluA *)
aluA :=

case
(icode = IRRMOVL|icode = IOPL) : valA;
(icode = IIRMOVL|icode = IRMMOVL|icode = IMRMOVL) : valC;
(icode = ICALL|icode = IPUSHL) : predˆ4(CZERO);
(icode = IRET|icode = IPOPL) : succˆ4(CZERO);
default : succˆ4(CZERO);

esac;
(* $args icode:valA:valC *)

Figure 6:Automatically generated UCLID code. The semantic similarity of the two representa-
tions allows a direct translation.

15

(* $define dmem_new *)
dmem_new := case

dmem_wrt : dmem_write_fun(dmem_old, dmem_addr, dmem_din);
default: dmem_old;

esac;
(* $args dmem_wrt:dmem_old:dmem_addr:dmem_din *)

(* $define dmem_dout *)
dmem_dout := dmem_read_fun(dmem_old, dmem_addr);
(* $args dmem_old:dmem_addr *)

Figure 7:Sample block description. These provide abstract model of data memory, using unin-
terpreted functions to abstract read and write functions.

Figure 6 shows theUCLID code generated byHCL2U for this HCL expression. Observe that the
overall structure is the same—a case expression where expressions are evaluated in sequence to
find the first one evaluating to 1. The differences are mostly syntactic. Instead of square brackets,
UCLID uses the keywordscase andesac . UCLID does not support a set membership test, and
so these are translated into a disjunction of equality tests. UCLID insists on having a default
case, and soHCL2U simply repeats the final expression as a default. We see, though, that the
two formats have different ways of modeling integer constants. UCLID does not directly support
integer constants. Instead, we translate them into an increment (succ) or decrementpred relative
to the symbolic constantCZERO.

We see also that the generatedUCLID code contains comments at the beginning and end declar-
ing the name of the signal generated and its arguments. Thesedeclarations are used by the topo-
logical ordering code.

Figure 7 shows an example of a functional block definition, describing the state and output of
the data memory. These descriptions were generated by hand,along with the comments declaring
the name of the signal generated and the arguments. As this example indicates, the block descrip-
tions are fairly straightforward. Note the use of uninterpreted functionsdmem_write_fun and
dmem_read_fun to describe the updating of the data memory and the extraction of a value by a
read operation.

Figure 8 shows how the connections between functional blocks, control logic, and the state
variables are defined in both theSEQ and PIPE models. Since the two models are declared as
separate models, we can use the same signals in both, such as the connections to the functional
blocks, as well as other internal signals such asmem_addr. Again, we can see the comments
declaring the names of the generated signal and its arguments.

The topological sorter extracts definitions from multiple files and orders them in a way that the
definition of a signal occurs before any use of that signal. Weimplemented this with a simple Perl

16

A). Connections inSEQ.

(* $define dmem_addr *)
dmem_addr := mem_addr;
(* $args mem_addr *)

(* $define dmem_din *)
dmem_din := mem_data;
(* $args mem_data *)

(* $define dmem_wrt *)
dmem_wrt := mem_write;
(* $args mem_write *)

(* $define valM *)
valM := dmem_dout;
(* $args dmem_dout *)

(* $define dmem_old *)
dmem_old := DMEM;
(* $args DMEM *)

B). Connections inPIPE.

(* $define dmem_addr *)
dmem_addr := mem_addr;
(* $args mem_addr *)

(* $define dmem_din *)
dmem_din := M_valA;
(* $args M_valA *)

(* $define dmem_wrt *)
dmem_wrt := mem_write;
(* $args mem_write *)

(* $define m_valM *)
m_valM := dmem_dout;
(* $args dmem_dout *)

(* $define dmem_old *)
dmem_old := DMEM;
(* $args DMEM *)

Figure 8: Connecting to functional blocks. By renaming signals, we can instantiate different
versions of the functional blocks in the two models.

17

A.) Uninterpreted

alu_out := case
1 : alu_fun(alu_cntl, aluA, aluB);
default : alu_fun(alu_cntl, aluA, aluB);

esac;

B.) Pass Through

alu_out := case
alu_cntl = ALUADD & aluB = CZERO : aluA;
default : alu_fun(alu_cntl, aluA, aluB);

esac;

C.) Incr./Decr.

alu_out := case
alu_cntl = ALUADD & aluA = succˆ4(CZERO) : succˆ4(aluB);
alu_cntl = ALUADD & aluA = predˆ4(CZERO) : predˆ4(aluB);
default : alu_fun(alu_cntl, aluA, aluB);

esac;

Figure 9: Different ALU models. Some Y86 versions require partial interpretations of the ALU
function.

script. It relies on the annotations written as comments in theUCLID source, as shown in Figures
6B, 7, and 8 to determine the expression dependencies.

Our method for generating theUCLID file proved very successful in practice. A more ideal
approach would be to modifyUCLID to support greater modularity as well as file inclusion, but
we found the more ad hoc approach of file inclusion, simple translators, and Perl scripts to be
satisfactory. We were able to follow a principle that each piece of logic had a single description,
and that any modification to this logic would be propagated automatically to any place it was used.

3.3 Modeling Issues

For the most part, our original plan for modeling the processor proved successful. We were able to
use uninterpreted functions and predicates extensively ininstruction decoding, ALU and condition
code operation, and data memory access. There were two places, however, where a more detailed
level of modeling was required.

18

First, we had to be more precise in that handling of register arguments for different instruction
types. Our implementation relies on a special register identifier RNONEto indicate when no register
argument is present in the pipeline, either as the source or the destination of instruction data. The
control logic tests for this value when determining when to inject stall cycles into the pipeline and
when and where to forward data from one instruction to another. The behavior ofPIPE might not
match that ofSEQ if either an instruction flowing through the pipeline has a register ID field set
to RNONEwhen it should be a normal program register, or it is not set toRNONEwhen it should
be. The original designs forPIPE andSEQ were designed assuming that the Y86 assembler would
generate the register ID fields as is shown in Figure 2, and so there was no provision for handling
invalid cases.

We solved this problem by adding logic to detect when an instruction had an improper register
ID, causing it to generate an illegal instruction exception, both inSEQ and inPIPE. We consider
this to be an example of a positive benefit of formal verification—it forces designers to consider
all of the marginal operating conditions and specify just what the processor should do for every
possible instruction sequence, not just those that are expected to occur in actual programs. Given
the possibility that a processor could encounter arbitrarycode sequences either inadvertently (e.g.,
an incorrect jump target) or due to malice (e.g., code inserted by a virus), it is important to have
predictable behavior under all conditions.

Second, some versions of the processor required a more precise modeling of the ALU. Figure
9 shows different versions of the ALU function. The simplestis to model it as an uninterpreted
function, having as arguments the function code and the two data inputs (A). This high level of
abstraction suffices for three versions: STD, LF, and STALL.

The versions that change the branch prediction policy NT andBTFNT pass the branch target
through the A input to the ALU, setting the B input to 0 and the function code to addition. The
ALU function must detect this as a special case and pass the A input to the ALU output. The code
for this is shown in Figure 9B.

Version SW breaks thepopl instruction into two steps. Effectively, it dynamically converts
the instructionpopl rA into the two-instruction sequence

iaddl $4, %esp
mrmovl -4(%esp), rA

This particular ordering of incrementing and then reading,rather than reading and then incre-
menting, is used to correctly handle the instructionpopl %esp . We must indicate in the ALU
model the effect of having the ALU function be addition and the A input be either+4 or −4.
Given this information,UCLID can use its ability to reason about the successor and predecessor
operations to recognize that(x + 4) − 4 = x.

Figure 9C shows how the ALU function can be modified to correctly handle this property. It
need only detect the identity when the data is passing through the B input of the ALU, since this

19

is the input used by both the incrementing and the decrementing instruction.

Unfortunately, as we will see with the experimental data, these seemingly small modifications
of the ALU function greatly increase the run time of the verifier.

4 Verification

The conventional approach to verifying a pipelined microprocessor design is to perform extensive
logic simulation, first running on simple tests, then running on typical programs, and then system-
atically running tests that were systematically generatedto exercise many different combinations
of instruction interactions. We had previously done all of these forms of testing on the base designs
for SEQ andPIPE, using an instruction set simulator as the reference model.The main untested
portions of the designs were the exception handling logic and the mechanisms introduce to enable
a flushing of the pipeline. Not surprisingly, these were the portions that required the most effort
to get working correctly. In addition, a fair amount of effort was required to deal with modeling
issues, such as the different versions of the ALU function and the handling of register identifiers
described in the previous section.

4.1 Burch-Dill Pipeline Verification

Our task is to prove thatSEQandPIPEwould give the same results on any instruction sequence. We
do this using the method developed by Burch and Dill [5], in which two symbolic simulation runs
are performed, and then we check for consistency between theresulting values of the architectural
state elements.

The overall verification process can be defined in terms of thefollowing simulation operations
on models ofPIPE or SEQ. We describe these operations as if they were being performed by a
conventional simulator. The symbolic simulation performed by UCLID can be viewed as a method
to perform a number of conventional simulations in parallel.

Init (s): Initialize the state of thePIPE to states. This state specifies the values of the architectural
state elements as well as the pipeline registers.

Pipe: Simulate the normal operation ofPIPE for one cycle.

Flush(n): Simulaten steps ofPIPEoperating in flushing mode. Instruction fetching is disabled in
this mode, but any instructions currently in the pipeline are allowed to proceed.

Seq: Simulate the normal operation ofSEQ for one cycle.

Xfer: Copy the values of the architectural state elements inPIPEover to their counterparts inSEQ.

20

SaveS(s): Save the values of the state elements inSEQ as a states. UCLID providesstorage
variablesto record the symbolic value of a state variable at any point during its execution.

The key insight of Burch and Dill was to recognize that simulating a flushing of the pipeline
provides a way to compute an abstraction functionα from an arbitrary pipeline state to an archi-
tectural state. In particular, consider the sequence

Init(P0), Flush(n), Xfer, SaveS(A)

It starts by setting the pipeline to some initial stateP0. Since this is a general pipeline state, it
can have some partially executed instructions in the pipeline registers. It simulates a flushing of
the pipeline forn steps, wheren is chosen large enough to guarantee that all partially executed
instructions have been completed. Then it transfers the architectural state toSEQ and saves this as
stateA. We then say thatα(P0) = A. That is, it maps a pipeline state to the architectural statethat
results when all partially executed instructions are executed.

Our task in correspondence checking is to prove that the operations ofPIPE andSEQ remain
consistent with respect to this abstraction function. Checking involves performing the following
two simulation sequences:

σa

.
= Init(P0), Pipe, Flush(n), Xfer, SaveS(SP)

σb

.
= Init(P0), Flush(n), Xfer, SaveS(S0), Seq, SaveS(S1)

Sequenceσa captures the effect of one step ofPIPE followed by the abstraction function, while
sequenceσb captures the effect of the abstraction function followed bya possible step ofSEQ.
Sequenceσb starts withPIPE initialized to the same arbitrary state as inσa. It executes the steps
corresponding to the abstraction function, saves that state asS0, runs one step ofSEQ, and saves
that state asS1.

The correspondence condition for the two processors can then be stated that for any possible
pipeline stateP0 and for the two sequences, we should have:

SP = S1 ∨ SP = S0 (1)

The left hand case occurs when the instruction fetched during the single step ofPIPE in sequence
σa causes an instruction to be fetched that will eventually be completed. If the design is correct,
this same instruction should be fetched and executed by the single step ofSEQ in sequenceσb. The
right hand case occurs when either the single step ofPIPEdoes not fetch an instruction due to a stall
condition in the pipeline, or an instruction is fetched but is later canceled due to a mispredicted
branch. In this case, the verification simply checks that this cycle will have no effect on the
architectural state.

Our above formulation holds for a single-issue pipeline such asPIPE. It can readily be extended
to superscalar pipelines by running multiple cycles ofSEQ in sequenceσb [15].

21

4.2 Implementing Burch-Dill Verification with UCLID

Implementing Burch-Dill verification involves a combination of constructing a model that supports
the basic operations listed above and creating a script thatexecutes and compares the results of
sequencesσa andσb. This is documented via a simple pipelined data path examplein the reference
manual [11]. Our verification framework includes control signals that allowPIPE to be operated in
either normal or flushing mode, that allow theSEQ state elements to import their values from the
corresponding elements inPIPE, and that allowSEQ to be operated. As the execution proceeds, we
capture the values of state variables inUCLID storage variables.

As an example, the following code is used to capture the matching condition of Equation 1 as
a formulamatch :

match0 := (S0_pc = SP_pc) & (S0_rf(a1) = SP_rf(a1))
& (S0_cc = SP_cc) & (S0_dmem = SP_dmem) & (S0_exc = SP_exc);

match1 := (S1_pc = SP_pc) & (S1_rf(a1) = SP_rf(a1))
& (S1_cc = SP_cc) & (S1_dmem = SP_dmem) & (S1_exc = SP_exc);

match := match1 | match0;

In these formulas, a storage variable with name of the formSP_x refers to the value of state
elementx in stateSP . Similarly, names of the formS0_x andS1_x refers to the values of state
elementx in statesS0 andS1, respectively.

Our method of comparing the states of the register files must work around the fact thatUCLID

does not support testing of equality between functions. Instead, we state the testf = g for func-
tionsf andg as∀x[f(x) = g(x)]. We do this by introducing a symbolic constanta1 and testing
that the two register file functions yield the same values forthis constant. Since symbolic constants
are implicitly universally quantified, we can therefore test that the register files have identical con-
tents.

The matching condition of Equation 1 must hold for all possible states of the pipelineP0. In
practice, however, many possible pipeline states would never arise during operation. There could
be an intra-instruction inconsistency, for example, if a register identifier is set toRNONEwhen it
should denote a program register. There can also be inter-instruction inconsistencies, for example
when aret instruction is followed by other instructions in the pipeline rather than by at least three
bubbles. These inconsistent states can be excluded by the verifier, but only if we can also prove
that they can never actually occur.

We define apipeline invariantto be any restrictionI on the pipeline state that can be shown to
hold under all possible operating conditions. To ensureI is invariant, we must show that it holds
when the processor is first started, and that it is preserved by each possible processor operation.
The former condition usually holds trivially, since the pipeline will be empty when the processor

22

is first started, and so we focus our attention on proving the latterinductiveproperty. We do this
by executing the following simulation sequence:

Init(P0), Pipe, SaveP(P1)

where SaveP(s) saves the values of the pipeline state elements as a states. We must then prove
I(P0) ⇒ I(P1).

We would like to keep our pipeline invariants as simple as possible, since they place an addi-
tional burden on the user to formulate and prove them to be invariant.

We found that several versions ofPIPE could be verified without imposing any invariant re-
strictions. This is somewhat surprising, since no provisions were made in the control logic for
handling conditions where data will not be properly forwarded from one instruction to another, or
where pipeline bubbles can cause registers to be updated. The design is more robust than might
be expected. One explanation for this is that the two simulation sequencesσa andσb start with the
same pipeline state. Any abnormalities in this initial state will generally cause the same effect in
both simulations. Problems only arise when the inconsistent instructions initially in the pipeline
interfere with the instruction that is fetched during the first step ofσa.

Some versions ofPIPE required imposing initial state restrictions, based on invariant proper-
ties, as illustrated in Figure 10. These expressions describe consistency properties by referencing
storage variables that captured parts of the initial pipeline state. First, we found it necessary to
account for the different exception conditions, and how they would affect the instruction code and
the destination register fields. Figure 10A shows such an example stage invariant, imposing a
consistency on the memory stage. Similar conditions were defined for the decode, execute, and
write-back stages.

The property shown in Figure 10B describes the requirement that anyret instruction passing
through the pipeline will be followed by a sequence of bubbles, owing to the 3-cycle stall that
this instruction causes. The conjunction of this invariantwith the stage invariants has the effect
of imposing restrictions on the destination register and instruction code fields of the following
instructions.

The property shown in Figure 10C is specific to the SW implementation. It constrains each
pipeline stage to have at most one destination register. This property is implicitly assumed to hold
in our control logic for SW.

Verifying that these invariants are inductive takes at most10 CPU seconds, and so it is not a
serious burden for the verification. We also found it important to actually carry out the verification.
Some of our earlier formulations of invariants proved not tobe inductive, and in fact were overly
restrictive when used to constrain the initial pipeline state.

Figure 11 shows four formulations of the correctness condition used for different versions of
PIPE. They differ only in what antecedent is used to constrain thedata values and the initial state.
All of them include the requirement thatRESP, the register identifier for the stack pointer, be

23

A.) Constraints among state variables in memory stage

M_ok0 :=
(pipe.M_exc = EAOK =>

pipe.M_icode != IHALT & pipe.M_icode != IBAD)
& (pipe.M_exc = EBUB | pipe.M_exc = EINS =>

pipe.M_dstM = RNONE & pipe.M_dstE = RNONE & pipe.M_icode = IN OP)
& (pipe.M_exc = EHLT =>

pipe.M_dstM = RNONE & pipe.M_dstE = RNONE & pipe.M_icode = IH ALT);

B.) Constraints on pipeline state followingret instruction.

(* Check that ret instruction is followed by three bubbles *)
ret_ok0 :=

(pipe.E_icode = IRET => pipe.D_exc = EBUB)
& (pipe.M_icode = IRET => pipe.D_exc = EBUB & pipe.E_exc = EBU B)
& (pipe.W_icode = IRET

=> pipe.D_exc = EBUB & pipe.E_exc = EBUB & pipe.M_exc = EBUB);

C.) Constraints on destination registers for SW implementation

(* Check that at most one register write in each pipeline stage *)
swrite0 :=

(pipe.E_dstE = RNONE | pipe.E_dstM = RNONE)
& (pipe.M_dstE = RNONE | pipe.M_dstM = RNONE)
& (pipe.W_dstE = RNONE | pipe.W_dstM = RNONE);

Figure 10:Pipeline state invariants. These formulas express consistency conditions for the initial
pipeline state.

24

A.) Arbitrary initial pipeline state:

(* Verification of all instructions with unrestricted initia l state *)
(RESP != RNONE => match)

B.) Arbitrary initial pipeline state withREBPvalue constraint.

(* Verification of all instructions with unrestricted initia l state *)
(REBP != RNONE & RESP != RNONE => match)

C.) Initial pipeline state satisfies return invariant:

(* Verification of all instructions with restricted initial s tate.
Restriction accounts for stalling after ret instruction *)

((W_ok0 & M_ok0 & E_ok0 & D_ok0 & RESP != RNONE & ret_ok0)
=> match)

D.) Initial pipeline state satisfies single-write invariant:

(* Verification of all instructions with restricted initial s tate.
Restriction accounts single-write property of SW pipeline *)

((W_ok0 & M_ok0 & E_ok0 & D_ok0 & swrite0 & ret_ok0 & RESP != RNO NE)
=> match)

Figure 11:Verification conditions. Different Y86 versions require different verification condition.

25

Version Flush Steps ALU Model Condition Time (minutes)
STD 5 Uninterp. Arbitrary 3.9

FULL 5 Uninterp. Arbitrary + REBPvalue 4.6
STALL 7 Uninterp. Return Invariant 27.0

NT 5 Pass through Arbitrary 22.3
BTFNT 5 Pass through Arbitrary 24.3

LF 5 Uninterp. Return Invariant 4.0
SW 6 Incr./Decr. Single Write 465.3

Figure 12:Verification times for different Y86 versions. All times are the total number of CPU
minutes for the complete run on an 2.2 GHz Intel Pentium 4.

distinct fromRNONE, the value indicating that no register is to be read or written. Since both of
these values are declared as symbolic constants,UCLID would otherwise consider the case where
they are the same, and this causes numerous problems with thedata forwarding logic. The first
verification condition (A) does not constrain the initial state. It suffices for verifying versions
STD, NT, and BTFNT. For verifying FULL, we must impose an additional data constraint that
REBP, the register identifier for the base pointer, is distinct from RNONE. The third formulation
(C) requires register consistency within each stage as wellas thatret instructions are followed by
bubbles. This condition is required for verifying versionsSTALL and LF. The fourth (D) imposes
all of these constraints, plus the single-write property. This version is used for verifying SW.

Figure 12 documents the different combinations ofn, the number of steps to flush the pipeline,
the ALU function, and the verification condition required toverify each version ofPIPE. We see
that most versions could be flushed in five steps: one due to a possible stall when a load/use hazard
occurs, and four to move the instruction initially in the decode stage through the decode, execute,
memory, and write-back stages. Version STALL requires seven steps, since a data hazard can
require up to three stall cycles. Version SW requires six steps due to the additional decode cycle it
uses.

The figure also shows the CPU times for the verification running on a 2.2 GHz Intel Pentium 4.
The times are expressed in CPU minutes, and include both the user and system time for the com-
pleteUCLID run. Running the SAT solverZCHAFF [10] accounted for 80–90% of the total CPU
time. We can see that the verification times range from several minutes to almost eight hours. We
investigate the factors that influence performance later inthis report.

4.3 Errors

We discovered only one error in the HCL descriptions of the different processor versions. The SW
version handled the following instruction sequence improperly:

26

Flush Steps
ALU 5 6 7

Uninterp. 3.9 6.6 11.2
Pass Through 22.3 45.1 76.2

Incr./Decr. 40.9 92.9 216.3

Figure 13:Verification times for STD. The times depend heavily on the number of flushing steps
and the type of ALU model.

popl %esp
ret

This instruction sequence causes a combination of control conditions as discussed in [4, pp. 349–
350], where the load/use hazard between the two instructions occurs at the same time the control
logic is preparing to inject bubbles following theret instruction. This combination was carefully
analyzed and handled in the other versions ofPIPE, but it takes a slightly different form in SW
where thepopl instruction is split into two steps. This bug was easily corrected in the HCL file.

The fact that this bug had not been detected previously exposed a weakness in our simulation-
based verification strategy. We had attempted to systematically simulate the processor for every
possible pair of instructions where the first generates a register value and the second reads this
value, possibly with anop instruction between them. Unfortunately, we had not considered cases
where theret instruction is the reader of%esp. This is a general problem with simulation—it
can be difficult to identify potential weaknesses in the testing plan.

4.4 Performance Analysis

We saw in Figure 12 that the CPU times to verify the different Y86 versions varied greatly, with the
longest being 119 times greater than the shortest. Moreover, we see that the longest one required
nearly eight hours, which proved a serious hindrance to completing the verification. Four factors
could contribute to the varying times for these verifications:

1. the invariant restrictions imposed on the initial pipeline state.

2. the number of cycles required to flush the pipeline,

3. the level of abstraction used for modeling the ALU function, and

4. the pipeline characteristics of the model,

27

To better evaluate the relative effects, we ran several experiments holding some parameters fixed
while varying others.

First, we determined that the invariant restrictions have little effect on the running time by ver-
ifying STD using all three formulations of the correctness condition show in Figure 11. All three
formulas are valid, although the single-write invariant isnot inductive, since only the SW version
obeys the single-write property. The verification times were 3.9, 3.5, and 3.7 minutes, respectively.
Given that SAT uses a heuristic search-based algorithm, which even effects the performance when
proving a formula is unsatisfiable, this variation is negligible.

To evaluate the second and third factors, we ran a number of verifications of STD using differ-
ent ALU models and numbers of flush cycles. These times are shown in Figure 13. We can see that
both of these factors have a major influence on the verification times. First, looking at each row
of the table, we see that the verification time increases by a factor of 1.7–2.3 with each additional
flushing step. In other words, the verification time grows exponentially with the number of flush-
ing steps. This is consistent with other uses of term-level verification for Burch-Dill verification
[16] and for bounded property checking [3]. The propositional formulas grow in size by factors
of 1.6–1.8 per additional flush cycle, and the times for the SAT solver grow slightly worse than
linearly.

Looking at the columns in the table of Figure 13, we see that the seemingly small changes in
the ALU function shown in Figure 9 can have a major effect on the verification times. Making the
ALU pass values through when there is an addition by 0 increases the verification times by a factor
of 5.7–6.9. Making the ALU properly handle the incrementingand decrementing by four increases
the verification times by a factor of 10.4–19.3. This demonstrates the fragility ofUCLID ’s decision
procedure. A small change in the HCL files—only a few lines of code—can have a large impact on
the verification times. By conditionally testing the ALU input value, we lose the ability to exploit
positive equality [2] in the decision procedure. Although changing the ALU function has little
effect on the total number of symbolic constants that are required, the fraction that can be treated
as unique values shifts from around 80% to around 40% of the total. Essentially, the constants
representing all of the values in the data path must be encoded in a more general, and more costly
form. The underlying propositional formulas grow by factors of 2.0–2.3 for the pass-through case
and by factors of 2.4–2.7 for the increment/decrement case,but these formulas are significantly
more challenging for the SAT solver.

The number of flushing steps and the ALU model account for a large portion of the variation
between the different verification times. Figure 14 attempts to factor out these effects to show
the effect of the pipeline structure. Each row compares the verification time for one of the Y86
versions from Figure 12 to the verification of STD with the matching number of flushing steps and
ALU model from Figure 13. We see that the verification times for four of the versions: FULL,
NT, BTFNT, and LF then have additional factors of only 1.0–1.2. On the other hand, STALL,
which resolves all data hazards by stalling, has an additional factor of 2.4, while SW, which splits
the popl instruction into separate increment and read instructions, has an additional factor of
5.0. Clearly, these changes in how the instructions flow through the pipeline have a major impact

28

Version Time (minutes) STD Time (minutes) Ratio
STD 3.9 3.9 1.0

FULL 4.6 3.9 1.2
STALL 27.0 11.2 2.4

NT 22.3 22.3 1.0
BTFNT 24.3 22.3 1.1

LF 4.0 3.9 1.0
SW 465.3 92.9 5.0

Figure 14: Isolating pipeline structure effects. The verification time for each version is com-
pared to the applicable time from Figure 13

on the complexity of the correctness formulas generated. This is not reflected in the sizes of the
propositional formulas: only the formula for SW is significantly larger (1.5X) than the matching
STD formulas, but the formulas for SW and STALL are clearly more challenging for the SAT
solver.

4.5 Liveness Verification

As mentioned earlier, the fact that our correctness condition (Equation 1) includes the case where
the pipeline makes no progress in executing the program implies that our verification would declare
a device that does absolutely nothing to be a valid implementation. To complete the verification,
we must also prove that the design is live. That is, if we operate the pipeline long enough, it is
guaranteed to make progress.

We devised a simple method for proving liveness that can be performed on thePIPE model
alone. We added an additional state variableIcount that counts the number of instructions that
have been completed by the pipeline. This value is incremented every time an instruction passes
through the write-back stage, as indicated by the exceptionstatus for the stage being something
other thanEBUB. Incrementing is enabled only when the architectural exception statusEXChas
valueEAOK.

We created a verification script forPIPE that starts with an arbitrary pipeline state, runs the
pipeline for five cycles, and checks that the value of the instruction counter changes. More specif-
ically, that the value of the counter will change if and only if the initial exception status isEAOK,
as given by the following correctness condition:

RNONE != RESP & M_ok0 & E_ok0 & D_ok0
=>
(P_exc0 = EAOK & pipe.Icount != icount0

29

| P_exc0 != EAOK & pipe.Icount = icount0)

Five cycles is enough to handle the worst case condition of the pipeline starting out empty. We suc-
ceeded in verifying this condition for all seven versions, each taking less than one CPU second. We
must start the pipeline with the decode, execute, and memorystages satisfying our intra-instruction
consistency requirements. Otherwise, if the pipeline started with “hidden” jump instructions—
instructions that cause a branch misprediction but have their exception status set toEBUB, then
five cycles of execution would not suffice to ensure the instruction counter changes value.

Our liveness check makes use of the safety check provided by Burch-Dill verification. The
safety check implies that any progress made by the pipeline will be consistent with that of the ISA
model. We only need to show that progress is made at some nonzero rate.

5 Lessons Learned

So far, we have presented the final outcome of our verificationeffort, giving the final models,
formulas, and CPU times required for verifying our different Y86 versions. This is typical of the
way experimental results are presented in research papers on formal verification. What this fails
to capture is the substantial work required to build the models, and to find and fix bugs in the
design, the model, or the specification. In this section, we attempt to capture some of the ideas and
practices we developed and used to make the process more tractable.

One principle we followed with great success was to use as much automation as possible in
constructing the model and in running the verification. Figure 5 demonstrated the automation used
in model construction. We see that relatively simple tools—Perl scripts, format translators, and the
C preprocessor—can be strung together for this task. This process meant that any change to any
part of the model only had to be done in one place.

When running a tool such asUCLID, it is important to realize that there are many aspects of the
verification that can cause it to fail:

• Hardware design: The actual design of one of the two processors is incorrect.These are the
bugs we are trying to find.

• Model: The logic describing the state variables, data path, or additional logic for flushing
and transferring state contains an error. Such errors arisepartly because there is no reli-
able way to construct a verification model directly from the hardware description language
representation of a circuit. Even then, some of the additional logic is unique to our verifi-
cation effort. We found it especially challenging to get theflushing and exception handling
mechanisms to work in combination.

• Abstraction: Data types or functional models have been chosen that do notcapture all of the
properties required to ensure proper operation.

30

• Specification: Some aspect of the symbolic execution or the correctness formula contains an
error.

As the list above shows, actual bugs in the design are only oneof several possible sources of error.
One of the challenges of verification is to determine why a particular verification run has failed.

5.1 Guiding the Verifier

Compared to debugging a design by simulation, uncontrolleduse of a formal verification tool such
asUCLID can be very frustrating. We highlight a few ways we experienced and dealt with these
frustrations.

First, with simulation, the designer initially develops simulation patterns that direct the testing
toward a specific aspect of the design. He or she can thereforefocus attention on one part of the
design at a time, performing a number of tests and modifications before moving on to another
aspect of the design. In implementing a microprocessor, thedesigner typically implements and
verifies a small number of instructions at a time. Furthermore, he or she typically focuses on
handling the normal operations of the system initially, andthen on how it handles exceptional cases
later. By contrast, UCLID generates counterexamples based on whatever satisfying assignment the
SAT solver generates. From one run to another, there will seldom be a correlation between the
counterexamples, making it hard to focus on one aspect of thedesign.

Second, with simulation, the designer begins each simulation run by simulating an initialization
sequence to put the system into some known initial state. From that point on, he or she tries to
always keep the system in a reliable state to avoid wasting effort on problems that would only occur
if the system somehow got into an inconsistent state. By contrast, Burch-Dill verification requires
the system to start in a general state. We saw that we can impose restrictions on the initial state,
if these restrictions can be shown to be inductive, but this requires the user to start from a general
case and narrow it down, rather than the more intuitive approach of starting from simple cases and
generalizing them. It would require a substantial effort toformulate a precise invariant restricting
the system to states that can only arise during actual systemoperation. Even the most restrictive
invariant we used (Figure 10C) includes pipeline states where data and control hazards will not be
handled properly. As a consequence, the verifier will often generate counterexamples that clearly
will not happen in actual operation. The user must decide whether such counterexamples point to
an underlying design or model error, or whether a more restrictive initial state condition should be
used.

Finally, compared to the elegant user interfaces that have been developed for visualizing circuit
operation during simulation, the user interface provided by UCLID is quite primitive. Tracing
through a single counterexample can easily take 30 minutes or more, and this process must often
be restarted from scratch from one counterexample to the next.

We found that the best way to useUCLID was to adopt the practices that make debugging by

31

declarations

verification framework

Topo.

Order
Mergehcl2uPIPE HCL

PIPE connections

block definitions
block

variables

PIPE

framework

PIPE

modelTopo.

Order
Mergehcl2uPIPE HCL

PIPE connections

block definitions
block

variables

PIPE

framework

PIPE

model

Merge

UCLID

file

Figure 15:Generating PIPE verification file. This model can be used to verify assertions about
individual instructions.

simulation more tractable. In particular, we followed an approach where we constrained the verifier
to focus initially on simple cases and then slowly generalized these cases until we achieved full
verification. We did this by imposing preconditions on the correctness formula that narrow the
range of conditions modeled. We start by artificially constraining the pipeline to simple initial
states, and considering only limited instruction possibilities. For example, the following formula
restricts the verifier to consider only the case of arrmovl instruction moving through an initially
empty pipeline:

((W_ok0 & W_exc0 = EBUB & M_ok0 & M_exc0 = EBUB
& E_ok0 & E_exc0 = EBUB & D_ok0 & D_exc0 = EBUB
& SP_icode0 = IRRMOVL)

=> match)

This formula uses stage invariants such as we showed for the memory stage in Figure 10A. It
then further restricts each stage to start with a bubble, andto only consider the case where the
instruction being fetched has the appropriate instructioncode value. Any counterexample for this
case should be fairly easy to trace. It will show a singlerrmovl instruction moving through the
pipeline.

If verification fails when the initial pipeline state is constrained to have all stages empty, then
we can simplify things further by focusing independently onSEQ andPIPE. Figure 15 illustrates
the process used to generate a verification model forPIPE operating on its own. A similar process
can be used to generate a verification model forSEQ. We see that this model is generated using
the same files and tools as is used to construct the complete Y86 verification model (Figure 5).
Thus, anything we prove about this model, or any changes we make, will reflect back to the main
verification.

Figure 16 shows how we can specify the behavior of individualinstructions for the two differ-
ent processors. This example shows a precise specification of the effect of executing arrmovl
instruction. In the formula forSEQ, each storage variable with name of the formS x0 captures
the value of state variablex initially, while those namedS x1 capture the values after one step of

32

A.) Verifying rrmovl instruction inSEQ

(* Effect of RRMOVL instruction *)
(S_exc0 = EAOK & S_icode0 = IRRMOVL & S_rB0 != RNONE & S_rA0 != R NONE =>

(S_pc1 = succˆ2(S_pc0) & S_cc0 = S_cc1 & S_exc1 = EAOK
& S_rf1(S_rB0) = alu_fun(ALUADD, S_rf0(S_rA0), CZERO)
& (a1 != S_rB0 & a1 != RNONE => S_rf1(a1) = S_rf0(a1))

))

B.) Verifying rrmovl instruction inPIPE

(D_empty0 & E_empty0 & M_empty0 & W_empty0) =>
(* Effect of RRMOVL instruction *)

(P_exc0 = EAOK & P_icode0 = IRRMOVL & P_rB0 != RNONE & P_rA0 != R NONE =>
(P_pc1 = succˆ2(P_pc0) & P_cc0 = P_cc1 & P_exc1 = EAOK

& P_rf1(P_rB0) = alu_fun(ALUADD, P_rf0(P_rA0), CZERO)
& (a1 != P_rB0 & a1 != RNONE => P_rf1(a1) = P_rf0(a1))

))

Figure 16:Examples of verification test runs. Many modeling inconsistencies were detected
by running the same instruction through the SEQ and PIPE descriptions independently.

33

operation. In the formula forPIPE these variables capture the values in the initial state and after
one step of normal operation followed by seven flush cycles. Running either of these verifications
requires less than 10 seconds of CPU time, and will quickly uncover any discrepancies between
the two models.

Once instructions have been verified flowing through an emptypipeline, we can relax the initial
state conditions a little bit at a time, allowing more general conditions in each stage. By this means
we can quickly isolate a problematic interaction between stages. We found it worthwhile to try to
simplify the conditions as much as possible before examining the counterexamples in detail.

6 Conclusions

We succeeded in verifying seven different versions of a pipelined, Y86 microprocessor. One ver-
sion contained a bug in the control logic that caused incorrect results for some assembly language
programs. More significantly, we learned several importantlessons about how to useUCLID and
how it could be improved.

6.1 Appraisal of UCLID

Overall, we foundUCLID to be a usable tool. The modeling language is reasonably expressive
and flexible. With the aid of additional tools, we were able toset up an automated system for
generating models. The general ability to support different forms of symbolic execution and testing
of validity conditions allows the user to guide the verification in a manner similar to the way
designs are debugged by simulation. A few aspects ofUCLID could clearly be improved. These
are mainly in the modeling language and in the counterexample facility. Some aspects most in
need of improvement are described below.

In the modeling language, it would be helpful if the three scalar data types: Boolean, term, and
enumerated, could be used more interchangeably. Currently, uninterpreted function arguments
must be terms, while lambda arguments must be terms or Booleans. Uninterpreted functions yield
terms, while uninterpreted predicates yield Booleans, butthere is no counterpart generating enu-
merated types. Lambda Expressions can generate terms, Booleans, or enumerated types. The type
restrictions force the user to select data types partly on how they can be used, rather than on what
is appropriate for the system being modeled, or to use some ofthe tricks and workarounds. What
we would really like is to have all three types treated equally. Any of the three should be usable
as arguments, and any of the three should be possible resultsof uninterpreted functions or lambda
expressions.

We also found the limited support for modularity to be somewhat burdensome. It forced us to
use a workaround of syntactic replication, and required us to write additional scripts to topologi-
cally sort signal definitions. Better support for modularity would be especially useful in translating

34

from hardware description language (HDL) representationsof a system. For example, it would be
convenient to write the HDL in a highly modular way, so that converting it to a term-level represen-
tation would involve mainly selecting the representationsfor different signals and then designating
some of the modules to become uninterpreted functions.

The second major area for improvement is in the run-time support, and especially in the coun-
terexample reporting facility. Some of the interface features found in simulators would be useful
in helping the user understand counterexamples. Just as simulators dump their trace information to
a file that the user can then repeatedly examine with visualization tools, it would help to be able to
examine a single counterexample trace multiple times with the user specifying which signal values
to display. It should be possible to observe not just state variables, but also the simulator control
signals as well as internal signals that have been identifiedby the user beforehand.

6.2 Prospects for Industrial Use

Although this exercise revealed some aspects of what it would be like to applyUCLID to an actual
industrial microprocessor design, we are still far short ofshowing that this tool can be used in a
real-life design. Our Y86 design was very limited in its datatypes, the number of instructions,
and details such as exception handling. Even with improvements to the modeling language and the
run-time support described above, it is not clear whetherUCLID can scale to real-life designs. Even
if we restrict ourselves to linear pipelines such as the one used here, a complete microprocessor
design would be considerably more complex. It is not clear whether the performance ofUCLID

would scale up to such complexity. We saw already that simplechanges to add more detail to
the ALU model result in much longer execution times. Adding more stages to the pipeline also
increases verification time due to the larger number of stepsrequired for flushing. Improvements
to the core decision procedure may be required beforeUCLID is ready for industrial usage.

References

[1] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

[2] R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logic of equal-
ity with uninterpreted functions. In N. Halbwachs and D. Peled, editors,Computer-Aided
Verification (CAV ’99), LNCS 1633, pages 470–482, 1999.

[3] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In E. Brinksma and
K. G. Larsen, editors,Computer-Aided Verification (CAV ’02), LNCS 2404, pages 78–92,
2002.

35

[4] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspective.
Prentice-Hall, 2002.

[5] J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor control. In
D. L. Dill, editor, Computer-Aided Verification (CAV ’94), LNCS 818, pages 68–80, 1994.

[6] Warren A. Hunt Jr. Microprocessor design verification.Journal of Automated Reasoning,
5(4):429–460, 1989.

[7] S. K. Lahiri and R. E. Bryant. Deductive verification of advanced out-of-order microproces-
sors. InComputer-Aided Verification (CAV ’03), LNCS 2725, pages 341–354, 2003.

[8] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order
microprocessors in UCLID. In M. D. Aagaard and J. W. O’Leary,editors,Formal Methods
in Computer-Aided Design (FMCAD ’02), LNCS 2517, pages 142–159, 2002.

[9] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1992.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In38th Design Automation Conference (DAC ’01), pages 530–535, 2001.

[11] S. A. Seshia, S. K. Lahiri, and R. E. Bryant.A User’s Guide to UCLID Version 1.0. Carnegie
Mellon University, 2003. Available athttp://www.cs.cmu.edu/˜uclid .

[12] Mandayam Srivas and Mark Bickford. Formal verificationof a pipelined microprocessor.
IEEE Software, 7(5):52–64, 1990.

[13] M. N. Velev. Using positive equality to prove liveness for pipelined microprocessors. InAsia
and South Pacific Design Automation Conference, pages 316–321, 2004.

[14] M. N. Velev and R. E. Bryant. Bit-level abstraction in the verification of pipelined mi-
croprocessors by correspondence checking. InFormal Methods in Computer-Aided Design
(FMCAD ’98), LNCS 1522, pages 18–35, 1998.

[15] M. N. Velev and R. E. Bryant. Superscalar processor verification using efficient reductions
of the logic of equality with uninterpreted functions. In Laurence Pierre and Thomas Kropf,
editors,Correct Hardware Design and Verification Methods (CHARME ’99), LNCS 1703,
pages 37–53, 1999.

[16] M. N. Velev and R. E. Bryant. Formal verification of superscalar microprocessors with mul-
ticycle functional units, exceptions and branch predication. In37th Design Automation Con-
ference (DAC ’00), pages 112–117, 2000.

[17] M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in the
formal verification of superscalar and VLIW microprocessors. In 38th Design Automation
Conference (DAC ’01), pages 226–231, 2001.

36

