Term-Level Verification of a Pipelined CISC
Microprocessor

Randal E. Bryant

December, 2005
CMU-CS-05-195

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This work was supported by the Semiconductor Research @arpo under contract 2002-
TJ-1029.

Keywords: Formal verification, Microprocessor verificationcUb

Abstract

By abstracting the details of the data representations pechtions in a microprocessteym-level
verificationcan formally prove that a pipelined microprocessor falllgfumplements its sequen-
tial, instruction-set architecture specification. Prergiefforts in this area have focused on reduced
instruction set computer (RISC) and very-large instructmrd (VLIW) processors.

This work reports on the verification of a complex instrusts@t computer (CISC) processor styled
after the Intel IA32 instruction set using tiueLID term-level verifier. Unlike many case studies
for term-level verification, this processor was not destsgecifically for formal verification. In
addition, most of the control logic was given in a simplifieatdware description language. We
developed a methodology in which the control logic is tratedd intoucLID format automatically,
and the pipelined processor and the sequential referens@revere described with as much
modularity as possible. The latter feature was made edpedifficult by ucLID’s limited support
for modularity.

A key objective of this case study was to understand the gtinenand weaknesses 0tCLID

for describing hardware designs and for supporting the &merification process. Although
ultimately successful, we identified several ways in which.ID could be improved.

1 Introduction

This report describes a case study in usingubelD verifier to formally verify several versions
of the Y86 pipelined microprocessor presented in Bryant@ikthllaron’s computer systems text-
book [4]. The purpose of this exercise was 1) to make sure és@gds are actually correct, and
2) to evaluate the strengths and weaknessescafp for modeling and verifying an actual hard-
ware design. We ultimately succeeded in this effort, finding correcting one serious bug in one
version. We were able to prove both the safety and the liveeoesur designs.

1.1 Background

Microprocessors have a succinct specifications of theenieed behavior, given by their Instruc-
tion Set Architecture (ISA) models. The ISA describes thieafof each instruction on the micro-
processor’architectural statecomprising its registers, the program counter (PC), aeditbm-
ory. Such a specification is based on a sequential model @aepsing, where instructions are
executed in strict, sequential order.

Most microprocessor implementations use forms of pipegino enhance performance, over-
lapping the execution of multiple instructions. Variousms of interlocking and data forwarding
are used to ensure that the pipelined execution faithfollglements the sequential semantics of
the ISA. The task of formal microprocessor verification isya that this semantic relationship
indeed holds. That is, for any possible instruction segegtite microprocessor will obtain the
same result as would a purely sequential implementationeof$A model.

Although the development of techniques for formally veation microprocessors has a history
dating back over 20 years [6], the key ideas used in our vatifin effort are based on ideas
developed by Burch and Dill in 1994 [5]. The main effort in ithapproach is to prove that
there is some abstraction functianmapping states of the microprocessor to architecturatstat
such that this mapping is maintained by each cycle of pracesgeration. Burch and Dill’s
key contribution was to show that this abstraction functtonld be computed automatically by
symbolically simulating the microprocessor aglitshesinstructions out of the pipeline. For a
single-issue microprocessor, the verification task besoone of proving the equivalence of two
symbolic simulations: one in which the pipeline is flushed #Hren a single instruction is executed
in the ISA model, and the other in which the pipeline operédea normal cycle and then flushes.
We call this approach to verificatiarorrespondence checking

Burch and Dill also demonstrated the valudae&im-level modelindor their style of micropro-
cessor verification. With term-level modeling, the detafldata representations and operations are
abstracted away, viewing data values as symldelims The precise functionality of operations of
units such as the instruction decoders and the ALU are asttaway asininterpreted functions
Even such parameters as the number of program registensyihieer of memory words, and the
widths of different data types are abstracted away. Thesgaaions allow the verifier to focus

1

its efforts on the complexities of the pipeline control lngAlthough these abstractions had long
been used when applying automatic theorem provers to haedwegification [6, 12], Burch and
Dill were the first to show their use in an automated micropssor verification tool.

Our research group followed Burch and Dill's lead, devabgpmicroprocessor verification
tools that operated at both with bit-level [14] and termelg\L5] representations. Even with term-
level modeling, our tools operate by reducing the equivaarondition to a Boolean satisfiability
problem, and then applying either Binary Decision Diagrdfrjsor a SAT solver [17] to prove
the equivalence or to generate a counterexample in the ¢asequivalence. These earlier tools
were restricted to the logic diquality with Uninterpreted Functions and Memoriaghere the
only operations on terms were to test them for equality arapfady uninterpreted functions, and
where memories were modeled with interpreted read and wpégations. The tools were also
customized to the specific task of verifying microprocesaming correspondence checking.

Burch-Dill verification proves theafetyof a pipelined processor design—that every cycle of
processor operation has an effect consistent with some @auafisteps: of the ISA model. This
includes the case whete = 0, i.e., that the cycle did not cause any progress in the pnogra
execution. This is indeed a possibility with our designsewlthe pipeline stalls to deal with
a hazard condition, or when some instructions are canceledala mispredicted branch. This
implies, however, that a processor that deadlocks can passetification. In fact, a device that
does absolutely nothing will pass.

To complete the verification, we must also velifyeness—that the processor cannot get in a
state where it never makes forward progress. This issue dtadseren addressed in most micro-
processor verification efforts, due to a perception thah swugs are highly unlikely and that this
form of verification would be difficult. Velev [13] is the onjyublished account of a liveness check
using automated verification techniques. His approachweggproving a modified version of the
correctness statement, stating that when the pipeline@tpgrforn cycles has behavior consistent
with completingk steps of the ISA model, whereis chosen large enough to be sure that 0.

In this report, we describe a very simple and effective apgindo proving liveness.

1.2 UcLID

We developed thecLiD verifier to generalize both the modeling capabilities arel idinge of
verification tasks that the we can perform [3] at the termlled¢cLID extends the underlying
logic to support a limited set of integer operations, nanalgition by a constant and ordered
comparisons. It replaces the specialized read and writetitums for modeling memories with a
more general ability to define functions with a simple lambdtation. The combination of integer
operations and lambda notation makes it possible to expresde variety of memory structures,
including random-access, content-addressed, queuesasainds hybrids. It can also be used to
model systems containing arrays of identical processep@gtam interpreters.

2

UcLiD supports several different types of verification, inclydbounded property checking,
correspondence checking, invariant checking [8] and aatimrpredicate abstraction [7].

The input toucLID [11] consists of the description of a system in theLID modeling lan-
guage, followed by a series of symbolic simulation commaodserform the actual verification.
WhenucLID determines that a verification condition does not hold, itegates a counterexample
trace, showing an execution of the model that violates timelition.

Correspondence checking is implemented@wiD using a combination of model construction
and command script. The model consists of both the pipelmmedessor and a reference version
that directly implements the ISA. External control signdilect which of these two components
are active, and allows the state from the architectura¢ stEgments of the pipeline to be copied
over to the corresponding state elements in the referenseéone The command script performs
two runs of the system and then invokes a decision proceduwiesick the final verification condi-
tion stating the conditions under which the two runs shougttyidentical results.

1.3 Project Objectives

An important priority for this study was to better understahe applicability of term-level mod-
eling in general, andcLID in particular, to hardware verification. Most usesuafLID to date
have been to verify models that were specifically constduatiéh ucLID’s modeling in mind and
for the purpose of demonstratingcLID’s abilities. By contrast, the Y86 microprocessor was de-
signed without formal verification in mind, and hence présenmore realistic case study. Y86
also has some attributes of a complex instruction set coengGISC) instruction set, including a
byte-oriented instruction encoding and greater use of tdxekgor implementing procedure calls
and returns. This requires a more detailed model than dadgihyistylized reduced instruction set
computer (RISC) processors that have been previouslyegrifith term-level verification tools.

The Bryant and O’Hallaron textbook presents two differgograaches to implementing a Y86
processor. TheEQimplementation corresponds directly to the ISA model. B@xes one com-
plete instruction per clock cycle. ThaPe implementation, of which there are seven slightly
different versions, uses a 5-stage, single-issue pipeHaging these two implementations makes
our verification task easy to formulate: determine whetherat SEQ and (all seven versions of)
PIPE are functionally equivalent. The task is further simplifigdthe fact that the two implemen-
tations share many functional elements, such as the insinueecoding logic and the ALU. They
differ only in the additional pipeline registers and the cohlogic required byrIPE

The control logic for botlrsEQ and PIPE are described in a simplified hardware description
language, calletiCL, for “Hardware Control Language.” Translators had preslgieen written
from HCL to C to construct simulation models of the two prames, as well as from HCL to
Verilog to construct versions suitable for generating akitmplementations by logic synthesis.

Our previous experience with formal verification tools hlaeven us that maintaininghodel
fidelity—the assurance that the model being verified is a faithfubsgntation of the actual design

3

and that it is being verified over its full range of operatiois-surprisingly difficult. The numerous
cycles of editing the model, running the verifier, and anialyzhe results often lead to errors being
introduced that cause inexplicable verification errors.eWthere is a manual translation between
the original design description and the verification motted,two descriptions can easily become
inconsistent. Even worse, itis common to restrict the raiggeration (e.g., by limiting the set of
initial states) in order to isolate bugs. If these restocs are not later removed, the verifier could
overlook bugs that occur under more general conditionss fiums totally contrary to the aims of
formal verification.

Given this background, we formulated the following objeesi for this case study:

e Modularity

— A common description of the function blocks should be creé@ied then instantiated
in the models for the two different processor designs.

— We should be able to construct separate verification filesEy and PIPE, so that
properties of the two designs can be verified directly rathan only by correspon-
dence checking.

e Automation and Version Control

— The HCL control logic should be translated automaticaltp incLID format.

— A systematic way should be created to automatically assethbldifferent parts of the
model—the functional blocks, the control logic, the twoalphaths, and the connecting
logic—into a single verification model.

— Any restricted operation of the processor model should Ipeessed as antecedents to
the verification condition, localizing the restriction tosengle point in the input file.
There should be no alterations of the initial state expogssior the state elements.

e Modeling Abstraction

— The designs should follow the earlier simulation and Veritnodels. The HCL files
should be modified only to fix bugs. No tricks should be playest o improve the
verifier performance.

— We should use a “natural” term-level abstraction, using Isgie terms and uninter-
preted functions wherever possible, but using the integémnaetic capabilities of
UCLID to capture the byte-oriented instruction encoding of Y8&] any special fea-
tures of the arithmetic operations that are required.

As these goals indicate, our objective in this project issnwiply to verify a particular micro-
processor, but to formulate a set of “best practices” fongisicLID, and to identify ways in which
ucLID could be easier and more effective to use.

4

RF: Program CC: EXC: Exception Status

registers Condition
Seax Sesi codes I:I
secx sedi |zr|sE|oF] DMEM: Memory
$edx $esp PC
%ebx %ebp I I

Figure 1: Y86 programmer-visible state. As with IA32, programs for Y86 access and modify
the program registers, the condition code, the program counter (PC), and the data memory. The
additional exception status word is used to handle exceptional conditions.

2 The Y86 Processor

The Y86 instruction set architecture adapts many of theufeatof the Intel IA32 instruction set

(known informally as “x86”), although it is far simpler. & not intended to be a full processor im-
plementation, but rather to provide the starting point farcaking model of how microprocessors
are designed and implemented.

2.1 Instruction Set Architecture

Figure 1 illustrates the architectural state of the promesAs with x86, there are eight program
registers, which we refer to collectively as the register RF. Of these registers, only the stack
pointer%esp! has any special status. There are three bits of conditioes;weferred to as CC, for
controlling conditional branches. There is a program ceuRC, and a data memory DMEM. We
also introduce an exception status register EXC to inditeg@rogram status. With the formal ver-
ification model, the only two exceptional conditions are whe invalid instruction is encountered
or when a halt instruction is executed.

Figure 2 illustrates the instructions in the Y86 ISA. Thesstiuction range between one
and six bytes long. Simple instructions suchnap (No Operation) andhalt require only a
single byte. The x86 data movement instruction is split iioiar cases:rrmovl for register-
registerjrmovl forimmediate-registermmovl for register-memory, anchrmovl for memory
to register. Memory referencing uses a register plus digpfent address computation.

The OPI instruction shown in the figure represents four differeitharetic operations, with
the operation encoded in the field labekad. These instructions have registefs andrB as
source operands amB as destination.

The XX instruction shown in the figure represents seven differeantdh instructions, where
the branch condition is encoded in the field labdied Branching is based on the setting of the

1we following the naming and assembly code formatting cotiges used by thecc compiler, rather than Intel
notation.

Byte 0 1 2 3 4 5

nop 010

halt 110

rrmovl rA, B 210 |rA|rB

irmovl V, 1B 310)18|rB \

rmmovl rA, D(B) |4 | 0]rA|rB D

mrmovl D(rB), rA | 5| 0|rA|rB D

OP1 rA, 1B 6 |fn|rA|rB

jxx Dest 7| fn Dest

call Dest 810 Dest

ret 910

pushl rA A|O]rA| 8

popl rA B|OJrA| 8 Standard
iaddl V, 1B c|o)8|rB \% Optional
leave D| O

Figure 2:Y86 instruction set. Instruction encodings range between 1 and 6 bytes. An instruction
consists of a one-byte instruction specifier, possibly a one-byte register specifier, and possibly a
four-byte constant word. Field fn specifies a particular integer operation (OPI) or a particular
branch condition (jXX). All numeric values are shown in hexadecimal. (From [4, Fig. 4.2]).

condition codes by the arithmetic instructions.

Thepushl andpopl instructions push and pop 4-byte words onto and off of thekstAs
with 1A32, pushing involves first decrementing the stacknpai by four and then writing a word
to the address given by the stack pointer. Popping invokading the top word on the stack and
then incrementing the stack pointer by four.

Thecall andret instructions implement procedure calls and returns. ddlle instruction
pushes the return address onto the stack and then jumps desheation. Theet instruction
pops the return address from the stack and jumps to thaidocat

The final two instructions are not part of the standard Y8&urtsion set, but given to imple-
ment as homework exercises in [4]. One of our versions of Yi§ements these instructions. The
iaddl instruction adds an immediate value to the value in its dastn register. Théeave
instruction prepares the stack frame for procedure retliris equivalent to the two instruction
sequence

rrmovl %ebp, %esp
popl %ebp

where%ebpis the program register used as a frame pointer.
We see that Y86 contains some features typical of CISC ictstru sets:

e The instruction encodings are of variable length.
¢ Arithmetic and logical instructions have the side effecsefting condition codes.
e The condition codes control conditional branching.

e Some instructionspushl andpopl) both operate on memory and alter register values as
side effects.

e The procedure call mechanism uses the stack to save tha petinter.

On the other hand, we see some of the simplifying featuresraamy seen in RISC instruction
sets:

¢ Arithmetic and logical instructions operate only on registata.
e Only simple, base plus displacement addressing is supporte

e The bit encodings of the instructions are very simple. Tlifedint fields are used in consis-
tent ways across multiple instructions.

PC

Data

Memory memory

Execute

A B
Register filem

-‘_0 - Write back

Fetch Instruction PC
memory increment
uj

Figure 3:Hardware structure of SeqQ This design was used as the sequential reference version.

Decode

2.2 Sequential Implementation

Figure 3 illustratesSEQ, a sequential implementation of the Y86 ISA, where eachecgtexecu-
tion carries out the complete execution of a single instoactThe only state elements are those
that hold the Y86 architectural state. The data path alstagmnfunctional blocks to decode the
instruction, to increment the PC, to perform arithmetic bogical operations (ALU). The control
logic is implemented by a number of blocks, shown as shadgesio the figure. Their detailed
functionality is described in HCL, a simple language fora#sng control logic.

The overall flow during a clock cycle occurs from the bottontlw figure to the top. Starting
with the current program counter value, six bytes are fet¢hmm memory (not all are used), and
the PC is incremented to the next sequential instruction.tdJpvo values are then read from
the register file. The ALU operates on some combination ofviliees read from the registers,
immediate data from the instruction, and numeric constdhtan perform either addition or the
operation called for by an arithmetic or logical instruatid\ value can be written to or read from
the data memory, and some combination of memory result and\ktJ result is written to the
registers. Finally, the PC is set to the address of the nextuction, either from the incremented
value of the old PC, a branch target, or a return address readthe memory.

2.3 Pipelined Implementation

Figure 4 illustrates a five-stage pipeline, calledg, implementing the Y86 instruction set. Note
the similarities betweeseQ and PIPE—both partition the computation into similar stages, and
both use the same set of functional blockseEPcontains additional state elements in the form of
pipeline registers, to enable up to five instructions to flostigh the pipeline simultaneously, each
in a different stage. Additional data connections and addgic is required to resolve different
hazardconditions, where either data or control must pass betweeimistructions in the pipeline.

There are a total of seven versionsPobE The basic implementation STD is illustrated in the
figure and described in detail in [4]. The others are preskintéhe book as homework exercises,
where our versions are the official solutions to these problelrhey involve adding, modifying, or
removing some of the instructions, forwarding paths, bingorediction policies, or register ports
from the basic design.

STD This is the standard implementation illustrated in FigureBlata hazards for arguments
required by the execute stage are handled by forwardinghetdecode stage. A one-cycle
stall in the decode stage is required when a load/use hazgesent, and a three-cycle
stall is required for the return instruction. Branches aetlcted as taken, with up to two
instructions canceled when a misprediction is detected.

FULL Implementsthéaddl andleave instructions listed as optional in Figure 2. Verification
is performed against a version ®Qthat also implements these two instructions.

9

—

Write back |
| W_valM
\WAl exc | icode valE | valM - dstE | dstM _
A
data out m_valM
ieed..2-pf Data
DMEM
» memory
write
Memory data in
= b
A
Execute
valB | dstE | dstM | srcA | srcB |
| | d srci d srci
Decode 1A Registe? ™ S
RF iflle - Leniale
—
nexclicodel ifun | rA | B | valC valP
r t 11 ¢ $
| |
Instruction PC
memory increment
Fetch
f_PC
RS
VY

Figure 4:Hardware structure of
the connections are not shown.

predPC

PIPE the pipelined implementation to be verified.

10

Some of

STALL No data forwarding is used by the pipeline. Instead, anucstin stalls in the decode
stage for up to three cycles whenever an instruction fudbem the pipeline imposes a data
hazard.

NT The branch prediction logic is modified to predict that bregewill not be taken, unless they
are unconditional. Up to two instructions are canceledeftihbanch was mispredicted.

BTENT Similar to NT, except that branches to lower addresses ackqted as being taken, while
those to higher addresses are predicted to not be takemssithiey are unconditional. Up to
two instructions must be canceled if the branch is misptedic

LF An additional forwarding path is added between the data nmgrootput and the pipeline
register feeding the data memory input. This allows somm$oof load/use hazards to be
resolved by data forwarding rather than stalling.

SW The register file is simplified to have only a single write pevith a multiplexor selecting
between the two sources. This requires splitting the exacutf thepopl instruction into
two cycles: one to update the stack pointer and one to readftemory.

3 GeneratingUcLID Models

3.1 Data Types

Our first task was to determine an appropriate level of abstrafor the term-level model. €LID
supports five different data types:

Truth Boolean values, having possible values 0 and 1.

Term Term values. These are assumed to be values from some @tbitfnite domain. A
limited set of integer operations on terms is also supported

Enumerated The user can declare a data type consisting of an enumesdtetialues. &LID
implements these using term values.

Function These are mappings from terms to terms. They are eitherarpmeted, defined by
lambda expressions, or one of the integer operations.

Predicate These are mappings from terms to Boolean values. They drereinhinterpreted, de-
fined by lambda expressions, or a test for integer equalibydering.

We wish to formulate a model that maximizes the use of tenmtlabstraction, in order to
maximize the generality of the model and the performancéefverifier. To achieve this goal,

11

it is better to encode a signal as a symbolic term rather thaenamerated type. It is better to
use uninterpreted functions and predicates rather thahdarexpressions or integer operations.
However, if we overdo the level of abstraction, then we carvgéfication errors that would not
be possible in the actual system. For example, the values ehamerated type are guaranteed
to be distinct, whereas the verifier will consider two diffiet symbolic term constants as possibly
having the same value.

Based on this goal, we formulated the following represéorat

An enumerated type was introduced for the instruction cabelé) fields. Their values are
based on the instruction names shown in Figure 2. For exantp? T is the instruction
code for thehalt instruction, whilelOPL and IJXX are the instruction codes for the
arithmetic and logical operations and the jump instrudjoaspectively.

All other fields in the instruction are modeled as symbolien® the function code (for
arithmetic and logical operations and for jump instrucsiprthe register identifiers, and the
constant data.

Symbolic constants were introduced to designate special ¥@lues: register identifiers
RESP(stack pointer) andRNONKindicating no register accessed and shown encoded as
numeric value 8 in Figure 2), ALU operatiohLUADD and data constaif@ZERQ(UCLID

does not have any designated numeric constants).

An enumerated type was introduced for the exception statues. These are nameAOK
(normal operation)EHLT (halted), ancEINS (invalid instruction exception). We added a
fourth possibilityEBUBto indicate a bubble at some stage in the pipeline. This vailie
never arise as part of the architectural state.

Program addresses are considered to be integers. Thecirmtrdecoding logic increments
the PC using integer arithmetic.

The register file is implemented as a function mapping regidgentifiers to data values. A
lambda expression describes how the function changes wiegjister is written.

The set of condition codes is modeled as a single symbolic.téfninterpreted functions
are introduced to specify how the value should be updated.urinterpreted predicate
determines whether a particular combination of branch itmmdand condition code value
should cause a jump. With this level of abstraction, we igritbhe number of condition code
bits as well as their specific interpretations.

The data memory is modeled as a single symbolic term, withtarpreted functions mod-
eling the read and write operations. This abstraction igjaale for modeling processors in
which memory operations occur in program order [2].

Some aspects afcLID make it difficult to make the best use of its data abstractagabilities.

12

e Symbolic constants of enumerated type are not supported. mdkes it impossible to de-
clare lambda expressions having enumerated types as antgime

¢ Uninterpreted functions yielding enumerated types arsmpported. This requires a workaround
to model instruction decoding, where the instruction cadextracted from the high order
bits of the first instruction byte. Instead, we must use a awarind where the instruction de-
coder consists of a lambda expression that yields diffensituction code values depending
on the integer value given by an uninterpreted function.

3.2 Modularity

UcLID has limited support for modularity:

e Portions of the system can be grouped into modules. Howaestjng of modules is not
supported, and so the hierarchy is very shallow.

e Functional blocks can be abstracted as lambda expresdianshda expressions can yield
results of the three scalar types: Boolean, term, and eraieterHowever, their arguments
must be terms or Booleans, limiting the class of blocks foicWwithey are useful.

e The DEFINE section of module and overall descriptions makmssible to introduce in-
termediate values in the next state expression. This malgssible to define blocks of
combinational logic separately, using the intermediajeals as the connection points.

Besides the above noted restrictions, other aspeaisiob make modularity difficult:

e The signal definitions in the DEFINE section must be ordetsthshat any signal is defined
before it is used. Although this is a natural requirementdorimperative programming
language, it makes it harder to decompose the logic intqoexéent blocks, since it induces
an ordering restriction on the block definitions.

We achieved our goals for modularity and automation by fpaning the description into mul-
tiple files, and then merging them automatically via the psscillustrated in Figure 5. As this
figure indicates, we create models for betiPE and SEQ and then merge them with a frame-
work that supports correspondence checking. Several diiéiseare identical for the two models,
ensuring that the two models remain consistent.

To generate a model for either tReQor PIPEprocessor, our code merges a general framework,
defining the state variables, with declarations of the cotime points for the function blocks and
the overall logic describing how each state variable shbaldpdated. This logic comes from three
sources: the HCL descriptions of the control logic, tratesl&oucLID by the programHcL2u,
descriptions of the functional blocks, and descriptionshef connections between them. These

13

verification framework ———
declarations ———»
.) R
SEQ connections —»| SEQ — SEQ UCLID
framework .
Topo_ R model R file
block definitions block
~—— variables VN
PIPE
Topo. model
PIPE connections —»| PIPE
N J framework (& _

Figure 5:Generating complete verification file. The merging steps ensure that a common set
of definitions is used for both the seQ and pPIPE models.

definitions must occur in an appropriate order, and so theyrarged using topological sorting.
Other merging is done using the C compiler preprocesser with #include statements de-
scribing the nesting of files. The models fare and forseqQ are declared as separate modules.
This makes it possible to have distinct signals with the saames in the two modules.

The blocks labeledcL2u translate the HCL descriptions of the control logic intoLID signal
definitions. This translation is fairly straightforwardnee the two formats use similar semantic
models. Both HCL anaicLID formats use case expressions to define data values (intagbes
case of HCL, and terms or enumerated types in the caseiD) and Boolean expressions to
define Boolean values. Both require each signal to be defimislentirety as a single expression,
a style both formats inherit from the original SMV model ckec[9]. By contrast, hardware
description languages such as Verilog follow more of an A& programming style, where
assignment statements for a signal can appear in multipéitms in a program, with conditional
constructs determining which, if any, are executed for &iq@dar combination of state and input
values. To extract a network representation from such ariggien, logic synthesis tools must
symbolically simulate the operation of the system and @etine next state expression for each
signal.

Figure 6A provides a sample HCL description to illustragetranslation intoucLIiD. This
code describes how the A input to the ALU is selecteddi@ based on the instruction code. The
HCL case expression, delimited by square brackets, ceriist list of expression pairs. The first
element in the pair evaluates to a Boolean value, while thergkgives the resulting data value
for the expression. Expressions are evaluated in sequ&heeg the value returned is given by the
first case that evaluates to 1. We can see in this expressbthi possible values for this ALU
input arevalA |, read from the register fil&/alC , read from the instruction sequence, or constant
values+4 or —4.

14

A). HCL description

Select input A to ALU
int aluA = |
icode in { IRRMOVL, IOPL } : valA;
icode in { IRMOVL, IRMMOVL, IMRMOVL } : valC;
icode in { ICALL, IPUSHL } : -4,
icode in { IRET, IPOPL } : 4;
Other instructions don't need ALU
I

B). GeneratediCcLID code

(* $define aluA *)

aluA =
case
(icode = IRRMOVL|icode = IOPL) : valA;
(icode = IIRMOVL|icode = IRMMOVL|icode = IMRMOVL) : valC;
(icode = ICALLJicode = IPUSHL) : pred"4(CZERO);
(icode = IRET|icode = IPOPL) : succ™4(CZERO);
default : succ”4(CZERO);
esac;
(* $args icode:valA:valC *)

Figure 6: Automatically generated ucLID code. The semantic similarity of the two representa-
tions allows a direct translation.

15

(* $define dmem_new)
dmem_new := case

dmem_wrt : dmem_write_fun(dmem_old, dmem_addr, dmem_din);
default: dmem_old;

esac;

(* $args dmem_wrt:dmem_old:dmem_addr:dmem_din *)

(* $define dmem_dout *)
dmem_dout := dmem_read_fun(dmem_old, dmem_addr);
(* $args dmem_old:dmem_addr *)

Figure 7:Sample block description. These provide abstract model of data memory, using unin-
terpreted functions to abstract read and write functions.

Figure 6 shows thecLID code generated liycL2u for this HCL expression. Observe that the
overall structure is the same—a case expression wheresskpns are evaluated in sequence to
find the first one evaluating to 1. The differences are mogthyatic. Instead of square brackets,
UcCLID uses the keywordsase andesac . UcLID does not support a set membership test, and
so these are translated into a disjunction of equality te&isLID insists on having a default
case, and seicL2u simply repeats the final expression as a default. We seegihdbat the
two formats have different ways of modeling integer contstabicLID does not directly support
integer constants. Instead, we translate them into anmmemégucc) or decremenpred relative
to the symbolic constal@ZERO

We see also that the generatech ID code contains comments at the beginning and end declar-
ing the name of the signal generated and its arguments. Teeta&rations are used by the topo-
logical ordering code.

Figure 7 shows an example of a functional block definitiorscti®ing the state and output of
the data memory. These descriptions were generated by &lang, with the comments declaring
the name of the signal generated and the arguments. As #mspe indicates, the block descrip-
tions are fairly straightforward. Note the use of unintetpd functionglmem_write_fun and
dmem_read_fun to describe the updating of the data memory and the extraofia value by a
read operation.

Figure 8 shows how the connections between functional kloc@ntrol logic, and the state
variables are defined in both tls=Q and PIPE models. Since the two models are declared as
separate models, we can use the same signals in both, sueh esninections to the functional
blocks, as well as other internal signals suchresm_addr. Again, we can see the comments
declaring the names of the generated signal and its arggment

The topological sorter extracts definitions from multiplesiand orders them in a way that the
definition of a signal occurs before any use of that signalirfidemented this with a simple Perl

16

A). Connections irsEQ

(* $define dmem_addr *)
dmem_addr := mem_addr;
(* $args mem_addr «)

(* $define dmem_din *)
dmem_din := mem_data;
(* $args mem_data *)

(* $define dmem_wrt *)
dmem_wrt := mem_write;
(* $args mem_write *)

(* $define valM *)
valM := dmem_dout;
(*» $args dmem_dout)

(* $define dmem_old *)
dmem_old := DMEM,;
(* $args DMEM)

Figure 8: Connecting to functional blocks.

B). Connections iPIPE

(* $define dmem_addr *)
dmem_addr := mem_addr;
(* $args mem_addr «)

(*» $define dmem_din x)
dmem_din = M_valA,;
(* $args M_valA)

(* $define dmem_wrt)
dmem_wrt := mem_write;
(* $args mem_write *)

(* $define m_valM «)
m_valM := dmem_dout;
(* $args dmem_dout *)

(* $define dmem_old *)
dmem_old := DMEM,;
(* $args DMEM *)

By renaming signals, we can instantiate different

versions of the functional blocks in the two models.

17

A.) Uninterpreted

alu_out := case
1 : alu_fun(alu_cntl, aluA, aluB);
default : alu_fun(alu_cntl, aluA, aluB);
esac;

B.) Pass Through

alu_out := case
alu_cntl = ALUADD & aluB = CZERO : aluA;
default : alu_fun(alu_cntl, aluA, aluB);

esac;

C.) Incr./Decr.

alu_out := case
alu_cntl = ALUADD & aluA = succ™4(CZERO) : succ’4(aluB);
alu_cntl = ALUADD & aluA = pred’4(CZERO) : pred“4(aluB);
default : alu_fun(alu_cntl, aluA, aluB);

esac;

Figure 9: Different ALU models. Some Y86 versions require partial interpretations of the ALU
function.

script. It relies on the annotations written as commente@ucLID source, as shown in Figures
6B, 7, and 8 to determine the expression dependencies.

Our method for generating thecLiD file proved very successful in practice. A more ideal
approach would be to modifycLID to support greater modularity as well as file inclusion, but
we found the more ad hoc approach of file inclusion, simplesietors, and Perl scripts to be
satisfactory. We were able to follow a principle that eadkcpiof logic had a single description,
and that any modification to this logic would be propagatddmaatically to any place it was used.

3.3 Modeling Issues

For the most part, our original plan for modeling the prooegsoved successful. We were able to
use uninterpreted functions and predicates extensivehgtruction decoding, ALU and condition
code operation, and data memory access. There were tweplamgever, where a more detailed
level of modeling was required.

18

First, we had to be more precise in that handling of registguraents for different instruction
types. Ourimplementation relies on a special registertiienRNONEHo indicate when no register
argument is present in the pipeline, either as the sourdeeadéstination of instruction data. The
control logic tests for this value when determining whemijedct stall cycles into the pipeline and
when and where to forward data from one instruction to anmotfiee behavior oPIPE might not
match that ofseqQif either an instruction flowing through the pipeline has giseer ID field set
to RNONEvhen it should be a normal program register, or it is not sS&NMONEvhen it should
be. The original designs fenPE andseQwere designed assuming that the Y86 assembler would
generate the register ID fields as is shown in Figure 2, andese tvas no provision for handling
invalid cases.

We solved this problem by adding logic to detect when anuesiton had an improper register
ID, causing it to generate an illegal instruction exceptiooth inSEQ and inPIPE We consider
this to be an example of a positive benefit of formal verifmati-it forces designers to consider
all of the marginal operating conditions and specify jusaitthe processor should do for every
possible instruction sequence, not just those that areceegbéo occur in actual programs. Given
the possibility that a processor could encounter arbittade sequences either inadvertently (e.g.,
an incorrect jump target) or due to malice (e.g., code iergdly a virus), it is important to have
predictable behavior under all conditions.

Second, some versions of the processor required a mores@macideling of the ALU. Figure
9 shows different versions of the ALU function. The simplissto model it as an uninterpreted
function, having as arguments the function code and the @ava ohputs (A). This high level of
abstraction suffices for three versions: STD, LF, and STALL.

The versions that change the branch prediction policy NTBRENT pass the branch target
through the A input to the ALU, setting the B input to 0 and tbadtion code to addition. The
ALU function must detect this as a special case and pass thput to the ALU output. The code
for this is shown in Figure 9B.

Version SW breaks thpopl instruction into two steps. Effectively, it dynamicallyrocerts
the instructiorpopl rA into the two-instruction sequence

iaddl $4, %esp
mrmov! -4(%esp), rA

This particular ordering of incrementing and then readragher than reading and then incre-
menting, is used to correctly handle the instructimpl %esp . We must indicate in the ALU
model the effect of having the ALU function be addition ané # input be either+4 or —4.
Given this informationcLID can use its ability to reason about the successor and pisstece
operations to recognize that + 4) — 4 = x.

Figure 9C shows how the ALU function can be modified to cotygaandle this property. It
need only detect the identity when the data is passing tihrthug B input of the ALU, since this

19

is the input used by both the incrementing and the decrengemtstruction.

Unfortunately, as we will see with the experimental datasthseemingly small modifications
of the ALU function greatly increase the run time of the verifi

4 Verification

The conventional approach to verifying a pipelined micam@ssor design is to perform extensive
logic simulation, first running on simple tests, then rumgnom typical programs, and then system-
atically running tests that were systematically genertdezkercise many different combinations
of instruction interactions. We had previously done all@fde forms of testing on the base designs
for SEQ and PIPE, using an instruction set simulator as the reference modet main untested
portions of the designs were the exception handling logitthe mechanisms introduce to enable
a flushing of the pipeline. Not surprisingly, these were tbdipns that required the most effort
to get working correctly. In addition, a fair amount of effevas required to deal with modeling
issues, such as the different versions of the ALU functioth twe handling of register identifiers
described in the previous section.

4.1 Burch-Dill Pipeline Verification

Our task is to prove thaeQandpriPEwould give the same results on any instruction sequence. We
do this using the method developed by Burch and Dill [5], inclkitwo symbolic simulation runs
are performed, and then we check for consistency betweaeshiéing values of the architectural
state elements.

The overall verification process can be defined in terms ofdth@ving simulation operations
on models ofPIPE or SEQ We describe these operations as if they were being pertbbye
conventional simulator. The symbolic simulation perfodiby ucLID can be viewed as a method
to perform a number of conventional simulations in parallel

Init (s): Initialize the state of thelPEto states. This state specifies the values of the architectural
state elements as well as the pipeline registers.

Pipe: Simulate the normal operation pfPEfor one cycle.

Flush(n): Simulaten steps ofPIPEoperating in flushing mode. Instruction fetching is disdbte
this mode, but any instructions currently in the pipeline alfowed to proceed.

Seq: Simulate the normal operation sEQfor one cycle.

Xfer: Copy the values of the architectural state elemenisre over to their counterparts BEQ.

20

Save$s): Save the values of the state elementsEQ as a states. UcCLID providesstorage
variablesto record the symbolic value of a state variable at any painihd its execution.

The key insight of Burch and Dill was to recognize that siminiga flushing of the pipeline
provides a way to compute an abstraction functioftom an arbitrary pipeline state to an archi-
tectural state. In particular, consider the sequence

Init(Fy), Flush(n), Xfer, Save$A)

It starts by setting the pipeline to some initial sté&g Since this is a general pipeline state, it
can have some partially executed instructions in the pipaiegisters. It simulates a flushing of
the pipeline forn steps, where: is chosen large enough to guarantee that all partially égdcu
instructions have been completed. Then it transfers thetaotural state tsEQ and saves this as
stateA. We then say that(F,) = A. That is, it maps a pipeline state to the architectural stete
results when all partially executed instructions are etextu

Our task in correspondence checking is to prove that theatipas ofPIPE and SEQ remain
consistent with respect to this abstraction function. ®herinvolves performing the following
two simulation sequences:

o, = nit(BR), Pipe Flush(n), Xfer, Save$Sp)
o, = Init(Fy), Flushin), Xfer, Save$S,), Seq Save$s)

Sequencer, captures the effect of one step miPE followed by the abstraction function, while
sequencer, captures the effect of the abstraction function followedabgossible step o$EQ
Sequence, starts withpIPE initialized to the same arbitrary state assin It executes the steps
corresponding to the abstraction function, saves tha sts,, runs one step dEQ and saves
that state a$;.

The correspondence condition for the two processors canltbestated that for any possible
pipeline stateF, and for the two sequences, we should have:

Sp=51 V Sp=5 (1)

The left hand case occurs when the instruction fetched guhia single step abIPEin sequence
o, causes an instruction to be fetched that will eventuallydrameted. If the design is correct,
this same instruction should be fetched and executed byrtgkestep ofSEQin sequence;,. The
right hand case occurs when either the single steprefdoes not fetch an instruction due to a stall
condition in the pipeline, or an instruction is fetched utater canceled due to a mispredicted
branch. In this case, the verification simply checks that dyicle will have no effect on the
architectural state.

Our above formulation holds for a single-issue pipelinédhsagpI1PE It can readily be extended
to superscalar pipelines by running multiple cyclesein sequence, [15].

21

4.2 Implementing Burch-Dill Verification with UcLID

Implementing Burch-Dill verification involves a combinari of constructing a model that supports
the basic operations listed above and creating a scriptetteatutes and compares the results of
sequences, ando,. Thisis documented via a simple pipelined data path exampkes reference
manual [11]. Our verification framework includes contr@rsls that allowrIPEto be operated in
either normal or flushing mode, that allow teeqQ state elements to import their values from the
corresponding elements mPE, and that allowseQto be operated. As the execution proceeds, we
capture the values of state variablewitLID storage variables.

As an example, the following code is used to capture the magatondition of Equation 1 as
a formulamatch :

matchO := (SO_pc = SP_pc) & (SO _rf(al) = SP_rf(al))

& (SO0_cc = SP_cc) & (SO_dmem = SP_dmem) & (SO_exc = SP_exc);
matchl := (S1_pc = SP_pc) & (S1_rf(al) = SP_rf(al))
& (S1 cc = SP_cc) & (S1_dmem = SP_dmem) & (S1_exc = SP_exc);

match := matchl | matchO;

In these formulas, a storage variable with name of the f8fPnx refers to the value of state
elementz in stateSp. Similarly, names of the forr80_x andS1_x refers to the values of state
elementr in statesS, and.S;, respectively.

Our method of comparing the states of the register files masdt around the fact thaicLID
does not support testing of equality between functionstebts we state the tegt= ¢ for func-
tions f andg asVz[f(z) = g(x)]. We do this by introducing a symbolic constait and testing
that the two register file functions yield the same valuesh@rconstant. Since symbolic constants
are implicitly universally quantified, we can thereforettibsit the register files have identical con-
tents.

The matching condition of Equation 1 must hold for all poks#tates of the pipeling;. In
practice, however, many possible pipeline states wouleémanise during operation. There could
be an intra-instruction inconsistency, for example, if gister identifier is set tRNONEvhen it
should denote a program register. There can also be irgguation inconsistencies, for example
when aret instruction is followed by other instructions in the pipairather than by at least three
bubbles. These inconsistent states can be excluded by tifieryéut only if we can also prove
that they can never actually occur.

We define gipeline invariantto be any restrictiod on the pipeline state that can be shown to
hold under all possible operating conditions. To enduieinvariant, we must show that it holds
when the processor is first started, and that it is preseryezhbh possible processor operation.
The former condition usually holds trivially, since the giime will be empty when the processor

22

is first started, and so we focus our attention on provingdkterinductiveproperty. We do this
by executing the following simulation sequence:

Init(F), Pipe SaveRP;)

where SaveR) saves the values of the pipeline state elements as asst<e must then prove

We would like to keep our pipeline invariants as simple asspibs, since they place an addi-
tional burden on the user to formulate and prove them to baiiwt.

We found that several versions pfPE could be verified without imposing any invariant re-
strictions. This is somewhat surprising, since no provisiowere made in the control logic for
handling conditions where data will not be properly forneddrom one instruction to another, or
where pipeline bubbles can cause registers to be updatedldddign is more robust than might
be expected. One explanation for this is that the two sinariaequences, ando, start with the
same pipeline state. Any abnormalities in this initial statll generally cause the same effect in
both simulations. Problems only arise when the inconsistestructions initially in the pipeline
interfere with the instruction that is fetched during thetfstep ofv,,.

Some versions ofIPE required imposing initial state restrictions, based orarant proper-
ties, as illustrated in Figure 10. These expressions desconsistency properties by referencing
storage variables that captured parts of the initial pigeBtate. First, we found it necessary to
account for the different exception conditions, and howy thieuld affect the instruction code and
the destination register fields. Figure 10A shows such amplastage invariant imposing a
consistency on the memory stage. Similar conditions wefimetk for the decode, execute, and
write-back stages.

The property shown in Figure 10B describes the requirenattanyret instruction passing
through the pipeline will be followed by a sequence of bubpl@ving to the 3-cycle stall that
this instruction causes. The conjunction of this invaraiih the stage invariants has the effect
of imposing restrictions on the destination register arsiruction code fields of the following
instructions.

The property shown in Figure 10C is specific to the SW impletat@mn. It constrains each
pipeline stage to have at most one destination registes. @roiperty is implicitly assumed to hold
in our control logic for SW.

Verifying that these invariants are inductive takes at ni@&CPU seconds, and so it is not a
serious burden for the verification. We also found it impetta actually carry out the verification.
Some of our earlier formulations of invariants proved ndbéoinductive, and in fact were overly
restrictive when used to constrain the initial pipelindesta

Figure 11 shows four formulations of the correctness caniised for different versions of
PIPE They differ only in what antecedent is used to constrainddii@ values and the initial state.
All of them include the requirement th&ESR the register identifier for the stack pointer, be

23

A.) Constraints among state variables in memory stage

M_okO :=
(pipe.M_exc = EAOK =>
pipe.M_icode != IHALT & pipe.M_icode != IBAD)
& (pipe.M_exc = EBUB | pipe.M_exc = EINS =>

pipe.M_dstM = RNONE & pipe.M_dstE = RNONE & pipe.M_icode = IN
& (pipe.M_exc = EHLT =>

pipe.M_dstM = RNONE & pipe.M_dstE = RNONE & pipe.M_icode = IH
B.) Constraints on pipeline state followimgt instruction.
(* Check that ret instruction is followed by three bubbles *)
ret_ok0 :=

(pipe.E_icode = IRET => pipe.D_exc = EBUB)

& (pipe.M_icode = IRET => pipe.D_exc = EBUB & pipe.E_exc = EBU B)

& (pipe.W_icode = IRET
=> pipe.D_exc = EBUB & pipe.E_exc = EBUB & pipe.M_exc = EBUB);

C.) Constraints on destination registers for SW implentema

(* Check that at most one register write in each pipeline stage
swrite0 :=
(pipe.E_dstE = RNONE | pipe.E_dstM = RNONE)
& (pipe.M_dstE RNONE | pipe.M_dstM = RNONE)
& (pipe.W_dstE = RNONE | pipe.W_dstM = RNONE);

OP)

ALT);

Figure 10:Pipeline state invariants. These formulas express consistency conditions for the initial

pipeline state.

24

A.) Arbitrary initial pipeline state:

(* Verification of all instructions with unrestricted initia | state *)
(RESP != RNONE => match)

B.) Arbitrary initial pipeline state witiREBPvalue constraint.

(* Verification of all instructions with unrestricted initia | state *)
(REBP '= RNONE & RESP != RNONE => match)

C.) Initial pipeline state satisfies return invariant:

(* Verification of all instructions with restricted initial s tate.
Restriction accounts for stalling after ret instruction *)

((W_okO & M_okO & E_okO & D_okO & RESP != RNONE & ret_okO)
=> match)

D.) Initial pipeline state satisfies single-write invarian

(* Verification of all instructions with restricted initial s tate.
Restriction accounts single-write property of SW pipeline *)
((W_okO & M_okO & E_okO & D _okO & swriteO & ret_okO & RESP = RNO NE)
=> match)

Figure 11:Verification conditions. Different Y86 versions require different verification condition.

25

Version | Flush Steps ALU Model Condition Time (minutes)
STD 5 Uninterp. Arbitrary 3.9
FULL 5 Uninterp. | Arbitrary + REBPvalue 4.6
STALL 7 Uninterp. Return Invariant 27.0
NT 5 Pass through Arbitrary 22.3
BTENT 5 Pass through Arbitrary 24.3
LF 5 Uninterp. Return Invariant 4.0
SW 6 Incr./Decr. Single Write 465.3

Figure 12:Verification times for different Y86 versions. All times are the total number of CPU

minutes for the complete run on an 2.2 GHz Intel Pentium 4.

distinct romRNONEthe value indicating that no register is to be read or writt8ince both of
these values are declared as symbolic constatsp would otherwise consider the case where
they are the same, and this causes numerous problems witlathdorwarding logic. The first
verification condition (A) does not constrain the initiaatgt. It suffices for verifying versions
STD, NT, and BTFENT. For verifying FULL, we must impose an aduhal data constraint that
REBR the register identifier for the base pointer, is distinofffRNONE The third formulation
(C) requires register consistency within each stage asasd¢hatret instructions are followed by
bubbles. This condition is required for verifying versi@®BALL and LF. The fourth (D) imposes
all of these constraints, plus the single-write propertyisiversion is used for verifying SW.

Figure 12 documents the different combinations gfhe number of steps to flush the pipeline,
the ALU function, and the verification condition requiredvierify each version oPIPE We see
that most versions could be flushed in five steps: one due tesalpe stall when a load/use hazard
occurs, and four to move the instruction initially in the dde stage through the decode, execute,
memory, and write-back stages. Version STALL requires sesteps, since a data hazard can
require up to three stall cycles. Version SW requires sigsstiie to the additional decode cycle it
uses.

The figure also shows the CPU times for the verification rugioima 2.2 GHz Intel Pentium 4.
The times are expressed in CPU minutes, and include bothsttteand system time for the com-
pleteucLID run. Running the SAT solvezCHAFF [10] accounted for 80-90% of the total CPU
time. We can see that the verification times range from sém@rautes to almost eight hours. We
investigate the factors that influence performance latdrigreport.

4.3 Errors

We discovered only one error in the HCL descriptions of thietBnt processor versions. The SW
version handled the following instruction sequence imprbp

26

Flush Steps
ALU 5 6 7
Uninterp. 39 6.6 11.2
Pass Through 22.3 45.1 76.2
Incr./Decr. | 40.9 92.9 216.3

Figure 13:Verification times for STD. The times depend heavily on the number of flushing steps
and the type of ALU model.

popl %esp
ret

This instruction sequence causes a combination of cortralitions as discussed in [4, pp. 349—
350], where the load/use hazard between the two instrigcboaours at the same time the control
logic is preparing to inject bubbles following tihet instruction. This combination was carefully
analyzed and handled in the other version®i®E but it takes a slightly different form in SW
where thepopl instruction is split into two steps. This bug was easily eoted in the HCL file.

The fact that this bug had not been detected previously @dpasveakness in our simulation-
based verification strategy. We had attempted to systeatigtgimulate the processor for every
possible pair of instructions where the first generates stergvalue and the second reads this
value, possibly with @mop instruction between them. Unfortunately, we had not cared cases
where theret instruction is the reader @fesp. This is a general problem with simulation—it
can be difficult to identify potential weaknesses in theibgsplan.

4.4 Performance Analysis
We saw in Figure 12 that the CPU times to verify the differeB6Yersions varied greatly, with the
longest being 119 times greater than the shortest. Moreaeesee that the longest one required

nearly eight hours, which proved a serious hindrance to ¢etnyg the verification. Four factors
could contribute to the varying times for these verificasion

1. the invariant restrictions imposed on the initial pipelstate.
2. the number of cycles required to flush the pipeline,
3. the level of abstraction used for modeling the ALU funetiand

4. the pipeline characteristics of the model,

27

To better evaluate the relative effects, we ran severalrerpats holding some parameters fixed
while varying others.

First, we determined that the invariant restrictions h#tle keffect on the running time by ver-
ifying STD using all three formulations of the correctnessadition show in Figure 11. All three
formulas are valid, although the single-write invarianh@ inductive, since only the SW version
obeys the single-write property. The verification timesev@9, 3.5, and 3.7 minutes, respectively.
Given that SAT uses a heuristic search-based algorithnghndvien effects the performance when
proving a formula is unsatisfiable, this variation is neilig.

To evaluate the second and third factors, we ran a numberibtetions of STD using differ-
ent ALU models and numbers of flush cycles. These times amgrsimoFigure 13. We can see that
both of these factors have a major influence on the verifidtoes. First, looking at each row
of the table, we see that the verification time increases lag@f of 1.7—2.3 with each additional
flushing step. In other words, the verification time growsangntially with the number of flush-
ing steps. This is consistent with other uses of term-leeefication for Burch-Dill verification
[16] and for bounded property checking [3]. The proposiiloiormulas grow in size by factors
of 1.6—1.8 per additional flush cycle, and the times for th&@ Sélver grow slightly worse than
linearly.

Looking at the columns in the table of Figure 13, we see thast#emingly small changes in
the ALU function shown in Figure 9 can have a major effect anuérification times. Making the
ALU pass values through when there is an addition by O inesetiee verification times by a factor
of 5.7-6.9. Making the ALU properly handle the incrementamgl decrementing by four increases
the verification times by a factor of 10.4-19.3. This demiaiss the fragility oucLID’s decision
procedure. A small change in the HCL files—only a few linesaaf&—can have a large impact on
the verification times. By conditionally testing the ALU mipvalue, we lose the ability to exploit
positive equality [2] in the decision procedure. Althoudtanging the ALU function has little
effect on the total number of symbolic constants that araired, the fraction that can be treated
as unique values shifts from around 80% to around 40% of ttad. t&ssentially, the constants
representing all of the values in the data path must be eddademore general, and more costly
form. The underlying propositional formulas grow by fastof 2.0-2.3 for the pass-through case
and by factors of 2.4-2.7 for the increment/decrement dasethese formulas are significantly
more challenging for the SAT solver.

The number of flushing steps and the ALU model account forgelaortion of the variation
between the different verification times. Figure 14 attesriptfactor out these effects to show
the effect of the pipeline structure. Each row compares thdieation time for one of the Y86
versions from Figure 12 to the verification of STD with the ambg number of flushing steps and
ALU model from Figure 13. We see that the verification timesftaur of the versions: FULL,
NT, BTENT, and LF then have additional factors of only 1.@-10n the other hand, STALL,
which resolves all data hazards by stalling, has an additi@ctor of 2.4, while SW, which splits
the popl instruction into separate increment and read instructibas an additional factor of
5.0. Clearly, these changes in how the instructions flomuinathe pipeline have a major impact

28

Version | Time (minutes) STD Time (minutes Ratio
STD 3.9 3.9 1.0
FULL 4.6 3.9 1.2
STALL 27.0 11.2 24
NT 22.3 22.3 1.0
BTFNT 24.3 22.3 1.1
LF 4.0 3.9 1.0
SW 465.3 92.9 5.0
Figure 14:Isolating pipeline structure effects. The verification time for each version is com-

pared to the applicable time from Figure 13

on the complexity of the correctness formulas generateds i§mot reflected in the sizes of the
propositional formulas: only the formula for SW is signifitly larger (1.5X) than the matching
STD formulas, but the formulas for SW and STALL are clearlyrenchallenging for the SAT
solver.

4.5 Liveness Verification

As mentioned earlier, the fact that our correctness canmd{iequation 1) includes the case where
the pipeline makes no progress in executing the programesilat our verification would declare
a device that does absolutely nothing to be a valid impleatemt. To complete the verification,
we must also prove that the design is live. That is, if we ofgetiae pipeline long enough, it is
guaranteed to make progress.

We devised a simple method for proving liveness that can benpeed on theriPE model
alone. We added an additional state varidbtaunt that counts the number of instructions that
have been completed by the pipeline. This value is increeteevery time an instruction passes
through the write-back stage, as indicated by the exceptiatus for the stage being something
other thanEBUB Incrementing is enabled only when the architectural etoestatusEXChas
valueEAOK

We created a verification script fenPE that starts with an arbitrary pipeline state, runs the
pipeline for five cycles, and checks that the value of theutsion counter changes. More specif-
ically, that the value of the counter will change if and orflyhie initial exception status IEAOK
as given by the following correctness condition:

RNONE !'= RESP & M_okO & E_okO & D_okO
=>
(P_excO = EAOK & pipe.lcount != icountO

29

| P_excO != EAOK & pipe.lcount = icountQ)

Five cycles is enough to handle the worst case conditionegbiheline starting out empty. We suc-
ceeded in verifying this condition for all seven versioreg;letaking less than one CPU second. We
must start the pipeline with the decode, execute, and mestaggs satisfying our intra-instruction
consistency requirements. Otherwise, if the pipelinetsthwith “hidden” jump instructions—
instructions that cause a branch misprediction but have ¢éxeeption status set BBUB then
five cycles of execution would not suffice to ensure the irc$itom counter changes value.

Our liveness check makes use of the safety check providedubghBDill verification. The
safety check implies that any progress made by the pipelithbevconsistent with that of the ISA
model. We only need to show that progress is made at some moorsge.

5 Lessons Learned

So far, we have presented the final outcome of our verificaitort, giving the final models,
formulas, and CPU times required for verifying our differ&i86 versions. This is typical of the
way experimental results are presented in research papdosroal verification. What this fails
to capture is the substantial work required to build the ngdend to find and fix bugs in the
design, the model, or the specification. In this section, thegt to capture some of the ideas and
practices we developed and used to make the process madebteac

One principle we followed with great success was to use asiautomation as possible in
constructing the model and in running the verification. Fegbidemonstrated the automation used
in model construction. We see that relatively simple tooe# scripts, format translators, and the
C preprocessor—can be strung together for this task. Thisgss meant that any change to any
part of the model only had to be done in one place.

When running a tool such agcLID, it is important to realize that there are many aspects of the
verification that can cause it to fail:

e Hardware designThe actual design of one of the two processors is incorfidetse are the
bugs we are trying to find.

e Modet The logic describing the state variables, data path, oitiaddl logic for flushing
and transferring state contains an error. Such errors pedéy because there is no reli-
able way to construct a verification model directly from ttaedware description language
representation of a circuit. Even then, some of the addititoyic is unique to our verifi-
cation effort. We found it especially challenging to get tlushing and exception handling
mechanisms to work in combination.

e Abstraction Data types or functional models have been chosen that deaptdre all of the
properties required to ensure proper operation.

30

e SpecificationSome aspect of the symbolic execution or the correctnessia contains an
error.

As the list above shows, actual bugs in the design are onlpbseveral possible sources of error.
One of the challenges of verification is to determine why ai@aar verification run has failed.

5.1 Guiding the Verifier

Compared to debugging a design by simulation, uncontroledof a formal verification tool such
asucLID can be very frustrating. We highlight a few ways we experehand dealt with these
frustrations.

First, with simulation, the designer initially developasilation patterns that direct the testing
toward a specific aspect of the design. He or she can therefous attention on one part of the
design at a time, performing a number of tests and modificatiefore moving on to another
aspect of the design. In implementing a microprocessordésggner typically implements and
verifies a small number of instructions at a time. Furtheentie or she typically focuses on
handling the normal operations of the system initially, Hveh on how it handles exceptional cases
later. By contrast, dLID generates counterexamples based on whatever satisfgiggasent the
SAT solver generates. From one run to another, there willoselbe a correlation between the
counterexamples, making it hard to focus on one aspect afdbign.

Second, with simulation, the designer begins each sinoulatin by simulating an initialization
sequence to put the system into some known initial statemRhat point on, he or she tries to
always keep the system in a reliable state to avoid wastfog eh problems that would only occur
if the system somehow got into an inconsistent state. ByraejtBurch-Dill verification requires
the system to start in a general state. We saw that we can @npsgictions on the initial state,
if these restrictions can be shown to be inductive, but #dgiires the user to start from a general
case and narrow it down, rather than the more intuitive sagiv@f starting from simple cases and
generalizing them. It would require a substantial effortaionulate a precise invariant restricting
the system to states that can only arise during actual syspemation. Even the most restrictive
invariant we used (Figure 10C) includes pipeline stateggvata and control hazards will not be
handled properly. As a consequence, the verifier will oftenegate counterexamples that clearly
will not happen in actual operation. The user must decidetldresuch counterexamples point to
an underlying design or model error, or whether a more i#stei initial state condition should be
used.

Finally, compared to the elegant user interfaces that hega beveloped for visualizing circuit
operation during simulation, the user interface providgdulcLID is quite primitive. Tracing
through a single counterexample can easily take 30 minutesoe, and this process must often
be restarted from scratch from one counterexample to thie nex

We found that the best way to useLID was to adopt the practices that make debugging by

31

verification framework ——»|

declarations ——»f UCLID
block file

block definitions x' .
variables x'
e ot — (e} —|

PIPE connections —»|

PIPE
framework

Figure 15:Generating PIPE verification file. This model can be used to verify assertions about
individual instructions.

simulation more tractable. In particular, we followed apmagach where we constrained the verifier
to focus initially on simple cases and then slowly geneealithese cases until we achieved full
verification. We did this by imposing preconditions on thereotness formula that narrow the
range of conditions modeled. We start by artificially coasting the pipeline to simple initial
states, and considering only limited instruction posgibs. For example, the following formula
restricts the verifier to consider only the case ofraovl instruction moving through an initially
empty pipeline:

((W_ok0 & W_excO = EBUB & M_okO & M_excO = EBUB
& E_okO & E_excO = EBUB & D_okO & D_excO = EBUB
& SP_icode0 = IRRMOVL)

=> match)

This formula uses stage invariants such as we showed for émeany stage in Figure 10A. It
then further restricts each stage to start with a bubble,tarahly consider the case where the
instruction being fetched has the appropriate instruatmate value. Any counterexample for this
case should be fairly easy to trace. It will show a simgheovl instruction moving through the
pipeline.

If verification fails when the initial pipeline state is caresned to have all stages empty, then
we can simplify things further by focusing independentlyseg andPIPE Figure 15 illustrates
the process used to generate a verification modetifee operating on its own. A similar process
can be used to generate a verification modelsibQ. We see that this model is generated using
the same files and tools as is used to construct the complées&@ication model (Figure 5).
Thus, anything we prove about this model, or any changes vke mall reflect back to the main
verification.

Figure 16 shows how we can specify the behavior of individh&ttuctions for the two differ-
ent processors. This example shows a precise specificdtitie effect of executing amovl
instruction. In the formula foseQ, each storage variable with name of the foBm:0 captures
the value of state variableinitially, while those name&_x1 capture the values after one step of

32

A.) Verifying rrmovl instruction inSEQ

(+» Effect of RRMOVL instruction *)

(S_excO = EAOK & S_icode0 = IRRMOVL & S_rBO !'= RNONE & S_rAO != R NONE =>
(S_pcl = succ™2(S pcO0) & S ccO = S ccl & S excl = EAOK
& S_rf1(S_rB0) = alu_fun(ALUADD, S_rfO(S_rA0), CZERO)
& (al '= S rBO & al '= RNONE => S rfl(al) = S _rfO(al))

)

B.) Verifying rrmovl instruction inPIPE

(D_empty0 & E_empty0 & M_empty0 & W_empty0) =>

(+» Effect of RRMOVL instruction *)

(P_excO0 = EAOK & P_icode0 = IRRMOVL & P_rBO = RNONE & P_rA0 = R NONE =>
(P_pcl = succ™2(P_pc0) & P_ccO = P_ccl & P_excl = EAOK
& P_rf1(P_rB0O) = alu_fun(ALUADD, P_rfO(P_rA0), CZERO)
& (al '= P_rBO & al !'= RNONE => P_rfl(al) = P_rfO(al))

)

Figure 16:Examples of verification test runs. Many modeling inconsistencies were detected
by running the same instruction through the seQ and pIPE descriptions independently.

33

operation. In the formula fopIPE these variables capture the values in the initial state &ed a

one step of normal operation followed by seven flush cyclemnithg either of these verifications

requires less than 10 seconds of CPU time, and will quicklyouar any discrepancies between
the two models.

Once instructions have been verified flowing through an emipigline, we can relax the initial
state conditions a little bit at a time, allowing more gehecanditions in each stage. By this means
we can quickly isolate a problematic interaction betweages. We found it worthwhile to try to
simplify the conditions as much as possible before exargithie counterexamples in detail.

6 Conclusions

We succeeded in verifying seven different versions of alipd, Y86 microprocessor. One ver-
sion contained a bug in the control logic that caused incbresults for some assembly language
programs. More significantly, we learned several importasgons about how to usecLID and
how it could be improved.

6.1 Appraisal ofucLID

Overall, we founducLID to be a usable tool. The modeling language is reasonablyessipe
and flexible. With the aid of additional tools, we were ables& up an automated system for
generating models. The general ability to support diffef@ms of symbolic execution and testing
of validity conditions allows the user to guide the verifioatin a manner similar to the way
designs are debugged by simulation. A few aspectsafiD could clearly be improved. These
are mainly in the modeling language and in the counterexariggility. Some aspects most in
need of improvement are described below.

In the modeling language, it would be helpful if the thredacdata types: Boolean, term, and
enumerated, could be used more interchangeably. Curremtgterpreted function arguments
must be terms, while lambda arguments must be terms or Bulé&hminterpreted functions yield
terms, while uninterpreted predicates yield Booleans{terte is no counterpart generating enu-
merated types. Lambda Expressions can generate term&dsolbr enumerated types. The type
restrictions force the user to select data types partly enthey can be used, rather than on what
is appropriate for the system being modeled, or to use sortieedficks and workarounds. What
we would really like is to have all three types treated equalny of the three should be usable
as arguments, and any of the three should be possible re$ultinterpreted functions or lambda
expressions.

We also found the limited support for modularity to be somaildurdensome. It forced us to
use a workaround of syntactic replication, and requirecbusrtte additional scripts to topologi-
cally sort signal definitions. Better support for modubavitould be especially useful in translating

34

from hardware description language (HDL) representatodrassystem. For example, it would be
convenient to write the HDL in a highly modular way, so thatwerting it to a term-level represen-
tation would involve mainly selecting the representatifamglifferent signals and then designating
some of the modules to become uninterpreted functions.

The second major area for improvement is in the run-time stpand especially in the coun-
terexample reporting facility. Some of the interface feasufound in simulators would be useful
in helping the user understand counterexamples. Just atasors dump their trace information to
a file that the user can then repeatedly examine with visatabiz tools, it would help to be able to
examine a single counterexample trace multiple times wighutser specifying which signal values
to display. It should be possible to observe not just statebies, but also the simulator control
signals as well as internal signals that have been idenbfigtie user beforehand.

6.2 Prospects for Industrial Use

Although this exercise revealed some aspects of what itavoellike to applyucLID to an actual
industrial microprocessor design, we are still far shorslodwing that this tool can be used in a
real-life design. Our Y86 design was very limited in its dgtpes, the number of instructions,
and details such as exception handling. Even with improvesite the modeling language and the
run-time support described above, itis not clear whetteanb can scale to real-life designs. Even
if we restrict ourselves to linear pipelines such as the aezlihere, a complete microprocessor
design would be considerably more complex. It is not cleaetivbr the performance afcLID
would scale up to such complexity. We saw already that sirapénges to add more detail to
the ALU model result in much longer execution times. Addingrenstages to the pipeline also
increases verification time due to the larger number of stegasired for flushing. Improvements
to the core decision procedure may be required bejanaD is ready for industrial usage.

References

[1] R. E. Bryant. Graph-based algorithms for Boolean fumttnanipulationlEEE Transactions
on ComputersC-35(8):677—691, August 1986.

[2] R. E. Bryant, S. German, and M. N. Velev. Exploiting postequality in a logic of equal-
ity with uninterpreted functions. In N. Halbwachs and D.dekeleditors Computer-Aided
Verification (CAV '99) LNCS 1633, pages 470-482, 1999.

[3] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling amdlifying systems using a logic of
counter arithmetic with lambda expressions and unintéedriinctions. In E. Brinksma and

K. G. Larsen, editorsComputer-Aided Verification (CAV '02LNCS 2404, pages 78-92,
2002.

35

[4] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspective
Prentice-Hall, 2002.

[5] J. R. Burch and D. L. Dill. Automated verification of pipetd microprocessor control. In
D. L. Dill, editor, Computer-Aided Verification (CAV '94)NCS 818, pages 68-80, 1994.

[6] Warren A. Hunt Jr. Microprocessor design verificatiofournal of Automated Reasoning
5(4):429-460, 1989.

[7] S. K. Lahiri and R. E. Bryant. Deductive verification ohahced out-of-order microproces-
sors. InComputer-Aided Verification (CAV '03)NCS 2725, pages 341-354, 2003.

[8] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling arefifrication of out-of-order
microprocessors in UCLID. In M. D. Aagaard and J. W. O’Leaditors,Formal Methods
in Computer-Aided Design (FMCAD '02)NCS 2517, pages 142-159, 2002.

[9] K. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1992.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malilhaff: Engineering an efficient
SAT solver. In38th Design Automation Conference (DAC 'Oages 530-535, 2001.

[11] S. A. Seshia, S. K. Lahiri, and R. E. Bryart.User’s Guide to UCLID Version 1.@Carnegie
Mellon University, 2003. Available dittp://www.cs.cmu.edu/ uclid

[12] Mandayam Srivas and Mark Bickford. Formal verificatioha pipelined microprocessor.
IEEE Software7(5):52—-64, 1990.

[13] M. N. Velev. Using positive equality to prove liveness pipelined microprocessors. Asia
and South Pacific Design Automation Conferempages 316—-321, 2004.

[14] M. N. Velev and R. E. Bryant. Bit-level abstraction inetlverification of pipelined mi-
croprocessors by correspondence checking-oial Methods in Computer-Aided Design
(FMCAD '98), LNCS 1522, pages 18-35, 1998.

[15] M. N. Velev and R. E. Bryant. Superscalar processorfigation using efficient reductions
of the logic of equality with uninterpreted functions. Inlrance Pierre and Thomas Kropf,
editors,Correct Hardware Design and Verification Methods (CHARMBE),9.NCS 1703,
pages 37-53, 1999.

[16] M. N. Velev and R. E. Bryant. Formal verification of supealar microprocessors with mul-
ticycle functional units, exceptions and branch predaratin 37th Design Automation Con-
ference (DAC '00)pages 112-117, 2000.

[17] M. N. Velev and R. E. Bryant. Effective use of Booleanis@bility procedures in the
formal verification of superscalar and VLIW microprocessoln 38th Design Automation
Conference (DAC '01)pages 226-231, 2001.

36

