The essence of Parallel Algol

Stephen Brookes
Department of Computer Science
Carnegie Mellon University
Schenley Park
Pittsburgh, PA 15213

Abstract

We consider a parallel Algol-like language, combining procedures with shared-variable parallelism.
Procedures permit encapsulation of common parallel programming idioms. Local variables provide a
way to restrict interference between parallel commands. The combination of local variables, procedures,
and parallelism supports a form of concurrent object-oriented programming. We provide a denotational
semantics for this language, simultaneously adapting “possible worlds” to the parallel setting and gen-
eralizing “transition traces” to the procedural setting. This semantics supports reasoning about safety
and liveness properties of parallel programs, and validates a number of natural laws of program equiva-
lence based on non-interference properties of local variables. The semantics also validates familiar laws
of functional programming. We also provide a relationally parametric semantics, to permit reasoning
about relation-preserving properties of programs, adapting work of O’Hearn and Tennent to the parallel
setting. This semantics supports standard methods of reasoning about representational independence,
adapted to shared-variable programs. The clean design of the programming language and its semantics
shows that procedures and shared-variable parallelism can be combined smoothly.

1. Introduction

The programming language Algol 60 has had a major influence on the theory and practice of language
design and implementation [10]. Algol shows how to combine imperative programming with an essen-
tially functional procedure mechanism, without destroying the validity of laws of program equivalence
familiar from functional programming. Moreover, procedures and local variables in Algol can be used
to support an “object-oriented” style of programming. Although Algol itself is no longer widely used,
an idealized form of the language has stimulated a great deal of innovative research [10]. Idealized
Algol, as characterized by John Reynolds [14], augments a simple sequential imperative language with
a procedure mechanism based on the simply-typed call-by-nacaéculus; procedure definitions, re-
cursion, and the conditional construct are uniformly applicable to all phrase types. Reynolds identified
these features as embodying the “essence” of Algol.

Although Algol 60 and Idealized Algol are sequential programming languages the utility of proce-
dures and local variables is certainly not limited to the sequential setting. Nowadays there is much
interest in parallel programming, because of the potential for implementing efficient parallel algorithms
by concurrent processes designed to cooperate in solving a common task. In this paper we focus on one
of the most widely known paradigms of parallel programming, the shared-variable model, in which par-
allel commands (or “threads”) interact by reading and writing to shared memory. The use of procedures
in such a language permits encapsulation of common parallel programming idioms. Local variable dec-
larations provide a way to delimit the scope of interference: a local variable of one process is not shared
by any other process, and is therefore unaffected by the actions of other processes running concurrently.

To illustrate the use of procedures as a means of encapsulation, a procedure for implementing mutual
exclusion [2] with a binary semaphore can be written (in sugared form) as:

procedure mutex(ny, ¢, na, c2);
booleans:;
begin
s:=true;
while true do (n;; await s then s:=false ¢;; s:=true)
|| while true do (ny; await s then s:=false c,; s:=true)
end

Herec; andc, are parameters representing “critical” regions of code, andndn, represent non-
critical code. The local boolean variableepresents the semaphore. The correctness of this procedure,
i.e. the fact that the two critical regions are never concurrently active, relies on the inaccessibitiby of
the procedure’s arguments.

For another example suppose two “worker” processes must each repeatedly execute a piece of code
can and should run concurrently, but need to stay in phase with each other so that at each stage the twc
workers are executing the same iteration. If the paramegesiadc, represent the two workers’ code,
one way to achieve this execution pattern is represented by the following procedure:

procedure workers(cy, ¢1); While true do (cyl|c1)

However, this program structure incurs the repeated overhead caused by thread creation and deletior
each time the loop body is executed. Although this defect does not affect the correctness of the procedure
it might be preferable for pragmatic reasons to design a program that creates two perpetually active
threads, constrained to ensure that the threads stay in phase with each other. One way to achieve this
known as barrier synchronization [2], uses a pair of local boolean variables equipped with a simple
synchronization strategy:

procedure barrier(co, c1);

boolean flagg, flag:;
procedure synch(x,y); (z:=true; await y; y:=false);
begin

flagy:=false flag,:=false

while true do (co; synch(flago, flag,))

| while true do (c;; synch(flagy, flago))

end

The correctness of this implementation relies on locality of the flag variables: in a dadiroér the
code bound t@, andc; cannot access the flags. The procedwegkersandbarrier are equivalent, in
that for all possible argumentg andc; the two procedure calls exhibit identical behaviors.

The combination of procedures, local variables, and parallelism also supports a form of concurrent
object-oriented programming. An “object” is typically described informally as having some private
(or local) state and providing “methods” for accessing and updating that state. For example a one-
place integer buffer can be represented as a local integer variable (holding the buffer’s current contents)
together with two local boolean variables (used as semaphores)putiimndget methods that follow
the semaphore protocol:

integer data; booleanfull, empty;
procedure put(z);
begin
await —full then full:=true;
data:=x; empty:=false
end,
procedure get(y);
begin
await —empty then empty:=true;
y:=data; full:=false
end,
full:=false empty:=true;
P(put, get)

HereP is a free procedure identifier representing the “rest” of the program, and the fact that its arguments
include put and get but notdata full or emptyprevents unconstrained access to the local state of the
buffer. Note thatP may invoke its arguments repeatedly, perhaps concurrently, and the buffer behaves
in proper FIFO manner no matter whiatdoes.

It is well known that parallel programs can be hard to reason about, because of the potential for un-
desirable interference between commands running in parallel. One might expect this problem to be
exacerbated by the inclusion of procedures. Indeed, semantic accounts of shared-variable language:
in the literature typically do not encompass procedures; the (usually implicit) attitude seems to be that
concurrency is already difficult enough to handle by itself. Similarly, existing models for sequential
Algol [14, 11, 9] do not handle parallelism, presumably because of the difficulty even in the sequential
setting of modelling “local” state accurately [4]. Nevertheless it seems intuitive that Algol-style proce-
dures and parallelism are “orthogonal” concepts, so that one ought to be able to design a programming
language incorporating both seamlesslyhis is the rationale behind our design of an idealized paral-
lel Algol, blending a shared-variable parallel language with Xkealculus while remaining faithful to
Reynolds’ ideals.

Even for sequential Algol the combination of procedures and local variables causes well known se-
mantic problems for traditional, location-based store models [4]. Such models typically fail to validate

We use the term “orthogonal” informally, to convey the idea that the semantics of procedural and parallel constructs
can be given more or less in isolation of each other and combined in a modular manner. The addition of parallelism to a
sequential Algol-like language does not invalidate elementary laws of equivalence from functional programming, such as the
(-law, and the addition of procedures to a simple shared-variable language does not break elementary semantic equivalence:
involving parallel composition.

certain intuitive laws of program equivalence which express non-interference or “locality” properties of
local variables, such as the following law:

newjint] zin P = P,

when P is a free variable of typeomm (representing a command). Intuitively, introducing a local
variablex and never using it should have no effect, so that whatever the interpretatirthaf two

phrases should be indistinguishable; however, in a simple location-based semantics the presence of com
mand meanings whose effect depends on the contents of specific locations will cause this equivalence
to break. For similar reasons a traditional location-based semantics cannot be used to prove correctnes:
of themutexprocedure or the buffer implementation given above; for examplentitexprocedure can

violate mutual exclusion when applied to arguments that happen to affect the location baund to

A more satisfactory semantics for a sequential Algol-like language was proposed by Reynolds and
Oles [14, 11], based on a category of “possible worlds”: a wdrldepresents a set of “allowed states”;
morphisms between worlds represent “expansions” corresponding to the declaration of new variables;
types denote functors from the category of worlds to a category of domains and continuous functions;
and well-typed phrases denote natural transformations between such functors. A command meaning at
world W is a partial function from4” to /. Naturality guarantees that a phrase behaves “uniformly”
with respect to expansions between worlds, thereby enforcing locality constraints and validating laws
such as the one discussed above.

The parallel setting requires a more sophisticated semantic structure because of the potential for in-
terference between parallel commands. We adapt the “transition traces” semantics of [3], modelling a
command at worldV as a set of finite and infinite traces, a subsetiof x 1), The trace semantics
given in [3] covers a simple shared-variable parallel language, without procedures, with while-loops
as the only means of recursion, assuming a single global set of states. This semantics was carefully
designed to incorporate the assumptiorfasfness[12]. It is far from obvious that this kind of trace
semantics can be generalized in a manner consistent with Reynolds’ idealization, to include a general
procedure mechanism, and a conditional construct and recursion at all types. Similarly, it is not evident
that the possible worlds approach can be made to work for a parallel language. We show here that these
approaches can indeed be combined. The resulting semantics models parallelism at an appropriate leve
of abstraction to permit compositional reasoning about safety and liveness properties of programs. Our
categorical recasting of [3] permits an improved treatment of local variables, which were modelled in
a ratherad hocmanner in the earlier paper. The semantics forX¥ualculus fragment of the language
is completely standard, based as usual on the cartesian closed structure of the underlying category. The
fact that we are able to adapt traces to the functor category setting supports the claim that procedures anc
parallelism are orthogonal. Like Reynolds’ semantics for sequential Algol, our semantics can be viewed
as bringing out the stack discipline implicit in the procedure mechanism

Since we are interested in proving liveness and safety properties of parallel programs it is vital to
deal accurately with infinite traces. Recursion is the primary cause of infinite behavior, and special
care is required to get the semantics of recursive programs right. In our setting it is not appropriate to
regard divergence as “catastrophic”, as is done in several models of CSP [18]. It is equally wrong to
equate all forms of divergence, as in a conventional least-fixed-point semantics for sequential programs,

2Since each parallel component in a program activates and de-activates storage in a stack-like manner independently of
the other components it would be more accurate to say that our semantics brings out the “cactus stack” discipline.

which typically uses a single distinguished semantic vdlue represent non-termination. For example

we must distinguish between a program that loops forever without changing the state and a program
that keeps incrementing a variable repeatedly, since they satisfy different safety and liveness properties.
Instead we provide a more refined treatment of recursion, making use of a fundamental “constructivity”
property of programs to ensure that non-termination is modelled appropriatélyleast-fixed-point
semantics for our language would capture only the finite behaviors of programs, and would therefore be
unsuitable for liveness analysis. We use instead a greatest-fixed-point semantics that models both finite
and infinite aspects of a program’s behavior.

As we have remarked earlier, our possible worlds semantics of Parallel Algol validates familiar laws
of functional programming, as well as familiar laws of shared-variable programming, and equivalences
based on locality properties. When applied to the examples listed earlier it produces the intended re-
sults; for instance, thevorkersandbarrier procedures are indeed semantically equivalent. However,
just as for the Reynolds-Oles possible worlds model of sequential Idealized Algol, certain laws of pro-
gram equivalence still fail to hold, because of the presence in the model of certain insufficiently well
behaved elements. These equivalences typically embody the principle of “representational indepen-
dence” familiar from structured programming methodology: a program using an “object” (perhaps a
member of some abstract data type) should behave the same way regardless of the object’s implemen:
tation, provided its abstract properties are the same. Such equivalences are usually established by re:
lational reasoning, typically involving some kind of invariant property that holds between the states of
two programs that use alternative implementations. These problems led O’Hearn and Tennent to pro-
pose a “relationally parametric” semantics for sequential Idealized Algol [9], building on foundations
laid in [15]. In this semantics a type denotes a parametric functor from worlds to domains, and phrases
denote parametric natural transformations between such functors. The parametricity constraints enforce
the kind of relation-preserving properties needed to establish equivalences involving representation inde-
pendence. We show how to construct a relationally parametric semantics for Parallel Algol, generalizing
the O’Hearn-Tennent model to the parallel setting. We thus obtain a semantics that validates reasoning
methods based on representation independence, as adapted to deal with shared-variable programs. Th
yields a powerful methodology for proving the correctness of concurrent objects.

2. Syntax
2.1. Types and type environments

The type structure of our language is conventional [14]: datatypes representing the set of integers and
the set of booleans; phrase types built from expressions, variables, and commands, using product anc
arrow. We user as a meta-variable ranging over the set of datatypesfdndange over the set of
phrase types, as specified by the following abstract grammar:

0 ::=expr| | var[r] | comm | (0 —6") | 0 x¢
7 =int | bool

For convenience we also introduce auxiliary phrase tgpesi|7] (“atomic expressions” of type) and
atom (“atomic commands”).

3This is reminiscent of the role played by an analogous constructivity property in justifying the treatment of recursion in
various semantics of CSP [18].

Let . range over the set of identifiers. A type environmeid a finite partial function from identifiers
to types. We write dotr) for the domain ofr, i.e. the finite set of identifiers for which specifies a
type. Let(w | ¢ :) be the type environment that agrees witkxcept that it mapsto 6.

2.2. Phrases and type judgements

A type judgement of formr = P : 6 is interpreted as saying that phraBehas typed in type en-
vironmentr. A judgement is valid iff it can be proven from the axioms and rules in Figure 1. The
syntax used here for phrases is essentially a simply typeaiculus with product types, combined with
a shared-variable parallel language over ground tgrem. We omit the rules dealing with phrases of
typevar|r| andexp[r], except to remark that the language contains the usual arithmetic and boolean op-
erations. Note that, in the spirit of Algol, the conditional constructiaB then P, elseP, and recursion
rec .. P are available at all phrase types.

We restrict the use of a “conditional atomic action”, denca&dhit B then P, to cases wheré is
“atomic”. We suppress the syntactic rules for atomic expressions and atomic commands, noting simply
that atomic expressions are built from constants, identifiers, and primitive integer and boolean opera-
tions, and that an atomic command is a finite sequence of assignments involving atomic expressions, or
skip. This syntactic constraint is common [2], guaranteeing that an atomic command always terminates,
so that it is feasible to implement this construct as an indivisible action without incurring deadlock. This
limitation does not significantly constrain the expressive power of our language. Vdevage3 as an
abbreviation foawait B then skip.

In addition, for convenience, we add the following rule; this allows us to elide the otherwise necessary
projection for extracting the “R-value” of a variable:

7wk P :var|7]
7k P expr]
In displaying examples of programs it is often convenient to use a sugared form of syntax. For
instance, we may write

integer z;
begin P end

for newjint] z in P. Similarly we may write

procedure f(x); Py;
begin P end

instead of(\f.P)(rec f.A\x.F,). With this convention it is straightforward to de-sugar the examples
discussed earlier into the formal syntax described here. \Whiees not occur free iR, the de-sugaring
can go a little further: when the procedure is not recursive this notation correspandsi)(\z. Fp).

3. Possible worlds
The categoryW of possible worlds [11] has as objects countable sets, called “worlds” or “store

shapes”, representing sets of allowed states. W& Jet= {...,—1,0,1,...} andV,,, = {tt ,ff }.
Intuitively, the world V. consists of states representing a single storage cell capable of holding a value

6

7 skip : comm

7k X :var[r] wF E:expr]
T X:=F:comm

T P :comm 7w F P:comm
= P Py comm

T P :comm 7w F P:comm
mF P|| P, : comm

mk P:expbool] 7-P:0 wFP:0
7+ if Pthen P, elseP, : 0

mF B :expbool =wF P:atom
m I await B then P : comm

7k B :expbool wF P:comm
7 = while B do P : comm

m, L var[r] = P : comm
7 F new[r| ¢in P : comm

7wk o:m() whene e dom(r)

7T|_P290><91 7T|—PI€0><91
mHfstP: 6, mFsndP: 6,

nHPy:60y whk P 6
7T}_<P0,P1>300X01

.0 P:0
mhHrec.P:0
0P
TEX:0.P:(0—10)
TEP:0—60 7F-Q:0
THPQ): 0

Figure 1. Type judgements

of data typer. We will useV, W, X, and decorated versions suchl&$, as meta-variables ranging over
Ob(W).

The morphisms fromV to W’ are pairsh = (f, Q) wheref is a function fromi?/’ to W and(is
an equivalence relation dir’, such that the restriction gfto each equivalence class@fis a bijection
with W:

o Vo' y . (¥'Qy & fa' = fy = 2’ =y);
o Ve WVy' e W .32 (2/Qy & fo' =).

We will use the notatiorw'] for the equivalence class af, and we will write f,,, : [w']g — W for
the corresponding restriction ¢f andf,' : W — W' for its inverse.

Intuitively, when(f, Q) : W — W’, we think of W’ as a set of “large” states extending the “small”
states ofi} with extra storage structurg;extracts the small state embedded inside a large state&) and
identifies two large states when they have the same extra structure. We will often find it convenient to
blur the distinction between a relatiohon a sefl’ and its graph, i.e. the s¢tz’, v') | 2'Qy'}.

The identity morphism ofl” is the pair(idy,, W x W), where idy is the identity function on the set
W. For each pair of objectd” andV there is an “expansion” morphism x V : W — W x V, given
by

—xV=(>Ffst: W xV —W,Q), where
Q = {((wo,v), (wy,v)) | wo,wy e W &veV}.

Intuitively an expansion of form- x V. models the effect (on the shape of the store) of a single local
variable declaration.

The composition of morphisnis= (f, Q) : W — W’ andh’' = (g, R) : W' — W”, which we write
ash; h' : W — W”, is the pair given by:

(f 0 9,{(20,21) € R | (g20,921) € Q}).

It is easy to check that this pair satisfies the requirements listed above, so that this does indeed define ¢
valid morphism.

As Oles has shown[11], every morphism of worlds is an expansion composed with an isomorphism.
Of particular relevance are structural isomorphisms reflecting the commutativity and associativity of
cartesian product. For all world&’, X, Y let the functions

swapwx : W x X — X xW
assocywxy W x (X xY)— (WxX)xY

be the obvious natural isomorphisms. Equipped with the appropriate universal equivalence relation, so
that there is a single equivalence class, these functions become isomorphisms in the category of worlds.
For instance,

(swapw.x, (W x X) x (W x X))

is an isomorphism fromX x W to W x X. The composition of an expansion froWi to W x V;

with an expansion fromV x V; to (W x V;) x V; yields the same result as an expansion fidfrto

W x (Vi x V3), up to associativity. Thus the nature of morphisms in this category captures the essence
of local variable declarations in a clean and simple manner, and facilitates a “location-free” treatment of
storage.

4. Semantics of types

Each type) will be interpreted as a functdg] from W to the categor of domains and continuous
functions. As shown by Oles [11], the category whose objects consist of such functors, with natural
transformations as morphisms, is cartesian closed. We will use the categorical product and exponenti-
ation in this ccc to interpret product typés x ¢, and arrow type$, — 6,, respectively. The main
differences between our parallel interpretation and the model developed by Oles and Reynolds concern
the functorial treatment of the ground typssmm andexp|7].

4.1. Atomic commands

Atomic commands are given a conventional interpretation, along lines familiar from the sequential
setting, slightly simplified because atomic phrases always terminate. At Woide atomic command
denotes a total function from¥” to . The corresponding functor is:

[atom|[W =W — W
[atom](f, Q) = Xv. xw'. fi' (v(fuw')).

For example[atom](— x V,)vy(w,v) = (yw,v) forally e W — W and allw e W, v € V..
4.2. Commands

We interpret the typeomm using “transition traces” [3], but instead of assuming a single global state
set we parameterize our definitions in terms of worlds. For each Wigrlfcomm] 11" will consist of sets
of traces oveiV. A finite trace(wy, w;)(wq,w}) ... (w,,w!,) of a command represents a terminating
computation from statey, to w!/,, during which the state was changed externaltymes (by interference
from another command running in parallel), #einterruption changing the state fromj_, to w;. An
infinite trace((w,,, w),))22 , represents an infinite execution, again assuming repeated interference.
When A is a set, we writed* for the set of finite sequences ovér A*™ for the set of non-empty
finite sequences ovet, A“ for the set of (countably) infinite sequences o¥erand A>~ = AT U A¥,
Clearly, each of these operations extends to a functoB@dn the morphism part being the appropriate
“map” operation, which applies a function to each element of a sequence. Concatenation is extended to
infinite traces in the usual wayi5 = o whenq is infinite. The empty sequence, denoted a unit for
concatenation. We extend concatenation, and finite and infinite iteration, to trace sets and to relations
over traces, in the obvious componentwise manner; for instance, Wher A~ x A*, we let

R-S = {(afo, 1) | (g, 1) € R& (Bo, B1) € S}

Using this notation, then, a command denotes a subggt’ok 7). However, as in [3], we let a
step(w, w’) in a trace represent a finite sequence of atomic actions, rather than a single atomic action.
The trace set of a command is therefore closed under two natural operatiattistingandmumbling.
Intuitively, stuttering involves the insertion of “idling” steps of the fofm, w) into a trace, while mum-
bling involves the collapsing of adjacent steps of the féumw’) (w’, w”) into a single stegw, w”). We
formalize this as follows.

4The use of closed sets of traces guarantees full abstraction for the simple shared-variable language [3]. The closure
conditions correspond, respectively, to reflexivity and transitivity of-thierelation in a conventional operational semantics.

9

We define relations stutmum,y C (A x A)T x (A x A)T by:

stuty = {(af,a(a,a)B) |ac A&k af e (Ax A)T}
mumy = {(a(a,d’)(d’,a") B, ala,a”)F) | af e (A x A)* & a,d',a” € A},

Letidles = {(a,) | @ € (A x A)>} denote the identity relation ol x A)>. We then extend these
relations to arbitrary traces, defining the relationsstatunm? C (A x A)® x (A x A)> by >

stuty = stut; - idle, U stut;
munty = mumn - idle, U munty.

We say that a séf’ of traces ove#V is closedif

aeT & (o,) estuty = BeT;
aeT & (o,) emumiy = [eT.

We write T for the closure off’, that is, the smallest closed set of traces contaiffimg a subset.

Let o (W x W)>) denote the set of closed sets of traces d¥erordered by set inclusion. This
forms a domain, in fact a complete lattice, with least elemjéngreatest element the 9ét” x W) of
all traces, and lubs given by unions. For a morphise (f, Q) : W — W', [comm]h should convert
a setc of traces ovefl to the set of traces ovél”’ that “project back” viaf to a trace inc and respect
the equivalence relatio in each step. We therefore define

[comm]W = of (W x W)=>),
[comm|(f,Q)c = {a’ | mapf x f)a’ e c & o respects Q}.

It is straightforward to check that this is indeed a functor.

The case when the morphigms an expansion frol” to W x V' is worth particular attention. When
cis atrace set oval/, [comm](— x V')cis the trace set ovéil/ x V' consisting of traces that look like
a trace ok augmented with stuttering in tHé-component:

[[C()mm]](_ X V)C = {((w07 UO)? (wé]’ UO)) s ((wm Un>’ (w;n Un)) |
(wo, w() .. (W, wh) e c& Vi <m.v; eV}
U {((wo, vo), (wp, v0)) - - - (W, vn), (wr, vn)) - |
(wo, wp) - .. (Wp,wh) ... ec&Vi>0.v;e V}

This is as intended: represents the meaning of a command that affects the part of the store represented
by W, and when we expand the shape of the stord’tex V' the extra structure represented by the
component should not be affected by the command’s behavior.

Note that ifc is a closed set of traces so isomm|hc. Moreover, the definition ofcomm|h is
also applicable to a general trace set, and it is easy to see that for angfseacesjcomm]h(c’) =
([comm]hc)T, so that the action ofcomm] on morphisms interacts smoothly with closure. In addi-
tion [comm]h interacts simply with concatenation and iteratiqocomm]hi (7} - Ty) = [comm]hT; -
[comm]hT:, and hencdcomm]i(T*) = (Jcomm]hT)*™, and similarly for infinite iteration. These
observations are sometimes helpful in calculations.

SEquivalently, these relations can be characterized as the greatest fixed points of the monotone functionals

F(R)=idley Ustuty - R
G(R) =idle4 Umum, - R,

which operate on the complete lattice of relations over traces, ordered by set inclusion.

10

4.3. Atomic expressions

For atomic expressions again the interpretation is simple. At warlan atomic expression of type
denotes a total function fromd to V.

[atom[7]]W =W — V,
[atom[7]](f, Q) = Xe.eo f.

4.4. Expressions

For expression typeexp[r] we use traces, since expressions can be used in non-atomic contexts.
However, since we assume that expression evaluation does not cause side-effects, we can employ ¢
slightly simpler form of trace than was used for commands. We also allow for possible non-termination,
and for the possibility that expression evaluation may be non-deterministic.

A finite trace of the form{(wow; . . . w,, v) represents an evaluation of an expression during which the
state is changed as indicated, terminating with the resudtsuffices to allow such cases only wheis
finite, since we assume fair interaction between an expression and its environment: it is impossible for
the environment to interrupt infinitely often in a finite amount of time. On the other hand, if an expression
evaluation fails to terminate the state may be changed arbitrarily many times during evaluation, and no
result value is obtained; we represent such a case as an infinitdargce,, in W«. Note in particular
that the tracev” represents divergence when evaluated in statethout interference.

Thus we will model the meaning of an expression of tya world1W as a subsetof W+ x V., UW<,
closed under the obvious analogues of stuttering and mumblihgt o' (W* x V, U W) denote the
collection of closed sets of expression traces, ordered by inclusion. Accordingly, we define

[explr][W = pf (W x V. UW®)
[explr]](f, @)e = {(p',v) | (Mapfp',v) e e} U{p" e W™ | mapfy € e}.

Again, functoriality is easy to check.
4.5. Product types
We interpret product types in the standard way, as products of the corresponding functors:

[0 x 0]W = [0]W x [0]W
[0 x 0]h = [6]h x [0']h.

4.6. Arrow types

We interpret arrow types using functor exponentiation, as in [9]. The doffair 0’| consists
of the familiesp(—) of functions, indexed by morphisms froW, such that whenever : W — W',
p(h) : [0]W" — [0']W'; and wheneveh' : W' — W, p(h) ; [0']) = [0]K; p(h ; 1'). This uniformity

SFor instance, for alp,c €« W* and allv € V., w € W, (po,v) € e = (pwao,v) € e, and(pwwo,v) € e = (pwo,v) € e.
Similarly for infinite expression traces.

11

condition amounts to commutativity of the following diagram, for &, W”, »h : W — W’ and
W — W

[[9]] WI/

p(h; W)
The domaind — ¢'|W is ordered by

p(—)Cq(—) <= VW' .Vh: W — W'.p(h) C q(h),

the obvious parametrized version of the pointwise ordering. It is easy to check that with this ordering
[0 — ¢'JW is indeed a domain, assuming tljé] is a functor from worlds to domains.
The morphism part of¢ — 6] is defined by:

[0 — 0 h: W —=Wp=X:W —W".ph;h).
This kind of A-abstraction for denoting indexed families is a convenient notational abuse.
4.7. Variables

For variables we give an “object-oriented” semantics, in the style of Reynolds and Oles. A variable
of typer is a pair consisting of an “acceptor” (which accepts a value of typed returns a command)
and an expression value. This is modelled by:

[var[r]]W = (V; — [comm]W) x [exp[r]]W
[var[r]]h = A(a, e).(Av.[comm]h(av), [exp[r]]he).

This formulation is exactly as in [11], although the underlying interpretatiorcoofm andexp[r]| are
different.

5. Semantics of phrases

A type environmentr determines a functdfr] as an indexed product. A membeof 7] is an
environmenmapping identifiers to values of the appropriate typex(iff = 0 thenu. < [0]W.

Whenr - P : 0 is a valid judgementP denotes a natural transformatipR] from [=] to [¢]. That
is, for all environments: ¢ [7]W, wheneverh : W — W', [0]h([P]Wu) = [P]W'([x]hu). This is
expressed by commutativity of the following diagram forl&l and allh : W — W":

g L L— 1T
[x]h \ueﬂh
Lt

We provide a denotational description of the semantics, beginning with the definitions for the simple
shared-variable language constructs, adapting the definitions of [3] to the functor-category setting. In
the following semantic clauses, assume that P : ¢ andu ranges ovefr]IW. In each case naturality

is easy to verify, assuming naturality for the meanings of immediate subphrases.

5.1. Expressions

We omit the semantic clauses for expressions, except for two representative cases to illustrate the use
of expression traces.

e The expression always evaluates to the corresponding integer value, even if the state changes
during evaluation:
[Wu = {(w,1) |weW} ={(p,1) [pe W}

e The following clause specifies that addition is sequential and evaluates its arguments from left to
right:
[[El + EQHWU =
{(p1p2,v1 +v2) | (p1,01) € [E\]Wu & (p,v2) € [Ex]Wu}f
U {pip2 | Foi. (p1,01) € [EA]Wu & py € [Eo]Wun W& H
U{peW®|pe[E]Wu}!

Note that this interpretation invalidates algebraic laws sudb,as F, = E; + E;, which hold in
sequential Algol but fail in the parallel setting with this non-atomic sequential form of addition.
Other interpretations are also possible, such as a parallel non-atomic form of addition for which
the commutative law does hold.

Let Ay : W — W x W denote the diagonal functiomrAy (w) = (w,w). This may be used to
coerce expression traces into command-like traces in cases (such as assignment, or conditional) where ;
command has a subphrase of expression type.

5.2. Atomic commands and expressions

The semantics of atomic phrases is standard, essentially as in the Reynolds-Oles semantics of expres
sions and commands in sequential Algol. The main difference is that atomic phrases always terminate,
so that we work with total functions rather than partial. When convenient we will identify the function
denoted by an atomic phrase with its graph, and we will also regard this graph as a set of “singleton”
traces, viewing for example a pdiw, w’) as a command trace of length 1.

e Wheneverr - P : atom we have[P]Wu ¢ W — W. For example, whei®; and P, are atomic
commands we define
[Pr; Po)Wu = [Py]Wuwo [P]Wu.

e Wheneverr - E : atom[r] andu e [x]W we have[E]Wu ¢ W — V.. For example, whelk;
and F, are atomic expressions

[Ey + Ex]Wu = {(w,v; + v2) | (w,vy) € [EA]Wu & (w,v2) € [Ex]Wu}.

Obviously atomic addition is commutative.

13

Note that atomic commands are also commands: wherP : atomis valid, so ist - P : comm. The
atomic semantics aP is related to its trace semantics in the expected way: the atomic semankics of
is determined by the traces of length 1. Thus

[P :atom]Wu = {(w,w’) | (w,w") € [P: comm]Wu}.
A similar relationship holds for atomic expressions:
[E :atom[r]][Wu = {(w,v)]| (w,v) e [E:exp[r]][Wu}.
5.3. skip

skip has only finite traces consisting of stuttering steps:

[skip]Wu = {(w,w) | we W}
= {(wo, wo) (w1, w1) ... (Wy,wy) | n>0& Viaw; e W}
={(w,w) | we W}t

To show naturality of this definition, consider a morphisfn@) : W — W’'. We have

[comm(, Q)(Iskip] W) = [comm (. Q) (w,w) | w e W}*
— ([eomml (£, Q){ (w,w) | w e W})*
= {(w'w) | w' e W}
= [skip] W ([](f.Q)u)

becaus¢g puts eacl)-class in bijection withl” and stuttering steps obviously project back to stuttering
steps.

5.4. Assignment

We specify a non-atomic interpretation for assignment, in which the source expression is evaluated

first:
[X:=FE|Wu =

{(mapAwp)B | (p,v) e [E]Wu & B fSU[X]Wu)v}!
U{mapAyp | p e [E]Wun W« }H.

Note the use of majy to convert expression traces into command-like traces.
For instance, the assignmentx + 1, interpreted at world?” x V;,; in an environment, in which z
corresponds to the;,; component of state, has the following traces:

[[inzx + 1]](W X th)u = {((U)O; UO)? (w(bv()))((wla U1>, (wbvo + 1)) \ wo,wy € W & vy, 01 € th}T;

showing the potential for interruption after evaluation of the source expressiori but before the

update to the target variable. Closure under mumbling implies that the command also has traces of the
form ((w,v), (w,v + 1)), representing execution without interruption. In addition, closure permits the
insertion of finitely many stuttering steps.

14

5.5. Sequential composition
Sequential composition corresponds to concatenation of traces:
[P Po)JWu = {a1ca | ag € [Pi]Wu & ag € [R]Wull.

Itis convenient to introduce a semantic sequencing construct: for arbitrary tradé aetl; we define
Ty; Ty = (T - Ty)t. Thus[Py; Po|Wu = [P]Wou; [Po]Wou.

Naturality of this definition follows because for all trace sétsand7; over ¥ and all morphisms
h: W — W’ we have[comm|h(Ty; Tz) = ([comm]hTy); (Jcomm]hTs).

5.6. Parallel composition

Parallel composition of commands corresponds to fair interleaving of traces. For edchaelefine
the following subsets afl>™ x A> x A>:

bothy = {(a, 5, ab), (a, 5, Pa) | o, 3 € AT}
oney = {(a, €,), (6,,) | v e A®}
fairmerge, = both, - one, U botft,

wheree represents the empty sequence and we use the obvious extension of the concatenation operatior
on traces to sets of triples of traces:

to - t1 = {(aooa, BofB1, Yom1) | (ao, Bo,vo0) € to & (1, B1,m) € ta}.

Similarly we use the obvious extensions of the Kleene iteration operators on traces. Thus, for instance,

both, is the set of all triples obtained by concatenating together a finite sequence of triplasofitpni
Intuitively, fairmerge,, .., is the set of triplesa, 3,) of traces oveil such thaty is a fair merge of

«a andg. Note thatfairmergesatisfies the following “natural” property: for all functiorfs: A — B,

(o, B,7) e fairmerge, = (mapf«, mapf3, mapfy) e fairmerge;.
We then define
[P1]|P]Wu = {a | F(aq, az, @) € fairmerggy .- a1 € [Pi]Wu & ay € [R]Wull.

Again it will be convenient to introduce a semantic parallel composition operator: for trace, sats
Ty overW let Ty || Ty = {a | Iy, as, a) € fairmerggy . . a1 € 11 & ay € Ty}, Naturality of [Py|| 2]
follows from naturality of| ;] and[], since

[comm|h(T1||T3) = (Jcomm]hTy) || ([comm]hrTy),

for all trace setd?, T, overWW and all morphismg : W — W".

’Equivalentlyfairmerge, can be characterized as the greatest fixed point of the monotone fuR¢tipa- both, -tUoney
on the complete lattice(A> x A> x A*). The least fixed point of this functional is the subset of trigless,) from
fairmerge, in which one or both oé andg is finite. The greatest fixed point also includes the cases wharel 5 are both
infinite.

15

5.7. Local variables

A trace ofnew{r] « in P at world W should be constructed from an execution/bin the expanded
world W x V., with . bound to a fresh variable of type during whichP” may change this variable’s
value but no other command has access to it. Only the changeslio-tttenponent of the world should
be reflected in the overall trace. We say that a trace is interference-free iff for each pair of consecutive
steps(w,,, w;,) and (w41, w;,,) in the trace we have),, = w,1. Thus the traces afew[r] ¢ in P in
world W and environment: should have the form méfst x fst)«, wherea is a trace ofP in world
W x V, (and suitably adjusted environment) such that (eadx snd« is interference-free:

[new[r] ¢ in P]Wu = {mapfst x fst)« |
ace [PJ(W x V) ([r](=x V)u|e:(a,e)) &
map(sndx snd« interference-frep

where the “fresh variablea, e) [var[7]] (W x V;) is defined by:
a = \"V, {((w,v), (w,v)) |weW &veV}
e={((w,v),v) |weW &wveV,}.

5.8. Conditional

For conditional phrases we define by inductionégrior ¢ € [exp/bool]][IW andp,,ps € [0]W, an
elementf ¢ then p, elsep, of [0]WV.

e Forfd = exp[r], if ¢t then p; elsep, is

{Ppl | (07“)Gt&Pl Epl}TU
{pp2| (p.ff) et & prepa}t U
{plpetnie}

e Forf = comm, if ¢t then p, elsep, is

{(mapAyp)a; | (p,tt) et & asep}T U
{(mapAywp)as | (p,ff) et & ay e po}T U
{mapAyp | petNW*}.

e Forf = (6y — 6,), (if t then p, elsep,)(—) is the indexed family given by

(if ¢ then p, elsepy)(h) =
Ap. if [exp[bool|] At then p,(h)p elseps(h)p.
e Ford = var[r| we define
if t then (ay,e;) else(ag, e2) =
(Av:V,..if t then a,v elseaqyw, if t then e; elsee,).

We then define
[if Bthen P, elseP,]Wu =

if [B]Wuthen [P]Wu else]P]Wu.
Naturality is easy to check, by induction on the type.

16

5.9. Conditional atomic action

We give a “busy wait” interpretation to an await command: if the test expregsievaluates tdt it
executes the bod¥ without allowing interference; if the test evaluatedftoit waits and tries again; if
evaluation of the test diverges so does the await command.

[await B then P]Wu =
{(w,w') e [P]Wu | (w,tt) e [B]Wu}!
U {(w,w) | (w,ff) e [B]Wu}
U {(w,w)* | w* e [B]Wu}'.
Recall thatP is assumed to be an atomic command, so [#4#1« is a total function fromiV’ to W
whose graph determines a set of singleton traces that represent interference-free execiitions of
particular[await true then P]Wu = ([P : atom]Wu)T.

If the test expressiom? always terminates, as is common, for example wheis atomic, the third
part of the clause becomes vacuously empty.

5.10. while-loops

The traces oWhile B do C' are obtained by iteration. Define

[[B]]ttwu = {mame | (p> tt) € [[B]]WU’}
U{mapAwp | p € [B]Wun W}
[BlesWu = {maphwp | (p,ff) € [B]Wu}
U{mapAwp | p € [B]Wun W«}
Then we define

[while B do CWu =
([Bl..Wu; [CIW)" [BleeWu U ([B] Wus [CTWu)*

This trace set can also be characterized as the closure of the greatest fixed point of the functional
F(t) = [B] Wu- [C]Wu-t U [B];Wu,

which operates on the complete lattice of arbitrary trace setslbverdered by set inclusion. Note that
this functional is “constructive”, in the intuitive sense that for each 0, the firstn + 1 steps of traces
in F'(t) are uniquely determined by the firststeps of traces in because of the “stuttering” caused by
evaluatingB.

The need to take the closure omtiter constructing the fixed point is shown by the special case of the
loop while true do skip. This command does nothing but stutter forever, so that we would expect

[while true do skip]Wu = {(w,w) | w e W}*.

Both the iterative formula given above and the greatest fixed poiat afjree with this. However, the
closure-preserving functional

G(t) = [B], W [C]Wu;t U [B];Wu,

17

interpreted on closed trace sets, coincides with the identity function ihentrue and C' is skip.
The greatest fixed point af is therefore the set ddll traces ovelV/, which does not agree with the
operational characterization.

Notice also that taking thieastfixed point of ' would yield only thefinite traces of the loop, ignoring
any potential for infinite iteration.

5.11. Recursion

The above discussion of while-loops showed the need to take the greatest fixed point of a functional
on arbitrary trace sets, and pointed out the role of stuttering in ensuring that divergence is modelled
accurately. Similar needs arise in interpreting more general recursive programs.

Consider for example the commanret ..., which simply diverges without ever changing the state,
no matter how its environment tries to interfere. Its trace set should therefore consist of the infinite
stuttering sequences, exactly as for the divergent loop considered above:

[rec i]Wu = {(w,w) | we W}.

This trace set is not the greatest fixed point ofitlentity functionon [comm| ¥, as might be suggested
by the syntactic form of the command. Instead it can be characterized as (the closure of) the greatest
fixed point of the functional

F =X A{(w,w)a|weW & a e c},

operating on the complete lattigeomm|IV = o((W x W)>) of arbitrary trace sets; intuitively, the
extra initial stutter mimics an operational step in which the recursion is unwound. Obviously any fixed
point of F' contains only infinite traces; moreover the initial stutter inserted”lgyermits a proof by
induction that for all, > 0 and all trace setsthe firstn steps of each trace iR (c) are stutters. Thus

the greatest fixed point af is o2, F((W x W)>) = {(w,w) | w e W}* as claimed. This trace set

is already closed under stuttering and mumbling, so it belondgsdmm]W = of (W x W)>). We

can therefore definfrec ¢..]/Wu = vF. To show naturality of this definition lét: W — W’ and letF”

be the functional oficomm]|W’ given by

F' =X {(w,w)d |w' e W & o' € '},
so thatJrec c..JW'([r]hu) = vF' = {(v',w") | w' € W'}*. We have

[comm]h(vF) = [comm]h({(w,w) | w e W}¥)
= ([comm]h{(w,w) | w e W})¥
— {(w/’w/) | w/ c W/}o.)
= vF’,
as required for naturality. Note, however, that the successive pairs of approximations to these fixed

points arenot naturally related. For instance, whén= (f,Q) : W — W' is a non-trivial expansion
morphism, so thaf) has more than one equivalence class,

[comm]A((W x W)=>) {a/ e (W' x W) | o respects Q}

; (W' x W),

18

Nevertheless, the stutters inducedByand £’ support a proof by induction that for all > 0 the first
n steps of F*((W x W)*) and F'"((W' x W’)>°) are naturally related, and in the limit we get full
naturality.

The discussion above relies crucially on the fact tfleatnm|1V is a complete lattice, so that the
existence of the relevant fixed point is guaranteed by Tarski’s Theorem [19]. However, the generalization
to all types is not so straightforward, since the donj@in> ']/ does not possess a top element. We can
see this as follows, by considering the special cageahm — comm|I¥/. The obvious order-theoretic
candidate for top of this domain is the family {ep) such that for alh : W' — W',

top(h) = A\’ : [comm[W'. (W' x W')>.

However, as was shown abovyepmm|. does not preserve top; hence this family lacks the naturality
property required for membership joomm — comm|WW. Furthermore, the obvious natural candidate
for tophood, i.e. the familyop(—) given by

top(h) = A" : [comm|W’. [comm| (W x W)*°),

is not even the order-theoretic top among the natural elements, since it does not dominate the identity
family id(h) = A : [comm[IV’. ¢/,

Neverthelesgcomm — comm|1V is clearly a sub-domain of the complete latticemm — comm) TV
consisting of thearbitrary families p(—) such that for allh : W — W’ p(h) : [commW’ —
[comm|IV’, i.e. the lattice obtained by relaxing the naturality requirement. The top element of this lattice
is clearly the family top—) introduced above. A recursive phrase of this type determines a continuous
functional /" on this lattice. For example, consider the divergent phrase.. : comm — comm. Intu-
itively this should denote, at world’, the procedure meaning which causes infinite stuttering whenever
it is called:

[rec .. : comm — commWu = A : W — WA { (W', w') | w' e W,
This can be characterized as (the closure of) the greatest fixed point of the functional
F =X \p A {(w',w')d | w' e W & o' e phc'},

operating on the latticeccomm — comm)l/. Note that the successive approximahtstop) to the
fixed point are not natural and thus do not qualify for membershjpdmm — comm|1V. Nevertheless
for eachn > 0 it can be seen intuitively thak™(top) is natural “forn steps”, and in the limit we
achieve full naturality. ThusZ < [comm — comm]IV, as required for this construction to make sense.
Moreover, this definition is natural, since whenekeri/ — W’ we have

[comm — comm|i([rec .)Wu) = Mb W' — W". [rec .]Wu(h; h')
—)\h, : W/ N W”. {(w//’w//) ’ w// c W//}w
= [rec .]W'([n]hu).
We can generalize the above discussion to more general recursive phrases as follows.
Each type denotes a functdp] from worlds to domains, defined as ff#] except that we omit the

use of closure. For each> 0, and each morphisra : W — W', we define a chain of approximations
0],k : [0]WW — [0]W’ whose limit is[d]h. For example,

[comm|,,(f,Q)c = {’ | map(f x f)a' € ¢ & o’ respects) for n stepg.

19

The semantic definitions given fdr-] can be systematically adjusted, by dropping the use of the clo-
sure operatof—)', yielding a semanticé-] based on arbitrary trace sets. For example, the semantic
clause for sequential composition becomés Po|Wu = [P |Wu - [Po)Wu, with u interpreted as an
environment based on arbitrary trace sets. WhénP : ¢ is valid, [P] is a natural transformation from
[7] to [0]. Moreover,[P] is non-destructivé, in the sense that, whenevet- P : ¢ is valid, for alln > 0
and allh : W — W’ we have

[PIW' o [n],h C [0],,h o [P]WV.

We generalize the idea of inserting an extra initial stutter to all types, inductively, obtaining for each
typed a natural transformation sgufirom [¢] to [0]. At ground types this is straightforward, as described
above for commands; at arrow types we transform a procedure meaning so as to cause an extra stutter tc
occur each time the procedure is called. For example,

stucommWe = {(w,w)a |we W & a e c}
stup o Wp = Ah: W — W’ stup W’ o (ph).

We then have, for alk, all h : W — W', and allé,
stuyW’ o [0],h = [0],:1h o StuhTV.

Hence whenr - P : ¢ is valid the natural transformation sfut[P] is constructivein that for alln, and
alh: W — W/,
(stuyW’ o [PIW') o [x],h C [0],11h o (StUW o [P]W),

making precise the informal notion of constructivity alluded to earlier.
Whenr - rec..P : 6 is valid, so thatr,. : 6 = P : 0 is also valid, and: < [7]IV, the function

F = \p: (O)W.stugW ([P]W (u | ¢ : p))

is a continuous map on the complete lattiégllV’ O [0V, and restricts to a function frond#|V to
[0]W. Its greatest fixed pointF belongs tdd]1W. We therefore take

[rec t.PlWu = vp.stuyW ([PIW (u | ¢ : p).

This definition is natural, in thgb]h([rec .. P]Wu) = [rec .. P]W'([r]hu) wheneverh : W — W',
To show naturality, lek : W — W’ and letF” be given by

F' = X\p' : [0]W stuyW' ([PIW ([r]hu | ¢ : D)),
so thatrec «.P]W'([r]hu) = vF'. We must show thgb]|h(vF') = vF’. We argue as follows.
e By definition of I, naturality of P, naturality of stuf, and the fixed point property, we have:

F(0h(vF)) = stugW'([PIW'([r]hu | ¢ : [B]R(vF)))
= stupW/([OIA([PIW ([, e : Oh(u | ¢ : vF))))
= [O)h(stuyW ([P]W (u | ¢ : vF)))
= [O]h(vF),

so that[f]h(vF') is a fixed point ofF”. Hencelf|h(vF') C vF".

8Again this terminology is reminiscent of a related notion used in models of CSP[18].

20

e For the converse inequality let top and ‘tbye the greatest elements @1/ and(0)W’, respec-
tively. We show first by induction that for all > 0 we have

F'™*(top') C [0loh(F*(top)),

from which it follows thatv F" C [f]oh(vF). Then we show, using the fixed point property and
constructivity of stuf o [P], that whenever I’ C [0],,h(vF') we have

v = F'(wF") T F'([0].h(vF))

[Q}n—s—lh(F(VF))
[0]s1h(VF).

I

(
Thus by induction we have for al > 0, vF’ C [6],h(vF), and hence/F’ C [f|h(vF) as
required.

We can generalize the closure operdtoj' to all types inductively, obtaining for each typa natural
transformatiord’ : [9] — [#]. For examplecomm(¥ is just the closure operator on trace sets dver
exactly as before; and closure at an arrow type is defined by

O — Y Wp=Ah: W — W \x: [0]W.0TW (phx).
Wheneverr - P : 0 is valid, [P] respects closure, in that for al}, u; e [7]W,
W (ug) = 7'W(uy) = 07([P]Wug) = "W ([P]Wuy).
In other words, the closure @P]1Wu depends only on the closure ©f Thus it makes sense to define
[rec o.PJWu' = 6TW ([rec t.P]Wu),

whereu is any environment ifir] 1/ with closureu!.

Indeed with this as the interpretation of recursion the closed trace sets semantic f{irdtizan be
obtained as the quotient 6f]: wheneverr - P : ¢ is valid, we have| P]W (rfu) = 0TW ([P]Wu).
Since closure “absorbs” initial stuttering, i.e. for all tygese haved' o stuy = 67, the validity of the
usual unrolling rule for recursive phrases follows:

[rec .P]Wut = "W (vp. stuyW ([PIW (u | ¢ : p)))

OTW (stuyW ([P]W (u | ¢ : [rec t.P]Wu)))
OTW ([P)(u | ¢ : [rec t.P]Wu))

= [P]W(ul|¢: [rec.P]Wu).

The Appendix contains further details.

It is easy to check that this semantics for recursion does indeed prescribe the operationally expected
meanings for the divergent phrasee ..., at typecomm and at typecomm — comm. Similarly the
meaning ascribed to the divergent integer expressom.n + 1 at world W is W, again consistent
with operational intuition: no matter what state changes may occur as the result of parallel activity the
expression evaluation never stops.

It is also easy to verify that the meaning given to

rec..if B then C'; . else skip

coincides with the semantics given earlier for the ledple B do C, when. does not occur free i@v.

21

5.12. A-calculus

The semantic clauses for identifiers, abstraction, and application are standard:

[]Wu = we
[Ae: 0.P]Wuh = Xa : [O]W'.[P]W'([r]hu | ¢ : a)
[P@)IWu = [PIWu(idw)([QIWu),

where, in the clause for abstractidnranges over morphisms froi” to 1W’. The clauses for pairing
and projections are also standard, using the cartesian structure of the functor category:

[[<P0, P1>]]WU = ([[Po]]wu, [[Pl]]WU)
[fst P]Wwu = fst([P]Wu)
[sndP]Wu = snd [P]|Wuw).

6. Reasoning about program behavior

The semantics validates a number of natural laws of program equivalence, including (@desnnot
occur free inP’):
new[r| cin P' = P’
new[r| ¢ in (P||P') = (newir] ¢ in P)|| P’
new[r| ¢ in (P; P') = (new[r] ¢ in P); P'.
Similarly the semantics validates laws such as the following, which show that the order in which local
variables are declared is irrelevant:

new(r| ¢y in NeW[ry] 1z I P = new{ry] to in New[ry] ¢, in P
new[r| ¢y IN New[r] o in P(11,t2) = NeW[T] ¢; In Nnew[r] ty in P(tg, 7).

These laws amount to naturality (of the meaning®ivith respect to the natural isomorphism of worlds
(W x V) x V, and (W x V,,) x V., this being a composition of suitably chosemapandassoc
isomorphisms as discussed earlier.
The semantics also validates familiar laws of functional programming, suéfegsivalence and the
usual recursion law:
(At :0.P)P' = P[P/
rec..P = Prec..P/.],
whereP[P’/.] is the phrase obtained by replacing every free occurrencéna? by P’, with renaming
when necessary to avoid capture. In fact these equivalences follow easily from the semantic definitions

when combined with the following Substitution Theorem: whenevéer P : 6 is valid, 7(:) = ¢’ and
7 P 0 isvalid, andu e 7]V,

[P[P')]Wu = [P]W (u|¢: [P]Wu).

As usual the Substitution Theorem may be proved by structural induction on the derivationBf: 6.
Similarly the model validates laws relating the conditional construct with functional abstraction and
application:

(if Bthen P, else%)(P) = if Bthen P,(P) elseP,(P)
A 0.if Bthen P, elseP, = if Bthen \.: 0.P; else\.: 0.P, if v notfreeinB,

22

and the semantics validates laws familiar from imperative programming, such as

(if Bthen X elseX,):=F = if Bthen X;:=F elseX,:=F
while Bdo C' = if B then C;while B do C else skip
skip||C' = C||skip = C

skip; C = C;skip = C

Our semantics also equatekile true do skip andawait false then skip because of the busy-wait in-
terpretation of conditional atomic actions.

The semantics supports compositional reasoning about safety and liveness properties. For instance, i
is possible to show the correctness of the mutual exclusion procedure discussed earlier, and to show the
equivalence of thevorkersandbarrier procedures.

For a more complex example involving parallelism, consider the following implementation of a syn-
chronization “object”, generalizing the barrier synchronization example mentioned earlier:

booleanflag,, flag;;

procedure synchiz, y); (z:=true; await y; y:=false);
flag,:=false flag,:=false
P(synctiflag,, flag,), syncliflag,, flag,))

HereP is a free identifier of typécomm x comm — comm). SinceP is a hon-local identifier, the only
way for this phrase to access the flag variables is by one of the two pre-packaged waysyodall
Intuitively, the behavior of this phrase should remain identical if we use a “dualized” implementation of
the flags, interchanging the roles of the two truth values. Thus, this phrase should be equivalent to

booleanflag,, flag,;
procedure synchiz, y); (z:=false await —y; y:=true);
flag,:=true; flag,:=true;
P(syncltflag,, flag,), synctiflag,,flag,))
This is an example of the principle of representation independence. Our semantics for Parallel Algol

validates this equivalence, by virtue of the existence of an isomorphism of worlds that relates the two
implementations. To be specific, for all worltls there is an isomorphism

dual: W x Vbool — W x Vbool
dual = (A(w, b).(w, =b), (W X View)?)

Naturality of the meaning of” with respect to this isomorphism is enough to establish the desired
equivalence. Note that this is an equivalence between two terms containing a free identifier. In essence,
no matter how the “rest” of the program is filled in, provided it is only allowed access to the two flags
by calling one of the supplied procedures, the two implementations are indistinguishable. For example,
if we substitute forP the procedure

A(left, right). (while true do (c; left) | while true do (c;; right))

we recover the barrier synchronization example discussed earlier.

23

This synchronizer object works well in the above context, but less satisfactorily in cases where several
threads can compete. For example, consider what can happen if we éstéhiwprocedure

A(left, right).
(left; co) || (left;) || (right; ca; right; cs)
with the intention that the resulting program be equivalent to

((collea); (erlles)) or ((eil[e2); (colles)),

whereor is interpreted as non-deterministic choftelntuitively this equivalence may fail because it
is possible for two threads concurrently to execsech(flag,, flag,) to completion, leading to the
simultaneous parallel activity @f, ¢; andc,.

A more robust synchronizer can be defined as follows, using a conditional atomic action to guarantee
mutual exclusion between such competitor threads:

booleanflag,, flag,;
procedure synchiz, y); (await —x then z:=true; await y then y:=false);
flag,:=false flag,:=false
P(synctiflag,, flag,), synctiflag,,flag,))
WhenP is instantiated as above the resulting program does behave as intended. This more sophisticatec
synchronizer object also has an equivalent dualized version (in viaishandtrue are interchanged
systematically).
Although the above semantics validates many laws of program equivalence related to locality in par-
allel programming, there remain equivalences for which we can give convincing informal justification,
yet which are not valid in this model. Consider for example the following phrase:

newfint] z in (z:=0; P(z:=x + 1)),

whereP is a free identifier of typeomm — comm. No matter howP is instantiated this should have the
same effect a®(skip). As observed by O’Hearn and Tennent, this equivalence holds for the sequential
language yet is not validated by the sequential possible worlds semantics. Indeed, the equivalence shoulc
still hold in the parallel setting, because the two phrases obviously treat the non-local part of the state
the same way. This argument may be formalized by establishing an invariant relationship between the
states arising during executions of the two phrases; however, the preservation of this invariant does not
follow immediately from naturality of P].

Similarly, and exactly as in the Reynolds—Oles semantics of Idealized Algol, our semantics typically
fails to support proofs of representation independence involrogrgisomorphiaepresentations. This
is illustrated by the following example, adapted from [9]. Consider an abstract “switch” object, initially
“off”, with two capabilities which can be thought of as a method for turning the switch “on” and a test
to see if the switch has been turned on. One implementation uses a boolean variable:

booleanz;
procedure flick; (z:=true);
procedureon; return z;
z:=false
P(flick, on)

9t is straightforward to add this construct to the programming language. The corresponding semantic clause is simply
[Py or Po)JWu = [P]WuU [P]Wu.

24

Another implementation uses an integer variable, and treats all positive integers as “on”, zero as “off”:

integer z;
procedureflick; (z:=z + 1);
procedure on; return (z > 0);
z:=0;
P(flick, on)

Intuitively, even if P is allowed to use parallelism, and even though assignment is not assumed to be
atomic, these two phrases will always be equivalent. Yet the possible worlds semantics fails to validate
this equivalence. Informally an argument supporting the equivalence can be given, by establishing an
invariant relation between the states produced during execution of the two phrases. The problem is that
naturality is not a sufficiently stringent requirement on phrase denotations, since it does not imply the
kind of relation-preserving properties necessary to justify equivalences such as this.

For an example exploiting parallelism, we remark that there is also a non-isomorphic implementation
of our synchronizer object, in which flags take on successive integer values and the parity of a flag is
used to indicate availability:

integer flag,, flag,;

procedure synchiz, y); (await everiz) then z:=x + 1; await oddy) then y:=y + 1);
flag,:=0; flag,:=0;
P(syncliflag,, flag,),

mboxsynch(flag,, flag,))

The equivalence of this and the above robust synchronizer cannot be proven in the model given so far.

7. Relational parametricity

In response to this inadequacy O’Hearn and Tennent [9] formulated a more refined semantics for Ide-
alized Algol embodying “relational parametricity”, in which values of procedure type are constrained by
certain relation-preservation properties that guarantee good behavior. This parametric model of Ideal-
ized Algol then supports relational reasoning of the kind needed to establish program equivalences based
on representation independence. We will show how to generalize their approach to the shared-variable
setting. We first summarize some background material from [9].

7.1. Relations between worlds

We introduce a category whose objects are relatiBrisetween worlds; we writd? : W — W’
or R C W x W'. For each world? we letAy, : W « W denote the identity relation oW/, i.e.
Ay = {(w,w) | we W}.

A morphism fromR : Wy < Wi to S : Xy « Xjisapair(hy : Wy — Xo,hy : W7 — X;) of
morphisms inW, such that, lettindy, = (fo, Qo) andh; = (f1,Q1),

o forall (ZL‘O,ZE1) €S, (fOZE(), flxl) e R;

o forall (zg,21) € S, f, € Xo andz) e Xy, if (xf, z0) € Qo & (2], 21) € Q1 then(xy, x]) € S.

25

Loosely, we refer to these properties as saying thaand i, respectk and.S. We represent such a
morphism in the following diagrammatic form:

ho

W Xo
R S
Wi T)ﬁ

The identity morphism fronR to R corresponds to the diagram
Wo Doy,

R R

Wi W Wi

Composition in this category of relations is defined in the obvious way, building on composition in the
category of worlds: whelthg, hy) : R < R and(hy, h}) : R < R"” the composite morphism is
(ho, h1); (ho, hy) = (hos ho, ha; hy).

7.2. Parametric functors and natural transformations

For each typ# we define gparametric functorfd] from worlds to domains, i.e. a functp#] from W
to D equipped with an action on relations, such that:
e wheneverRR : W, « Wy, [0]R : [0]Wy < [0]Wh;
o forall W, [0]Aw = Apqw;

e whenever h
W 0 Xo

R S

WlT’Xl

holds then so does

[0] W, _ 01k |

[0]R

[O]W: [0] X1,

[6]71
by which we mean that

(do,dy) < [O]R = ([0]hodo, [0]h1dy) < [0]S.

26

The first two conditions above say th# constitutes a “relator” [5, 1]. The last condition is a para-
metricity constraint.

Whenr = P : 6 is valid [P] is aparametric natural transformatiofrom [r] to [¢], i.e. a natural
transformation obeying the following parametricity constraints: when&veriVy, <« Wy, (ug,u1) €
[7]R = ([P]Wouo, [P]Wiu1) € [#] R. This property may be expressed in diagram form as follows:

[PTWo

[7[Wo [0]Wo

[7]R [0]R

[=]W: [1W1

[PIWy
Parametric natural transformations compose in the usual pointwise manner. The category having all
parametric functors frofdV to D as objects, and all parametric natural transformations as morphisms, is
cartesian closed [9].

Hence we may use the cartesian closed structure of this category in a perfectly standard way to inter-
pret theA-calculus fragment of our language, exactly along the lines developed in [9]. To adapt these
ideas to the parallel setting, we must give trace-theoretic interpretations todgpes, var|r|, and
exp[r]. We give details onlgomm andexp|r], the definitions fowvar[r| then being derivable. We also
suppress the details of atomic types, since their treatment is standard.

7.3. Commands

We define[comm]V and [comm]/ as before. To definfcomm|R : [comm]W, « [comm]iV7,
whenR : W, < Wi, let magR) be the obvious extension @t to traces of the same length, so that
map R) C Ws° x Wre. We then define

(co,c1) € [commMR <=
(Vag € ¢o. Vp1. (mapfstag, p1) e mapgR) =
oy € ¢;. mapfsty; = p; & (map sndvy, map sndv;) e mapg R))
& (Vag e c¢q. Vpo. (po, mapfsty) e mapgR) =
oy € ¢p. mapfstvg = pg & (map sndvy, map sndv;) € mapg R)).

This is intended to capture the following intuitiofcomm] R relates two command meanings iff, when-
ever started in states related Byand interrupted in related ways, the commands respond in related ways.
This, informally, expresses the idea that a trace set represents a (non-deterministic) state-transformation
“extended in time”.

It is straightforward to verify thafcomm)] is indeed a parametric functor. In particular, since hap
is the identity relation ori/*°, and two tracesy, and a; over W x W are equal iff map fsty, =
map fsto; and map snd, = map sndyy, it is easy to see that

(co,c1) € [comm|Ay <= ¢ = ¢,
as required. Now supposég, h,) : R — S and(cy, ¢;) € [comm] R. We must show that

([comm]hgco, [comm]hicy) € [comm]sS.

27

This follows by a routine calculation, using the fact that the morphisgrend /., respect the relations
RandS.

As an example to illustrate this definition, suppaess a variable of data typi@t corresponding to the
Vint COMponent in states of shapé x V;,;. Letcy andc; be the trace sets correspondingete-z + 1
andz:=z — 1, respectively, i.e.

co = {((wo, o), (wo, vo)) (w1, v1), (w1, v0 + 1)) | wo, w1 € W & v, v1 € Vi }
C1 = {((wo,vo)a (wowo))((whvl), (thO - 1)) ‘ wo,wy € W & vy, vy € th}T-
Let R be the relation omV x V;,,; given by
/

(w,v)R(w',v) <= w=uw&v=-0.

Then(cy, ¢1) € [comm]R.
As a further example, lete [comm]IW and define the relatioR : W — W x V by

wR(w',v) <— w=1w'

Then(c, [comm](— x V)c) e [comm]R.
Note also that the above definition ffomm] R makes sense even when applied to arbitrary trace
sets, i.e. closure is not crucial for the definition. Clearly we have

(co,c1) € [comm|R = (¢}, ¢l) e [comm]R.
We also have

(po, qo) € [comm]|R & (p1, 1) € [comm|R = (po; p1, qo; q1) € [comm]R
(po, qo) € [comm|R & (p1,q1) € [comm|R = (pollp1, qoll¢1) € [comm]R

so that sequential and parallel composition (and hence also iteration) interact smoothly with the action
of [comm] on relations.

7.4. Expressions

For expressions, we defifiexp[r|]W and[exp|r]]h as before. Whetk : W, « W, we define

(eo,e1) € [exp[T]]R <~

(Vpo € eg "W . ¥pi. (po, p1) e map(R) = p1ee;
& Y(po,v) € eg. V1. (po,p1) e magR) = (p1,v) € €1)
& (Vpreer NWY. ¥pyg. (po, p1) e mapR) = po € e

&V (p1,v) € er. Vpo. (po, p1) e mapR) = (po,v) € €p)

Intuitively, two expression meanings are related if when evaluated in related ways they both terminate
with the same answer, or both fail to terminate.
As an example, suppose again thas a variable of typent corresponding to th&;,, component in
states of shap®’ x V;,,. Using the same relation as before, so that
(w,V)R(w',v") <= w=uw"&v=—-,
and assuming thatis a suitable environment, we have

([£](W % Vin)u, [~2](W % Vin)u) € [explint]] .

28

7.5. Semantic definitions

The possible worlds semantics given above can be adapted to the parametric setting, provided we show
that each phrase denotes a parametric natural transformation. This is straightforward, using structural
induction. For instance, it is easy to see that wiReniV < W', parametricity of[skip] amounts to the
fact that

({(w,w) |we W}, {(w,w) |w e W}) e [comm]R,

which holds obviously. Similarly, for the parallel construct the parametricitjfof|] follows from
parametricity of|] and[], since interleaving of trace sets respdctsmm]| R.

Recursion again requires a careful treatment. We défewe.. P] as the closure dfec ..P], making
use of a parametric version of the semanfie$ based on arbitrary trace sets, defined as before but
with suitable modifications to fit the relational setting. Also as before, we recover the closed trace set
semantic§—] as the quotient gf-| with respect to the equivalence induced by taking closure. We again
define[rec .. P|Wu = vp.stuyW ([P]W (u | ¢ : p)), where the fixed point is taken over the complete
lattice (7)1 extending[f]WW. The proof that this fixed point belongs to the suljggti’, and that this
semantic definition is natural, depends as before on constructivity and on naturaity @fe also need
to show that this is a parametric definition, i.e. for< W, < W;, whenevefug, u,) € [7]R,

([rec t.P|Wouyg, [recc.P]Wiuy) € [0|R.
Let y, and Fy be given by:

Fo(po) = stubWo([P]Wo(uo | ¢ : po)),
Fi(p1) = stupWi ([PIWi(uy | ¢ :p1)).

By assumption orP, whenevelp,, p;) € [0] R it follows that (Fo(po), Fi(p1)) € [#]R. Consequently the
functional F' : [0]W, x [0]W; — [0]W, x [6]W; given by

F(po,p1) = (Fo(po), Fi(p1))

is a continuous function on a complete lattice, and maps the s{th&einto itself. Let top and top
be the top elements @b)IV, and(¢)WW; respectively. One can then show, by inductionmgrihat for
all n > 0 we have(F{(top,), £7*(top,) € [6]R. From this it follows easily thatv Fy,, vFy) € [0]R, as
required, by an obvious completeness property/at.

7.6. Examples of parametric reasoning

In addition to the laws and examples listed earlier, the relationally parametric semantics also validates
the problematic equivalence discussed above:

newjint] ¢ in (¢:=0; P(:=t+ 1)) = P(skip),

whereP is a free identifier of typgeomm — comm. This can be shown with the help of the relation
R:W — W x V, given by

wR(w',v) <= w=weW &ve Vy.

29

It is easy to show that whemis a suitable environment ifxr]lW and«’ binds. to the “fresh variable”
corresponding to th&;,; component of state we get

([skip]Wu, [e:=t+ 1J(W X Vi)u') € [comm]R.

The desired result follows by parametricity [d?].
Similarly, the parametric semantics validates the following equivalence,

newjint] ¢ in (1:=1; P(¢)) = P(1),

when P is a free identifier of typexp[int] — comm.
Recall that we showed earlier that, wheis an environment in whiclh denotes the variable corre-
sponding to thé/;,,, component in states of shapé x V;,;, andR is the relation

!/

(w,v)R(w',v) <= w=uw&v=-
we have
([x:=2 + 1](W X Vipp)u, [z:=2 — 1J(W X Vi)u) € [comm]R
([x](W x Vip)u, [—x](W X Vi)u) € [explint]] R.

It follows by parametricity that
new(int] z in (z:=0; P(x:=z + 1)) = newjint] z in (2:=0; P(x:=z — 1)),
wheneverP is a free identifier of typeomm — comm. Similarly,
newjint] z in (z:=0; P(z, x:=x + 1)) = newjint] z in (z:=0; P(x, z:=x — 1))

when P is a free identifier of typgexp[int] x comm — comm). This example shows the equivalence
in the parallel setting of two implementations of an abstract “counter”. An analogous result was shown
for the sequential setting by O’Hearn and Tennent[9], but the validation of such equivalences in parallel
contexts requires our more detailed semantic model.
To illustrate the subtle differences between sequential and parallel settings, consider the following
phrase
new(int| z in (z:=0; P(x/2, x:=x + 2)),

which amounts to yet another representation for an abstract counter, and is equivalent to both versions
discussed above. In sequential Algol it is also equivalent to

new(int] z in (z:=0; P(z/2, x:=x + 1;x:=x + 1)),

but this equivalence fails in the parallel model. The reason lies in the inequivalencewof 1; z:=r+1
and z:=z + 2, and the ability, by looking at the value af in the intermediate state, to detect the
difference.

Despite this example, the phrases

newjint] z in (z:=0; P(z:=z + 1;:=x + 1))

and
newint] z in (z:=0; P(z:=z + 2))

30

are equivalent in sequential Algahdin parallel Algol, even though:=x + 1; z:=x + 1 andx:=z + 2
are not semantically equivalent in the parallel model; no matter Rouses its argument, the only
differences involve the local variable, whose value is ignored. To establish the equivalence, one can use
the relationk : W «— W x Vi given by (w, (w',2)) e R <— w =w'.
In contrast the phrases
newlint] z in
(x:=0; P(z:=x+ l;2:=x + 1);
if everix) then diverge else skip

and
new{int] = in
(v:=0; P(z:=x+2);
if everix) then diverge else skip,

wherediverge is a divergent command, are equivalent in sequential but not in parallel Algol. For ex-
ample if P is Ac. ¢||c the first phrase has an execution in which each argument threadreads, then
each sets to 1, and the two final increments occur sequentially, leavimgth the value 3 and causing
termination; the other phrase, however, must diverge. The relation

(w, (W', 2)) e R < w=uw & everz)

works for the sequential model but not for the parallel.
Indeed, in sequential Algol, the phrase

newint] z in
(x:=0; P(z:=x + 2);
if everix) then diverge else skip

discussed above is equivalentdiverge. This is because the semantics of a command is taken to be a
state transformation, and matter how many timiesalls its argument the value of the local variable

stays even, causing the phrase to diverge. This equivalence fails for parallel Algol, because our semantics
“observes” intermediate states during execution. Instead the phrase is equivatéskitn) ; diverge.

In the O’Hearn-Tennent modél = = 0 then f(x) elsel andif z = 0 then f(0) elsel fail to be
semantically equivalent, because the model includes procedure meanings that violate the irreversibility
of state change [9], yet the phrases behave identically in all sequential contexts. In contrast the equiv-
alence should (and does) fail in our parallel model, because expression evaluation need not be atomic.
For example, iff is \y.y and the phrase is evaluated in parallel with a command that may change the
value ofx from 0O to 2, the first case might yield the result 2.

The two dual implementations of synchronizers discussed earlier can be proven equivalent by an easy
argument involving parametricity. Let = (W X Vi) X Voo, @nd define the relatioR : X < X by

((w,bl),bg)R((’w/,bll),bé) — w=uw'& by = _|b/1 & by = _|b12

The crucial step is to show that, wheris an environment bindinglag, and flag, to variables corre-
sponding to the intended components of state,

([synctiflag,, flag,)] X u, [synctiflag,,flag,)] Xu) € [comm]R.

31

The desired equivalence then follows immediately.
The equivalence of boolean-based synchronizer and the parity-based version can be shown by mean:
of the relationR : W x Vi,o < W x Vj,,; given by

(w,b)R(w',n) <= w=w"& (b= evern)).

The two non-isomorphic implementations of a “switch”, discussed earlier, can be proved equivalent
using the relatiom? : W x Vjoo < W x V,,; given by

(w,))R(w',v) <= w=w&b=(v>0).
8. Conclusions

We have shown how to give semantic models for a parallel Algol-like language. The semantic mod-
els combine ideas from the theory of sequential Algol (possible worlds, relational parametricity) with
ideas from the theory of shared-variable parallelism (transition traces) in a rather appealing manner
which, we believe, supports the intuition that shared-variable parallelism and call-by-name procedures
are orthogonal. We have shown that certain laws of program equivalence familiar from shared-variable
programming remain valid when the language is expanded to include procedures; and certain laws of
equivalence familiar from functional programming remain valid when parallelism is added. Although
we do not claim a full conservative extension property, these results suggest that our language Parallel
Algol combines functional and shared-variable programming styles in a disciplined and well-behaved
manner. We have discussed a variety of examples intended to show the utility of the language and the
ability of our semantics to support rigorous arguments about the correctness properties of programs. Our
parametric model offers a formal and general way to reason about “concurrent objects”.

The trace semantids-] was designed carefully to incorporatiesureas a basic property of the trace
set of a command; each step in a trace represents the effect of a finite (possibly empty) sequence of
atomic actions, and an entire trace records a fair interaction between a command and its environment.
Given a conventional operational semantics, in which the transition relatidescribes the effect of a
single atomic action, the closed trace set semantics is based" pthe reflexive, transitive closure of
the transition relation. We also introduced an auxiliary semaftitbased on arbitrary (not necessarily
closed) trace sets, in which each step represents the effect of a single atomic action, so that this semantic:
is based directly on the one-step transition relation. Clgaf]yis a more concrete semantics tHar,
distinguishing for example betweskip andskip; skip. We therefore prefef—]|, which identifies these
two commands and validates many laws of program equivalence that fail in the step-by-step semantics.
Nevertheless the step-by-step semantics is a key ingredient in understanding recursion. Indeed, note tha
the single-step transition relation can be used to define both* and—* (the divergence predicate),
whereas—* by itself does not determine>“. It is not surprising, therefore, that we needed to make a
detour. The relationship between the two semantic frameworks is simple: the closed trace set semantics
can be obtained by taking the quotient of the step-by-step semantics under closure equivalence.

Our semantics inherit both the advantages and limitations of the corresponding sequential models
and of the trace model for the simple shared-variable language. At grounddypa we retain the
analogue of the full abstraction properties of [3]: two commands have the same meaning if and only
if they may be interchanged in all contexts without affecting the behavior of the overall program. The
extra discriminatory power provided by thecalculus facilities does not affect this. However, like their

32

sequential forebears, our models still include procedure values that violate the irreversibility of state
change [8], preventing full abstraction at higher types. Recent work of Reddy [13], and of O’'Hearn and
Reynolds [8], incorporating ideas from linear logic, appears to handle irreversibility for sequential Algol;
we conjecture that similar ideas may also work for the parallel language, with suitable generalization;
this will be the topic of further research.

Shared-variable programs are typically designed to include parallel components interabeghto
erate but semantically there is little distinction between cooperation and interference: both amount
to patterns of interactive state change, and the only pragmatic distinction concerns whether the state
changes are beneficial or detrimental to the achievement of some common goal, such as the satisfactior
of some safety or liveness property. As we have shown, local variables can be used to limit the scope
of interference between parallel components of a program, thus providing a form of “syntactic control
of interference”, somewhat in the spirit of [17, 16]. It would be interesting to see if this earlier work on
syntactic control of interference in the sequential setting, together with related developments [20, 6, 7],
can be adapted to the shared-variable parallel setting.

9. Acknowledgements

The work from which this paper grew began during a visit (July-September 1995) to the Isaac New-
ton Institute for the Mathematical Sciences (Cambridge, England), as part of a research programme on
Semantics of Computation. An early version appeared in the Proceedings of the 11th Annual IEEE Con-
ference on Logic in Computer Science (IEEE Computer Society Press, 1996) and was later incorporated
as a chapter in volume 2 éfigol-like Languages edited by Peter O’Hearn and Bob Tennent. Thanks to
Peter O’Hearn, John Reynolds, Edmund Robinson, Pino Rosolini, Philip Scott, Bob Tennent, and Glynn
Winskel for helpful discussions and comments.

This work was sponsored in part by the Office of Naval Research, under Grant No. N00014-95-1-
0567, and in part by the National Science Foundation, under Grant No. CCR-9412980.

References

[1] S. Abramsky and T. P. Jensen. A relational approach to strictness analysis for higher-order polymorphic
functions. InConf. Record 18th ACM Symposium on Principles of Programming Langupagss 49-54.
ACM Press, 1991.

[2] G.R. Andrews.Concurrent Programming: Principles and PracticBenjamin/Cummings, 1991.

[3] S. Brookes. Full abstraction for a shared variable parallel languagerom 8" Annual IEEE Symposium
on Logic in Computer Sciencpages 98-109. IEEE Computer Society Press, June 1993.

[4] J.Y. Halpern, A. R. Meyer, and B. A. Trakhtenbrot. The semantics of local storage, or What makes the free
list free? INACM Symposium on Principles of Programming Languapages 245-257, 1983.

[5] J. C. Mitchell and A. Scedrov. Notes on sconing and relators. In E. Boerger, &ditmputer Science Logic
'92, Selected Papersolume 702 ofLecture Notes in Computer Scienpages 352—-378. Springer-Verlag,
1993.

[6] P.W. O’'Hearn. A model for syntactic control of interferenb&athematical Structures in Computer Science
3(4):435-465, 1993.

[7] P. W. O’Hearn, A. Power, M. Takeyama, and R. Tennent. Syntactic control of interference revisited. In
Proceedings of 1** Conference on Mathematical Foundations of Programming SemaBt&evier Science,
1995.

33

[8] P. W. O’'Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-calcalA&M 47(1):167—
223, 2000.
[9] P. W. O’Hearn and R. D. Tennent. Parametricity and local varialdleACM 42(3):658-709, May 1995.

[10] P. W. O’'Hearn and R. D. Tennerlgol-like LanguagesBirkhauser, 1997.

[11] F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Langudgeb thesis,
Syracuse University, 1982.

[12] D. Park. On the semantics of fair parallelism. In D. Bjgrner, edifdrstract Software Specificatigns
volume 86 oflLecture Notes in Computer Scienpages 504-526. Springer-Verlag, 1979.

[13] U. S. Reddy. Global state considered unnecessary: object-based semantics of interference-free imperative
programming.Lisp and Symbolic Computatip8(1):7-76, Feb. 1996.

[14] J. C. Reynolds. The essence of Algol. Afgorithmic Languagegpages 345—-372. North-Holland, Amster-
dam, 1981.

[15] J. C. Reynolds. Types, abstraction, and parametric polymorphisnmfdrmation Processing §3pages
513-523. North-Holland, Amsterdam, 1983.

[16] J. C. Reynolds. Syntactic control of interference, part Prsceedings of the6!” International Colloquium
on Automata, Languages and Programminglume 372 oL ecture Notes in Computer Scienpages 704—
722. Springer-Verlag, Berlin, 1989.

[17] J. C. Reynolds. Syntactic control of interference Clonference Record &f” Annual ACM Symposium on
Principles of Programming Languaggsages 39-46. ACM, New York, January 1978.

[18] A. W. Roscoe.Theory and Practice of ConcurrenciPrentice Hall, 1998.

[19] A. Tarski. A lattice-theoretical fixpoint theorem and its applicatidPecific Journal of Mathemati¢c$:285—
309, 1955.

[20] R. D. Tennent. Semantics of interference contiidieoretical Computer Scienc27:297-310, 1983.

34

10. Appendix

Here we provide some of the details behind the step-by-step sempantie@nd summarize some of
the relevant properties, each of which can be proved by structural induction.

e For each typd, the functor{] from worlds to domains is given by:

[comm|W = p((W x W)*>)
[comm|(f,Q) = Ae{a’ | map(f x f)a/ € c & o/ respects)}
[comm|,,(f,Q) = Ae{c/ | map(f x f)a’ € c & o respects) for n stepg

[exp[7]]W = o((WF x V) UIW)

[expl7]]h = Ae{(p',v) | (Mapfp,v) € e} U{p" | mapfp' e en W}
[exp(7]]nh = [exp7]]h

[var[r]]W = (V, — [comm|W) x [exp[r]|]W
[var[r]]h = A(a, e).(Av.[comm]h(av), [exp[T]|he)
var[7]].h = A(a, e).(Av.[comm]|, h(av), [exp[r]].he)

[0 x 0" =10] x [¢]

0 — 0W ={p(—) |Yh: W — W' . p(h): [O]W' — [0']W' &
V' W' — W 0| o ph = p(h;h') o []N &
Vn > 0. [0'],,h o ph O p(h; ') o [0],,h'}
0 — 0 hp = A0 : W' — W".p(h; i)
0 — 0,h=1[0—01h
The ordering onicomm|1¥ and onfexp|7]]1V is set inclusion, and this is extended componentwise
and pointwise to other types as appropriate.
For each typ@ and morphisnt, [0]A is the limit of the[],, A, in that for alln > 0, [6],,41h C [0],.h,
and[f]h = 1152, [0] ..

e For each typd the functor(#) from worlds to the category of complete lattices and continuous
functions is given by:

(

(exp[r]) = [exp[7]]

(var[t))yW = |var|7]]|

(0 x 0" =(0) x (0

0 — 0 YW ={p(—) |Vh: W — W' .p(h): ()W — (0")W'}

In each case the action ¢f) on morphisms is defined exactly as f6y.
For each world? and each typé the domain¢|V is a subset of6) V.

35

e For each typd the natural transformation sgurom [6] to [0] is defined by:

stucommWe = {(w,w)a |we W & a € ¢}

stuexprWe = {(wp,v) |we W & (p,v) e e} U{wp [we W & peen W}
stuvar W (a, e) = (\v.stucommW (av), stutexpWe)

stut, ¢ = stup x stuty

stuy_gWp=Ah: W — W’ . stuy W’ o (ph)

These definitions also make sense as natural transformationgdydm(6).

e Wheneverr - P:0 is valid, [P] : [r]—[0] is defined as follows, by structural induction:

Wu = {(w,1) |we W}
[El + EQ]WU =
{(p1p2,v1 + v2) | (p1,v1) € [E1]Wu & (p2, v2) € [Ex]Wu}
U {p1p2 | ElUl. (pl,l)l) € [El]WU & P2 € [EQ]WU N Ww}
U{peW®|pe[E1]Wu}
[skip]Wu = {(w,w) | we W}
[(X:=FE|Wu =
{(mapAwp)G | (p,v) € [E]Wu & § e fst([X]Wu)v}
U {mapAwp | p e [E]Wun W}
[if Bthen P, elseP)]Wu = if [B]Wu then [P|Wu else[Py|Wu
[while B do P]|Wu = ([B]ewWu - [PIWu)* - [BlesWu U ([BleeWu - [P]Wu)®
[Pr; B]Wu = [P |Wu - [P]Wu
[P||Pe]Wu = {a | Jay € [Pi]Wu, g € [Po]Wu. (o, g, i) € fairmergey, }
[new[7] ¢ in P]Wu = {mag(fst x fst)« |
o e [P x Vo) ([r)(= x Vi)u | ¢: (a,€)) &
map(sndx snd« interference-frep
[rec t.PlWu = vp : (0)W. stuyW ([P]W (u | v:p))

In the clause for local variable declarations the “fresh variafle?) < [var|r]](W x V;) is defined
by:

a =MV {(w,v),(w,v)) |weW&veV,}

e={((w,v),v) |weW&velV,}
Non-destructivity of P], and the corresponding constructivity of gtutP], is needed to show that
the fixed point used to interpréec . P]WWu belongs tdé]1V, and to show naturality.

e For each typ# we define a natural equivalence relation glos [0]:

closcommWV = {(co,c1) | ¢ =i}

closexpW = {(eo,€1) | e = el}

closjarnW = {((ao, o), (a1,e1)) | Vv. (agv, a1v) € closcommW & (eo, e1) € closexp W'}
clog oW = {((x0,y0), (z1,y1)) | (xo, 1) € ClOW & (z1,y1) € clog W}
clog_oW = {(po,p1) | Vh: W — W'.¥(xg,x1) € clogW'. (pohzo, p1hxy) € clog W'}

For eachy andIV, clog 1V is an equivalence relation gé/1V/, and
Vh: W — W' ¥(xg, x1) € clogW. ([0]hxg, [0]hz,) € clogV'.

36

e Wheneverr P:0 is valid,

(ug,uy) e closW = ([P]Wuyg, [P]Wu,) e clogW.

e For all types), the natural transformatiai : [#]—[6] is given by:

comm We = ¢f

exp[r]TWe = ef

var[r](a,e) = (Av.comm'W (av), exp[r]/We)

(Q X QI)TW<p0,p1) = (QTW]?(), Q'TWpl)

0 — 0V Wp=Xn:W — W x:[0]W. 0TW (phx).

The connection betweeti and clog is expressed by:

closW = {(po,p1) | 0'po = 0'p1}.
Moreover, for all typed, 67 o stuy = 67.

e Whenr = P : fis valid, [P]W (zTu) = 0TW ([P]Wu).

37

