
The essence of Parallel Algol

Stephen Brookes
Department of Computer Science

Carnegie Mellon University
Schenley Park

Pittsburgh, PA 15213

Abstract

We consider a parallel Algol-like language, combining procedures with shared-variable parallelism.
Procedures permit encapsulation of common parallel programming idioms. Local variables provide a
way to restrict interference between parallel commands. The combination of local variables, procedures,
and parallelism supports a form of concurrent object-oriented programming. We provide a denotational
semantics for this language, simultaneously adapting “possible worlds” to the parallel setting and gen-
eralizing “transition traces” to the procedural setting. This semantics supports reasoning about safety
and liveness properties of parallel programs, and validates a number of natural laws of program equiva-
lence based on non-interference properties of local variables. The semantics also validates familiar laws
of functional programming. We also provide a relationally parametric semantics, to permit reasoning
about relation-preserving properties of programs, adapting work of O’Hearn and Tennent to the parallel
setting. This semantics supports standard methods of reasoning about representational independence,
adapted to shared-variable programs. The clean design of the programming language and its semantics
shows that procedures and shared-variable parallelism can be combined smoothly.

1. Introduction

The programming language Algol 60 has had a major influence on the theory and practice of language
design and implementation [10]. Algol shows how to combine imperative programming with an essen-
tially functional procedure mechanism, without destroying the validity of laws of program equivalence
familiar from functional programming. Moreover, procedures and local variables in Algol can be used
to support an “object-oriented” style of programming. Although Algol itself is no longer widely used,
an idealized form of the language has stimulated a great deal of innovative research [10]. Idealized
Algol, as characterized by John Reynolds [14], augments a simple sequential imperative language with
a procedure mechanism based on the simply-typed call-by-nameλ-calculus; procedure definitions, re-
cursion, and the conditional construct are uniformly applicable to all phrase types. Reynolds identified
these features as embodying the “essence” of Algol.

1

Although Algol 60 and Idealized Algol are sequential programming languages the utility of proce-
dures and local variables is certainly not limited to the sequential setting. Nowadays there is much
interest in parallel programming, because of the potential for implementing efficient parallel algorithms
by concurrent processes designed to cooperate in solving a common task. In this paper we focus on one
of the most widely known paradigms of parallel programming, the shared-variable model, in which par-
allel commands (or “threads”) interact by reading and writing to shared memory. The use of procedures
in such a language permits encapsulation of common parallel programming idioms. Local variable dec-
larations provide a way to delimit the scope of interference: a local variable of one process is not shared
by any other process, and is therefore unaffected by the actions of other processes running concurrently.

To illustrate the use of procedures as a means of encapsulation, a procedure for implementing mutual
exclusion [2] with a binary semaphore can be written (in sugared form) as:

proceduremutex(n1, c1, n2, c2);
booleans;
begin

s:=true;
while true do (n1; await s then s:=false; c1; s:=true)
‖ while true do (n2; await s then s:=false; c2; s:=true)

end

Here c1 and c2 are parameters representing “critical” regions of code, andn1 andn2 represent non-
critical code. The local boolean variables represents the semaphore. The correctness of this procedure,
i.e. the fact that the two critical regions are never concurrently active, relies on the inaccessibility ofs to
the procedure’s arguments.

For another example suppose two “worker” processes must each repeatedly execute a piece of code,
can and should run concurrently, but need to stay in phase with each other so that at each stage the two
workers are executing the same iteration. If the parametersc0 andc1 represent the two workers’ code,
one way to achieve this execution pattern is represented by the following procedure:

procedureworkers(c0, c1); while true do (c0‖c1)

However, this program structure incurs the repeated overhead caused by thread creation and deletion
each time the loop body is executed. Although this defect does not affect the correctness of the procedure
it might be preferable for pragmatic reasons to design a program that creates two perpetually active
threads, constrained to ensure that the threads stay in phase with each other. One way to achieve this,
known as barrier synchronization [2], uses a pair of local boolean variables equipped with a simple
synchronization strategy:

procedure barrier(c0, c1);
booleanflag0, f lag1;
proceduresynch(x, y); (x:=true; await y; y:=false);
begin

flag0:=false; flag1:=false;
while true do (c0; synch(flag0, f lag1))

‖ while true do (c1; synch(flag1, f lag0))
end

2

The correctness of this implementation relies on locality of the flag variables: in a call ofbarrier the
code bound toc0 andc1 cannot access the flags. The proceduresworkersandbarrier are equivalent, in
that for all possible argumentsc0 andc1 the two procedure calls exhibit identical behaviors.

The combination of procedures, local variables, and parallelism also supports a form of concurrent
object-oriented programming. An “object” is typically described informally as having some private
(or local) state and providing “methods” for accessing and updating that state. For example a one-
place integer buffer can be represented as a local integer variable (holding the buffer’s current contents)
together with two local boolean variables (used as semaphores), withput andget methods that follow
the semaphore protocol:

integer data; booleanfull , empty ;
procedureput(x);

begin
await ¬full then full :=true;
data:=x; empty :=false

end;
procedure get(y);

begin
await ¬empty then empty :=true;
y:=data; full :=false

end;
full :=false; empty :=true;
P (put , get)

HereP is a free procedure identifier representing the “rest” of the program, and the fact that its arguments
includeput andget but notdata, full or emptyprevents unconstrained access to the local state of the
buffer. Note thatP may invoke its arguments repeatedly, perhaps concurrently, and the buffer behaves
in proper FIFO manner no matter whatP does.

It is well known that parallel programs can be hard to reason about, because of the potential for un-
desirable interference between commands running in parallel. One might expect this problem to be
exacerbated by the inclusion of procedures. Indeed, semantic accounts of shared-variable languages
in the literature typically do not encompass procedures; the (usually implicit) attitude seems to be that
concurrency is already difficult enough to handle by itself. Similarly, existing models for sequential
Algol [14, 11, 9] do not handle parallelism, presumably because of the difficulty even in the sequential
setting of modelling “local” state accurately [4]. Nevertheless it seems intuitive that Algol-style proce-
dures and parallelism are “orthogonal” concepts, so that one ought to be able to design a programming
language incorporating both seamlessly1. This is the rationale behind our design of an idealized paral-
lel Algol, blending a shared-variable parallel language with theλ-calculus while remaining faithful to
Reynolds’ ideals.

Even for sequential Algol the combination of procedures and local variables causes well known se-
mantic problems for traditional, location-based store models [4]. Such models typically fail to validate

1We use the term “orthogonal” informally, to convey the idea that the semantics of procedural and parallel constructs
can be given more or less in isolation of each other and combined in a modular manner. The addition of parallelism to a
sequential Algol-like language does not invalidate elementary laws of equivalence from functional programming, such as the
β-law, and the addition of procedures to a simple shared-variable language does not break elementary semantic equivalences
involving parallel composition.

3

certain intuitive laws of program equivalence which express non-interference or “locality” properties of
local variables, such as the following law:

new[int] x in P = P,

whenP is a free variable of typecomm (representing a command). Intuitively, introducing a local
variablex and never using it should have no effect, so that whatever the interpretation ofP the two
phrases should be indistinguishable; however, in a simple location-based semantics the presence of com-
mand meanings whose effect depends on the contents of specific locations will cause this equivalence
to break. For similar reasons a traditional location-based semantics cannot be used to prove correctness
of themutexprocedure or the buffer implementation given above; for example, themutexprocedure can
violate mutual exclusion when applied to arguments that happen to affect the location bound tos.

A more satisfactory semantics for a sequential Algol-like language was proposed by Reynolds and
Oles [14, 11], based on a category of “possible worlds”: a worldW represents a set of “allowed states”;
morphisms between worlds represent “expansions” corresponding to the declaration of new variables;
types denote functors from the category of worlds to a category of domains and continuous functions;
and well-typed phrases denote natural transformations between such functors. A command meaning at
world W is a partial function fromW to W . Naturality guarantees that a phrase behaves “uniformly”
with respect to expansions between worlds, thereby enforcing locality constraints and validating laws
such as the one discussed above.

The parallel setting requires a more sophisticated semantic structure because of the potential for in-
terference between parallel commands. We adapt the “transition traces” semantics of [3], modelling a
command at worldW as a set of finite and infinite traces, a subset of(W ×W)∞. The trace semantics
given in [3] covers a simple shared-variable parallel language, without procedures, with while-loops
as the only means of recursion, assuming a single global set of states. This semantics was carefully
designed to incorporate the assumption offairness[12]. It is far from obvious that this kind of trace
semantics can be generalized in a manner consistent with Reynolds’ idealization, to include a general
procedure mechanism, and a conditional construct and recursion at all types. Similarly, it is not evident
that the possible worlds approach can be made to work for a parallel language. We show here that these
approaches can indeed be combined. The resulting semantics models parallelism at an appropriate level
of abstraction to permit compositional reasoning about safety and liveness properties of programs. Our
categorical recasting of [3] permits an improved treatment of local variables, which were modelled in
a ratherad hocmanner in the earlier paper. The semantics for theλ-calculus fragment of the language
is completely standard, based as usual on the cartesian closed structure of the underlying category. The
fact that we are able to adapt traces to the functor category setting supports the claim that procedures and
parallelism are orthogonal. Like Reynolds’ semantics for sequential Algol, our semantics can be viewed
as bringing out the stack discipline implicit in the procedure mechanism2.

Since we are interested in proving liveness and safety properties of parallel programs it is vital to
deal accurately with infinite traces. Recursion is the primary cause of infinite behavior, and special
care is required to get the semantics of recursive programs right. In our setting it is not appropriate to
regard divergence as “catastrophic”, as is done in several models of CSP [18]. It is equally wrong to
equate all forms of divergence, as in a conventional least-fixed-point semantics for sequential programs,

2Since each parallel component in a program activates and de-activates storage in a stack-like manner independently of
the other components it would be more accurate to say that our semantics brings out the “cactus stack” discipline.

4

which typically uses a single distinguished semantic value⊥ to represent non-termination. For example
we must distinguish between a program that loops forever without changing the state and a program
that keeps incrementing a variable repeatedly, since they satisfy different safety and liveness properties.
Instead we provide a more refined treatment of recursion, making use of a fundamental “constructivity”
property of programs to ensure that non-termination is modelled appropriately3. A least-fixed-point
semantics for our language would capture only the finite behaviors of programs, and would therefore be
unsuitable for liveness analysis. We use instead a greatest-fixed-point semantics that models both finite
and infinite aspects of a program’s behavior.

As we have remarked earlier, our possible worlds semantics of Parallel Algol validates familiar laws
of functional programming, as well as familiar laws of shared-variable programming, and equivalences
based on locality properties. When applied to the examples listed earlier it produces the intended re-
sults; for instance, theworkersandbarrier procedures are indeed semantically equivalent. However,
just as for the Reynolds-Oles possible worlds model of sequential Idealized Algol, certain laws of pro-
gram equivalence still fail to hold, because of the presence in the model of certain insufficiently well
behaved elements. These equivalences typically embody the principle of “representational indepen-
dence” familiar from structured programming methodology: a program using an “object” (perhaps a
member of some abstract data type) should behave the same way regardless of the object’s implemen-
tation, provided its abstract properties are the same. Such equivalences are usually established by re-
lational reasoning, typically involving some kind of invariant property that holds between the states of
two programs that use alternative implementations. These problems led O’Hearn and Tennent to pro-
pose a “relationally parametric” semantics for sequential Idealized Algol [9], building on foundations
laid in [15]. In this semantics a type denotes a parametric functor from worlds to domains, and phrases
denote parametric natural transformations between such functors. The parametricity constraints enforce
the kind of relation-preserving properties needed to establish equivalences involving representation inde-
pendence. We show how to construct a relationally parametric semantics for Parallel Algol, generalizing
the O’Hearn-Tennent model to the parallel setting. We thus obtain a semantics that validates reasoning
methods based on representation independence, as adapted to deal with shared-variable programs. This
yields a powerful methodology for proving the correctness of concurrent objects.

2. Syntax

2.1. Types and type environments

The type structure of our language is conventional [14]: datatypes representing the set of integers and
the set of booleans; phrase types built from expressions, variables, and commands, using product and
arrow. We useτ as a meta-variable ranging over the set of datatypes, andθ to range over the set of
phrase types, as specified by the following abstract grammar:

θ ::= exp[τ] | var[τ] | comm | (θ → θ′) | θ × θ′

τ ::= int | bool

For convenience we also introduce auxiliary phrase typesatom[τ] (“atomic expressions” of typeτ) and
atom (“atomic commands”).

3This is reminiscent of the role played by an analogous constructivity property in justifying the treatment of recursion in
various semantics of CSP [18].

5

Let ι range over the set of identifiers. A type environmentπ is a finite partial function from identifiers
to types. We write dom(π) for the domain ofπ, i.e. the finite set of identifiers for whichπ specifies a
type. Let(π | ι : θ) be the type environment that agrees withπ except that it mapsι to θ.

2.2. Phrases and type judgements

A type judgement of formπ ` P : θ is interpreted as saying that phraseP has typeθ in type en-
vironmentπ. A judgement is valid iff it can be proven from the axioms and rules in Figure 1. The
syntax used here for phrases is essentially a simply typedλ-calculus with product types, combined with
a shared-variable parallel language over ground typecomm. We omit the rules dealing with phrases of
typevar[τ] andexp[τ], except to remark that the language contains the usual arithmetic and boolean op-
erations. Note that, in the spirit of Algol, the conditional constructionif B then P1 elseP2 and recursion
rec ι.P are available at all phrase types.

We restrict the use of a “conditional atomic action”, denotedawait B then P , to cases whereP is
“atomic”. We suppress the syntactic rules for atomic expressions and atomic commands, noting simply
that atomic expressions are built from constants, identifiers, and primitive integer and boolean opera-
tions, and that an atomic command is a finite sequence of assignments involving atomic expressions, or
skip. This syntactic constraint is common [2], guaranteeing that an atomic command always terminates,
so that it is feasible to implement this construct as an indivisible action without incurring deadlock. This
limitation does not significantly constrain the expressive power of our language. We useawait B as an
abbreviation forawait B then skip.

In addition, for convenience, we add the following rule; this allows us to elide the otherwise necessary
projection for extracting the “R-value” of a variable:

π ` P : var[τ]

π ` P : exp[τ]

In displaying examples of programs it is often convenient to use a sugared form of syntax. For
instance, we may write

integer z;
beginP end

for new[int] z in P . Similarly we may write

proceduref(x); P0;
beginP end

instead of(λf.P)(rec f.λx.P0). With this convention it is straightforward to de-sugar the examples
discussed earlier into the formal syntax described here. Whenf does not occur free inP0 the de-sugaring
can go a little further: when the procedure is not recursive this notation corresponds to(λf.P)(λx.P0).

3. Possible worlds

The categoryW of possible worlds [11] has as objects countable sets, called “worlds” or “store
shapes”, representing sets of allowed states. We letVint = {. . . ,−1, 0, 1, . . .} andVbool = {tt , ff }.
Intuitively, the worldVτ consists of states representing a single storage cell capable of holding a value

6

π ` skip : comm

π ` X : var[τ] π ` E : exp[τ]

π ` X:=E : comm

π ` P1 : comm π ` P2 : comm
π ` P1; P2 : comm

π ` P1 : comm π ` P2 : comm
π ` P1‖P2 : comm

π ` P : exp[bool] π ` P1 : θ π ` P2 : θ

π ` if P then P1 elseP2 : θ

π ` B : exp[bool] π ` P : atom
π ` await B then P : comm

π ` B : exp[bool] π ` P : comm
π ` while B do P : comm

π, ι : var[τ] ` P : comm
π ` new[τ] ι in P : comm

π ` ι : π(ι) whenι ∈ dom(π)

π ` P : θ0 × θ1

π ` fst P : θ0

π ` P : θ0 × θ1

π ` sndP : θ1

π ` P0 : θ0 π ` P1 : θ1

π ` 〈P0, P1〉 : θ0 × θ1

π, ι : θ ` P : θ

π ` rec ι.P : θ

π, ι : θ ` P : θ′

π ` λι : θ.P : (θ → θ′)

π ` P : θ → θ′ π ` Q : θ

π ` P (Q) : θ′

Figure 1. Type judgements

7

of data typeτ . We will useV, W, X, and decorated versions such asW ′, as meta-variables ranging over
Ob(W).

The morphisms fromW to W ′ are pairsh = (f, Q) wheref is a function fromW ′ to W andQ is
an equivalence relation onW ′, such that the restriction off to each equivalence class ofQ is a bijection
with W :

• ∀x′, y′.(x′Qy′ & fx′ = fy′ ⇒ x′ = y′);

• ∀x ∈ W.∀y′ ∈ W ′.∃x′.(x′Qy′ & fx′ = x).

We will use the notation[w′]Q for the equivalence class ofw′, and we will writefw′ : [w′]Q → W for
the corresponding restriction off , andf−1

w′ : W → W ′ for its inverse.
Intuitively, when(f, Q) : W → W ′, we think ofW ′ as a set of “large” states extending the “small”

states ofW with extra storage structure;f extracts the small state embedded inside a large state, andQ
identifies two large states when they have the same extra structure. We will often find it convenient to
blur the distinction between a relationQ on a setW ′ and its graph, i.e. the set{(x′, y′) | x′Qy′}.

The identity morphism onW is the pair(idW , W ×W), where idW is the identity function on the set
W . For each pair of objectsW andV there is an “expansion” morphism−× V : W → W × V , given
by

−× V = (fst : W × V → W, Q), where
Q = {((w0, v), (w1, v)) | w0, w1 ∈ W & v ∈ V }.

Intuitively an expansion of form− × Vτ models the effect (on the shape of the store) of a single local
variable declaration.

The composition of morphismsh = (f, Q) : W → W ′ andh′ = (g,R) : W ′ → W ′′, which we write
ash; h′ : W → W ′′, is the pair given by:

(f ◦ g, {(z0, z1) ∈ R | (gz0, gz1) ∈ Q}).

It is easy to check that this pair satisfies the requirements listed above, so that this does indeed define a
valid morphism.

As Oles has shown[11], every morphism of worlds is an expansion composed with an isomorphism.
Of particular relevance are structural isomorphisms reflecting the commutativity and associativity of
cartesian product. For all worldsW, X, Y let the functions

swapW,X : W ×X → X ×W
assocW,X,Y : W × (X × Y) → (W ×X)× Y

be the obvious natural isomorphisms. Equipped with the appropriate universal equivalence relation, so
that there is a single equivalence class, these functions become isomorphisms in the category of worlds.
For instance,

(swapW,X , (W ×X)× (W ×X))

is an isomorphism fromX × W to W × X. The composition of an expansion fromW to W × V1

with an expansion fromW × V1 to (W × V1) × V2 yields the same result as an expansion fromW to
W × (V1 × V2), up to associativity. Thus the nature of morphisms in this category captures the essence
of local variable declarations in a clean and simple manner, and facilitates a “location-free” treatment of
storage.

8

4. Semantics of types

Each typeθ will be interpreted as a functor[[θ]] from W to the categoryD of domains and continuous
functions. As shown by Oles [11], the category whose objects consist of such functors, with natural
transformations as morphisms, is cartesian closed. We will use the categorical product and exponenti-
ation in this ccc to interpret product typesθ0 × θ1 and arrow typesθ0 → θ1, respectively. The main
differences between our parallel interpretation and the model developed by Oles and Reynolds concern
the functorial treatment of the ground typescommandexp[τ].

4.1. Atomic commands

Atomic commands are given a conventional interpretation, along lines familiar from the sequential
setting, slightly simplified because atomic phrases always terminate. At worldW an atomic command
denotes a total function fromW to W . The corresponding functor is:

[[atom]]W = W → W
[[atom]](f, Q) = λγ. λw′. f−1

w′ (γ(fw′)).

For example,[[atom]](−× Vτ)γ(w, v) = (γw, v) for all γ ∈ W → W and allw ∈ W, v ∈ Vτ .

4.2. Commands

We interpret the typecommusing “transition traces” [3], but instead of assuming a single global state
set we parameterize our definitions in terms of worlds. For each worldW , [[comm]]W will consist of sets
of traces overW . A finite trace(w0, w

′
0)(w1, w

′
1) . . . (wn, w

′
n) of a command represents a terminating

computation from statew0 to w′
n, during which the state was changed externallyn times (by interference

from another command running in parallel), theith interruption changing the state fromw′
i−1 to wi. An

infinite trace〈(wn, w
′
n)〉∞n=0 represents an infinite execution, again assuming repeated interference.

WhenA is a set, we writeA∗ for the set of finite sequences overA, A+ for the set of non-empty
finite sequences overA, Aω for the set of (countably) infinite sequences overA, andA∞ = A+ ∪ Aω.
Clearly, each of these operations extends to a functor (onSet), the morphism part being the appropriate
“map” operation, which applies a function to each element of a sequence. Concatenation is extended to
infinite traces in the usual way:αβ = α whenα is infinite. The empty sequence, denotedε, is a unit for
concatenation. We extend concatenation, and finite and infinite iteration, to trace sets and to relations
over traces, in the obvious componentwise manner; for instance, whenR,S ⊆ A∞ × A∞, we let

R · S = {(α0β0, α1β1) | (α0, α1) ∈ R & (β0, β1) ∈ S}.

Using this notation, then, a command denotes a subset of(W × W)∞. However, as in [3], we let a
step(w, w′) in a trace represent a finite sequence of atomic actions, rather than a single atomic action.
The trace set of a command is therefore closed under two natural operations:stutteringandmumbling4.
Intuitively, stuttering involves the insertion of “idling” steps of the form(w, w) into a trace, while mum-
bling involves the collapsing of adjacent steps of the form(w, w′)(w′, w′′) into a single step(w, w′′). We
formalize this as follows.

4The use of closed sets of traces guarantees full abstraction for the simple shared-variable language [3]. The closure
conditions correspond, respectively, to reflexivity and transitivity of the→∗ relation in a conventional operational semantics.

9

We define relations stutA, mumA ⊆ (A× A)+ × (A× A)+ by:

stutA = {(αβ, α(a, a)β) | a ∈ A & αβ ∈ (A× A)+}
mumA = {(α(a, a′)(a′, a′′)β, α(a, a′′)β) | αβ ∈ (A× A)∗ & a, a′, a′′ ∈ A}.

Let idleA = {(α, α) | α ∈ (A × A)∞} denote the identity relation on(A × A)∞. We then extend these
relations to arbitrary traces, defining the relations stut∞

A , mum∞A ⊆ (A× A)∞ × (A× A)∞ by 5:

stut∞A = stut∗A · idleA ∪ stutωA
mum∞A = mum∗A · idleA ∪mumω

A.

We say that a setT of traces overW is closedif

α ∈ T & (α, β) ∈ stut∞W ⇒ β ∈ T ;
α ∈ T & (α, β) ∈ mum∞W ⇒ β ∈ T.

We writeT † for the closure ofT , that is, the smallest closed set of traces containingT as a subset.
Let ℘†((W × W)∞) denote the set of closed sets of traces overW , ordered by set inclusion. This

forms a domain, in fact a complete lattice, with least element{}, greatest element the set(W ×W)∞ of
all traces, and lubs given by unions. For a morphismh = (f, Q) : W → W ′, [[comm]]h should convert
a setc of traces overW to the set of traces overW ′ that “project back” viaf to a trace inc and respect
the equivalence relationQ in each step. We therefore define

[[comm]]W = ℘†((W ×W)∞),
[[comm]](f, Q)c = {α′ | map(f × f)α′ ∈ c & α′ respects Q}.

It is straightforward to check that this is indeed a functor.
The case when the morphismh is an expansion fromW to W ×V is worth particular attention. When

c is a trace set overW , [[comm]](−× V)c is the trace set overW × V consisting of traces that look like
a trace ofc augmented with stuttering in theV -component:

[[comm]](−× V)c = {((w0, v0), (w
′
0, v0)) . . . ((wn, vn), (w′

n, vn)) |
(w0, w

′
0) . . . (wn, w

′
n) ∈ c & ∀i ≤ n. vi ∈ V }

∪ {((w0, v0), (w
′
0, v0)) . . . ((wn, vn), (w′

n, vn)) . . . |
(w0, w

′
0) . . . (wn, w

′
n) . . . ∈ c & ∀i ≥ 0. vi ∈ V }

This is as intended:c represents the meaning of a command that affects the part of the store represented
by W , and when we expand the shape of the store toW × V the extra structure represented by theV
component should not be affected by the command’s behavior.

Note that if c is a closed set of traces so is[[comm]]hc. Moreover, the definition of[[comm]]h is
also applicable to a general trace set, and it is easy to see that for any setc of traces[[comm]]h(c†) =
([[comm]]hc)†, so that the action of[[comm]] on morphisms interacts smoothly with closure. In addi-
tion [[comm]]h interacts simply with concatenation and iteration:[[comm]]h(T1 · T2) = [[comm]]hT1 ·
[[comm]]hT2, and hence[[comm]]h(T+) = ([[comm]]hT)+, and similarly for infinite iteration. These
observations are sometimes helpful in calculations.

5Equivalently, these relations can be characterized as the greatest fixed points of the monotone functionals

F (R) = idleA ∪ stutA ·R
G(R) = idleA ∪mumA ·R,

which operate on the complete lattice of relations over traces, ordered by set inclusion.

10

4.3. Atomic expressions

For atomic expressions again the interpretation is simple. At worldW an atomic expression of typeτ
denotes a total function fromW to Vτ :

[[atom[τ]]]W = W → Vτ

[[atom[τ]]](f, Q) = λe. e ◦ f.

4.4. Expressions

For expression typesexp[τ] we use traces, since expressions can be used in non-atomic contexts.
However, since we assume that expression evaluation does not cause side-effects, we can employ a
slightly simpler form of trace than was used for commands. We also allow for possible non-termination,
and for the possibility that expression evaluation may be non-deterministic.

A finite trace of the form(w0w1 . . . wn, v) represents an evaluation of an expression during which the
state is changed as indicated, terminating with the resultv. It suffices to allow such cases only whenn is
finite, since we assume fair interaction between an expression and its environment: it is impossible for
the environment to interrupt infinitely often in a finite amount of time. On the other hand, if an expression
evaluation fails to terminate the state may be changed arbitrarily many times during evaluation, and no
result value is obtained; we represent such a case as an infinite trace〈wn〉∞n=0 in W ω. Note in particular
that the tracewω represents divergence when evaluated in statew without interference.

Thus we will model the meaning of an expression of typeτ at worldW as a subsete of W+×Vτ∪W ω,
closed under the obvious analogues of stuttering and mumbling6. Let ℘†(W+ × Vτ ∪W ω) denote the
collection of closed sets of expression traces, ordered by inclusion. Accordingly, we define

[[exp[τ]]]W = ℘†(W+ × Vτ ∪W ω)
[[exp[τ]]](f, Q)e = {(ρ′, v) | (mapfρ′, v) ∈ e} ∪ {ρ′ ∈ W ′ω | mapfρ′ ∈ e}.

Again, functoriality is easy to check.

4.5. Product types

We interpret product types in the standard way, as products of the corresponding functors:

[[θ × θ′]]W = [[θ]]W × [[θ′]]W
[[θ × θ′]]h = [[θ]]h× [[θ′]]h.

4.6. Arrow types

We interpret arrow types using functor exponentiation, as in [9]. The domain[[θ → θ′]]W consists
of the familiesp(−) of functions, indexed by morphisms fromW , such that wheneverh : W → W ′,
p(h) : [[θ]]W ′ → [[θ′]]W ′; and wheneverh′ : W ′ → W ′′, p(h) ; [[θ′]]h′ = [[θ]]h′; p(h ; h′). This uniformity

6For instance, for allρ, σ ∈ W ∗ and allv ∈ Vτ , w ∈ W , (ρσ, v) ∈ e ⇒ (ρwσ, v) ∈ e, and(ρwwσ, v) ∈ e ⇒ (ρwσ, v) ∈ e.
Similarly for infinite expression traces.

11

condition amounts to commutativity of the following diagram, for allW ′, W ′′, h : W → W ′ and
h′ : W ′ → W ′′:

[[θ]]W ′′ [[θ′]]W ′′

[[θ]]W ′ [[θ′]]W ′

?

[[θ]]h′

-
p(h)

?

[[θ′]]h′

-
p(h ; h′)

The domain[[θ → θ′]]W is ordered by

p(−) v q(−) ⇐⇒ ∀W ′.∀h : W → W ′. p(h) v q(h),

the obvious parametrized version of the pointwise ordering. It is easy to check that with this ordering
[[θ → θ′]]W is indeed a domain, assuming that[[θ′]] is a functor from worlds to domains.

The morphism part of[[θ → θ′]] is defined by:

[[θ → θ′]](h : W → W ′)p = λh′ : W ′ → W ′′. p(h ; h′).

This kind ofλ-abstraction for denoting indexed families is a convenient notational abuse.

4.7. Variables

For variables we give an “object-oriented” semantics, in the style of Reynolds and Oles. A variable
of typeτ is a pair consisting of an “acceptor” (which accepts a value of typeτ and returns a command)
and an expression value. This is modelled by:

[[var[τ]]]W = (Vτ → [[comm]]W)× [[exp[τ]]]W
[[var[τ]]]h = λ(a, e).(λv.[[comm]]h(av), [[exp[τ]]]he).

This formulation is exactly as in [11], although the underlying interpretations ofcomm andexp[τ] are
different.

5. Semantics of phrases

A type environmentπ determines a functor[[π]] as an indexed product. A memberu of [[π]]W is an
environmentmapping identifiers to values of the appropriate type: ifπ(ι) = θ thenuι ∈ [[θ]]W .

Whenπ ` P : θ is a valid judgement,P denotes a natural transformation[[P]] from [[π]] to [[θ]]. That
is, for all environmentsu ∈ [[π]]W , wheneverh : W → W ′, [[θ]]h([[P]]Wu) = [[P]]W ′([[π]]hu). This is
expressed by commutativity of the following diagram for allW ′ and allh : W → W ′:

[[π]]W ′

[[π]]W [[θ]]W

[[θ]]W ′-
[[P]]W ′

?

[[θ]]h

-[[P]]W

?

[[π]]h

12

We provide a denotational description of the semantics, beginning with the definitions for the simple
shared-variable language constructs, adapting the definitions of [3] to the functor-category setting. In
the following semantic clauses, assume thatπ ` P : θ andu ranges over[[π]]W . In each case naturality
is easy to verify, assuming naturality for the meanings of immediate subphrases.

5.1. Expressions

We omit the semantic clauses for expressions, except for two representative cases to illustrate the use
of expression traces.

• The expression1 always evaluates to the corresponding integer value, even if the state changes
during evaluation:

[[1]]Wu = {(w, 1) | w ∈ W}† = {(ρ, 1) | ρ ∈ W+}.

• The following clause specifies that addition is sequential and evaluates its arguments from left to
right:

[[E1 + E2]]Wu =
{(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [[E1]]Wu & (ρ2, v2) ∈ [[E2]]Wu}†

∪ {ρ1ρ2 | ∃v1. (ρ1, v1) ∈ [[E1]]Wu & ρ2 ∈ [[E2]]Wu ∩W ω}†
∪ {ρ ∈ W ω | ρ ∈ [[E1]]Wu}†

Note that this interpretation invalidates algebraic laws such asE1 + E2 = E2 + E1, which hold in
sequential Algol but fail in the parallel setting with this non-atomic sequential form of addition.
Other interpretations are also possible, such as a parallel non-atomic form of addition for which
the commutative law does hold.

Let ∆W : W → W × W denote the diagonal function:∆W (w) = (w, w). This may be used to
coerce expression traces into command-like traces in cases (such as assignment, or conditional) where a
command has a subphrase of expression type.

5.2. Atomic commands and expressions

The semantics of atomic phrases is standard, essentially as in the Reynolds-Oles semantics of expres-
sions and commands in sequential Algol. The main difference is that atomic phrases always terminate,
so that we work with total functions rather than partial. When convenient we will identify the function
denoted by an atomic phrase with its graph, and we will also regard this graph as a set of “singleton”
traces, viewing for example a pair(w, w′) as a command trace of length 1.

• Wheneverπ ` P : atom we have[[P]]Wu ∈ W → W . For example, whenP1 andP2 are atomic
commands we define

[[P1; P2]]Wu = [[P2]]Wu ◦ [[P1]]Wu.

• Wheneverπ ` E : atom[τ] andu ∈ [[π]]W we have[[E]]Wu ∈ W → Vτ . For example, whenE1

andE2 are atomic expressions

[[E1 + E2]]Wu = {(w, v1 + v2) | (w, v1) ∈ [[E1]]Wu & (w, v2) ∈ [[E2]]Wu}.

Obviously atomic addition is commutative.

13

Note that atomic commands are also commands: whenπ ` P : atom is valid, so isπ ` P : comm. The
atomic semantics ofP is related to its trace semantics in the expected way: the atomic semantics ofP
is determined by the traces of length 1. Thus

[[P : atom]]Wu = {(w,w′) | (w, w′) ∈ [[P : comm]]Wu}.

A similar relationship holds for atomic expressions:

[[E : atom[τ]]]Wu = {(w, v) | (w, v) ∈ [[E : exp[τ]]]Wu}.

5.3. skip

skip has only finite traces consisting of stuttering steps:

[[skip]]Wu = {(w,w) | w ∈ W}†
= {(w0, w0)(w1, w1) . . . (wn, wn) | n ≥ 0 & ∀i.wi ∈ W}
= {(w,w) | w ∈ W}+

To show naturality of this definition, consider a morphism(f, Q) : W → W ′. We have

[[comm]](f, Q)([[skip]]Wu) = [[comm]](f, Q){(w, w) | w ∈ W}+

= ([[comm]](f, Q){(w, w) | w ∈ W})+

= {(w′, w′) | w′ ∈ W ′}+

= [[skip]]W ′([[π]](f, Q)u)

becausef puts eachQ-class in bijection withW and stuttering steps obviously project back to stuttering
steps.

5.4. Assignment

We specify a non-atomic interpretation for assignment, in which the source expression is evaluated
first:

[[X:=E]]Wu =
{(map∆W ρ)β | (ρ, v) ∈ [[E]]Wu & β ∈ fst([[X]]Wu)v}†

∪ {map∆W ρ | ρ ∈ [[E]]Wu ∩W ω}†.
Note the use of map∆W to convert expression traces into command-like traces.

For instance, the assignmentx:=x + 1, interpreted at worldW × Vint in an environmentu in whichx
corresponds to theVint component of state, has the following traces:

[[x:=x + 1]](W × Vint)u = {((w0, v0), (w0, v0))((w1, v1), (w1, v0 + 1)) | w0, w1 ∈ W & v0, v1 ∈ Vint}†,

showing the potential for interruption after evaluation of the source expressionx + 1 but before the
update to the target variable. Closure under mumbling implies that the command also has traces of the
form ((w, v), (w, v + 1)), representing execution without interruption. In addition, closure permits the
insertion of finitely many stuttering steps.

14

5.5. Sequential composition

Sequential composition corresponds to concatenation of traces:

[[P1; P2]]Wu = {α1α2 | α1 ∈ [[P1]]Wu & α2 ∈ [[P2]]Wu}†.

It is convenient to introduce a semantic sequencing construct: for arbitrary trace setsT1 andT2 we define
T1; T2 = (T1 · T2)

†. Thus[[P1; P2]]Wu = [[P1]]Wu; [[P2]]Wu.
Naturality of this definition follows because for all trace setsT1 andT2 overW and all morphisms

h : W → W ′ we have[[comm]]h(T1; T2) = ([[comm]]hT1); ([[comm]]hT2).

5.6. Parallel composition

Parallel composition of commands corresponds to fair interleaving of traces. For each setA we define
the following subsets ofA∞ × A∞ × A∞:

bothA = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
oneA = {(α, ε, α), (ε, α, α) | α ∈ A∞}
fairmergeA = both∗A · oneA ∪ bothω

A,

whereε represents the empty sequence and we use the obvious extension of the concatenation operation
on traces to sets of triples of traces:

t0 · t1 = {(α0α1, β0β1, γ0γ1) | (α0, β0, γ0) ∈ t0 & (α1, β1, γ1) ∈ t1}.

Similarly we use the obvious extensions of the Kleene iteration operators on traces. Thus, for instance,
both∗A is the set of all triples obtained by concatenating together a finite sequence of triples frombothA.7

Intuitively, fairmergeW×W is the set of triples(α, β, γ) of traces overW such thatγ is a fair merge of
α andβ. Note thatfairmergesatisfies the following “natural” property: for all functionsf : A → B,

(α, β, γ) ∈ fairmergeA ⇒ (mapfα, mapfβ, mapfγ) ∈ fairmergeB.

We then define

[[P1‖P2]]Wu = {α | ∃(α1, α2, α) ∈ fairmergeW×W . α1 ∈ [[P1]]Wu & α2 ∈ [[P2]]Wu}†.

Again it will be convenient to introduce a semantic parallel composition operator: for trace setsT1 and
T2 overW let T1‖T2 = {α | ∃(α1, α2, α) ∈ fairmergeW×W . α1 ∈ T1 & α2 ∈ T2}†. Naturality of[[P1‖P2]]
follows from naturality of[[P1]] and[[P2]], since

[[comm]]h(T1‖T2) = ([[comm]]hT1) ‖ ([[comm]]hT2),

for all trace setsT1, T2 overW and all morphismsh : W → W ′.

7EquivalentlyfairmergeA can be characterized as the greatest fixed point of the monotone functionF (t) = bothA ·t∪oneA
on the complete lattice℘(A∞ × A∞ × A∞). The least fixed point of this functional is the subset of triples(α, β, γ) from
fairmergeA in which one or both ofα andβ is finite. The greatest fixed point also includes the cases whereα andβ are both
infinite.

15

5.7. Local variables

A trace ofnew[τ] ι in P at worldW should be constructed from an execution ofP in the expanded
world W × Vτ , with ι bound to a fresh variable of typeτ , during whichP may change this variable’s
value but no other command has access to it. Only the changes to theW -component of the world should
be reflected in the overall trace. We say that a trace is interference-free iff for each pair of consecutive
steps(wn, w

′
n) and(wn+1, w

′
n+1) in the trace we havew′

n = wn+1. Thus the traces ofnew[τ] ι in P in
world W and environmentu should have the form map(fst× fst)α, whereα is a trace ofP in world
W × Vτ (and suitably adjusted environment) such that map(snd× snd)α is interference-free:

[[new[τ] ι in P]]Wu = {map(fst× fst)α |
α ∈ [[P]](W × Vτ)([[π]](−× Vτ)u | ι : (a, e)) &
map(snd× snd)α interference-free}

where the “fresh variable”(a, e) ∈ [[var[τ]]](W × Vτ) is defined by:

a = λv′:Vτ .{((w, v), (w, v′)) | w ∈ W & v ∈ Vτ}†
e = {((w, v), v) | w ∈ W & v ∈ Vτ}†.

5.8. Conditional

For conditional phrases we define by induction onθ, for t ∈ [[exp[bool]]]W andp1, p2 ∈ [[θ]]W , an
elementif t then p1 elsep2 of [[θ]]W .

• For θ = exp[τ], if t then p1 elsep2 is

{ρρ1 | (ρ, tt) ∈ t & ρ1 ∈ p1}† ∪
{ρρ2 | (ρ, ff) ∈ t & ρ2 ∈ p2}† ∪
{ρ | ρ ∈ t ∩W ω}

• For θ = comm, if t then p1 elsep2 is

{(map∆W ρ)α1 | (ρ, tt) ∈ t & α1 ∈ p1}† ∪
{(map∆W ρ)α2 | (ρ, ff) ∈ t & α2 ∈ p2}† ∪
{map∆W ρ | ρ ∈ t ∩W ω}.

• For θ = (θ0 → θ1), (if t then p1 elsep2)(−) is the indexed family given by

(if t then p1 elsep2)(h) =
λp. if [[exp[bool]]]ht then p1(h)p elsep2(h)p.

• For θ = var[τ] we define

if t then (a1, e1) else(a2, e2) =
(λv:Vτ . if t then a1v elsea2v, if t then e1 elsee2).

We then define
[[if B then P1 elseP2]]Wu =

if [[B]]Wu then [[P1]]Wu else[[P2]]Wu.

Naturality is easy to check, by induction on the type.

16

5.9. Conditional atomic action

We give a “busy wait” interpretation to an await command: if the test expressionB evaluates tott it
executes the bodyP without allowing interference; if the test evaluates toff it waits and tries again; if
evaluation of the test diverges so does the await command.

[[await B then P]]Wu =
{(w, w′) ∈ [[P]]Wu | (w, tt) ∈ [[B]]Wu}†

∪ {(w,w) | (w, ff) ∈ [[B]]Wu}ω

∪ {(w,w)ω | wω ∈ [[B]]Wu}†.

Recall thatP is assumed to be an atomic command, so that[[P]]Wu is a total function fromW to W
whose graph determines a set of singleton traces that represent interference-free executions ofP . In
particular[[await true then P]]Wu = ([[P : atom]]Wu)†.

If the test expressionB always terminates, as is common, for example whenB is atomic, the third
part of the clause becomes vacuously empty.

5.10. while-loops

The traces ofwhile B do C are obtained by iteration. Define

[[B]]ttWu = {map∆W ρ | (ρ, tt) ∈ [[B]]Wu}
∪{map∆W ρ | ρ ∈ [[B]]Wu ∩W ω}

[[B]]ffWu = {map∆W ρ | (ρ, ff) ∈ [[B]]Wu}
∪{map∆W ρ | ρ ∈ [[B]]Wu ∩W ω}

Then we define

[[while B do C]]Wu =
([[B]]ttWu; [[C]]Wu)∗; [[B]]ffWu ∪ ([[B]]ttWu; [[C]]Wu)ω

This trace set can also be characterized as the closure of the greatest fixed point of the functional

F (t) = [[B]]ttWu · [[C]]Wu · t ∪ [[B]]ffWu,

which operates on the complete lattice of arbitrary trace sets overW , ordered by set inclusion. Note that
this functional is “constructive”, in the intuitive sense that for eachn ≥ 0, the firstn + 1 steps of traces
in F (t) are uniquely determined by the firstn steps of traces int, because of the “stuttering” caused by
evaluatingB.

The need to take the closure onlyafterconstructing the fixed point is shown by the special case of the
loopwhile true do skip. This command does nothing but stutter forever, so that we would expect

[[while true do skip]]Wu = {(w, w) | w ∈ W}ω.

Both the iterative formula given above and the greatest fixed point ofF agree with this. However, the
closure-preserving functional

G(t) = [[B]]ttWu; [[C]]Wu; t ∪ [[B]]ffWu,

17

interpreted on closed trace sets, coincides with the identity function whenB is true andC is skip.
The greatest fixed point ofG is therefore the set ofall traces overW , which does not agree with the
operational characterization.

Notice also that taking theleastfixed point ofF would yield only thefinite traces of the loop, ignoring
any potential for infinite iteration.

5.11. Recursion

The above discussion of while-loops showed the need to take the greatest fixed point of a functional
on arbitrary trace sets, and pointed out the role of stuttering in ensuring that divergence is modelled
accurately. Similar needs arise in interpreting more general recursive programs.

Consider for example the commandrec ι.ι, which simply diverges without ever changing the state,
no matter how its environment tries to interfere. Its trace set should therefore consist of the infinite
stuttering sequences, exactly as for the divergent loop considered above:

[[rec ι.ι]]Wu = {(w,w) | w ∈ W}ω.

This trace set is not the greatest fixed point of theidentity functionon [[comm]]W, as might be suggested
by the syntactic form of the command. Instead it can be characterized as (the closure of) the greatest
fixed point of the functional

F = λc.{(w, w)α | w ∈ W & α ∈ c},

operating on the complete lattice[comm]W = ℘((W × W)∞) of arbitrary trace sets; intuitively, the
extra initial stutter mimics an operational step in which the recursion is unwound. Obviously any fixed
point of F contains only infinite traces; moreover the initial stutter inserted byF permits a proof by
induction that for alln ≥ 0 and all trace setsc the firstn steps of each trace inF n(c) are stutters. Thus
the greatest fixed point ofF is

⋂∞
n=0 F n((W ×W)∞) = {(w,w) | w ∈ W}ω as claimed. This trace set

is already closed under stuttering and mumbling, so it belongs to[[comm]]W = ℘†((W × W)∞). We
can therefore define[[rec ι.ι]]Wu = νF . To show naturality of this definition leth : W → W ′ and letF ′

be the functional on[comm]W ′ given by

F ′ = λc′.{(w′, w′)α′ | w′ ∈ W ′ & α′ ∈ c′},

so that[[rec ι.ι]]W ′([[π]]hu) = νF ′ = {(w′, w′) | w′ ∈ W ′}ω. We have

[[comm]]h(νF) = [[comm]]h({(w, w) | w ∈ W}ω)
= ([[comm]]h{(w, w) | w ∈ W})ω

= {(w′, w′) | w′ ∈ W ′}ω

= νF ′,

as required for naturality. Note, however, that the successive pairs of approximations to these fixed
points arenot naturally related. For instance, whenh = (f, Q) : W → W ′ is a non-trivial expansion
morphism, so thatQ has more than one equivalence class,

[[comm]]h((W ×W)∞) = {α′ ∈ (W ′ ×W ′)∞ | α′ respects Q}
6= (W ′ ×W ′)∞.

18

Nevertheless, the stutters induced byF andF ′ support a proof by induction that for alln ≥ 0 the first
n steps ofF n((W × W)∞) andF ′n((W ′ × W ′)∞) are naturally related, and in the limit we get full
naturality.

The discussion above relies crucially on the fact that[comm]W is a complete lattice, so that the
existence of the relevant fixed point is guaranteed by Tarski’s Theorem [19]. However, the generalization
to all types is not so straightforward, since the domain[θ → θ′]W does not possess a top element. We can
see this as follows, by considering the special case of[comm→ comm]W . The obvious order-theoretic
candidate for top of this domain is the family top(−) such that for allh : W → W ′,

top(h) = λc′ : [comm]W ′. (W ′ ×W ′)∞.

However, as was shown above,[comm]h does not preserve top; hence this family lacks the naturality
property required for membership in[comm→ comm]W . Furthermore, the obvious natural candidate
for tophood, i.e. the familytop(−) given by

top(h) = λc′ : [comm]W ′. [comm]h((W ×W)∞),

is not even the order-theoretic top among the natural elements, since it does not dominate the identity
family id(h) = λc′ : [comm]W ′. c′.

Nevertheless[comm→ comm]W is clearly a sub-domain of the complete lattice〈comm→ comm〉W
consisting of thearbitrary families p(−) such that for allh : W → W ′, p(h) : [comm]W ′ →
[comm]W ′, i.e. the lattice obtained by relaxing the naturality requirement. The top element of this lattice
is clearly the family top(−) introduced above. A recursive phrase of this type determines a continuous
functionalF on this lattice. For example, consider the divergent phraserec ι.ι : comm→ comm. Intu-
itively this should denote, at worldW , the procedure meaning which causes infinite stuttering whenever
it is called:

[rec ι.ι : comm→ comm]Wu = λh : W → W ′. λc′.{(w′, w′) | w′ ∈ W ′}ω.

This can be characterized as (the closure of) the greatest fixed point of the functional

F = λp.λh.λc′.{(w′, w′)α′ | w′ ∈ W ′ & α′ ∈ phc′},

operating on the lattice〈comm → comm〉W . Note that the successive approximantsF n(top) to the
fixed point are not natural and thus do not qualify for membership in[comm→ comm]W . Nevertheless
for eachn ≥ 0 it can be seen intuitively thatF n(top) is natural “forn steps”, and in the limit we
achieve full naturality. ThusνF ∈ [comm→ comm]W , as required for this construction to make sense.
Moreover, this definition is natural, since wheneverh : W → W ′ we have

[[comm→ comm]]h([rec ι.ι]Wu) = λh′ : W ′ → W ′′. [rec ι.ι]Wu(h; h′)
= λh′ : W ′ → W ′′. {(w′′, w′′) | w′′ ∈ W ′′}ω

= [rec ι.ι]W ′([π]hu).

We can generalize the above discussion to more general recursive phrases as follows.
Each typeθ denotes a functor[θ] from worlds to domains, defined as for[[θ]] except that we omit the

use of closure. For eachn ≥ 0, and each morphismh : W → W ′, we define a chain of approximations
[θ]nh : [θ]W → [θ]W ′ whose limit is[θ]h. For example,

[comm]n(f, Q)c = {α′ | map(f × f)α′ ∈ c & α′ respectsQ for n steps}.

19

The semantic definitions given for[[−]] can be systematically adjusted, by dropping the use of the clo-
sure operator(−)†, yielding a semantics[−] based on arbitrary trace sets. For example, the semantic
clause for sequential composition becomes[P1; P2]Wu = [P1]Wu · [P2]Wu, with u interpreted as an
environment based on arbitrary trace sets. Whenπ ` P : θ is valid, [P] is a natural transformation from
[π] to [θ]. Moreover,[P] is non-destructive8, in the sense that, wheneverπ ` P : θ is valid, for alln ≥ 0
and allh : W → W ′ we have

[P]W ′ ◦ [π]nh v [θ]nh ◦ [P]W.

We generalize the idea of inserting an extra initial stutter to all types, inductively, obtaining for each
typeθ a natural transformation stutθ from [θ] to [θ]. At ground types this is straightforward, as described
above for commands; at arrow types we transform a procedure meaning so as to cause an extra stutter to
occur each time the procedure is called. For example,

stutcommWc = {(w,w)α | w ∈ W & α ∈ c}
stutθ→θ′Wp = λh : W → W ′. stutθ′W ′ ◦ (ph).

We then have, for alln, all h : W → W ′, and allθ,

stutθW
′ ◦ [θ]nh = [θ]n+1h ◦ stutθW.

Hence whenπ ` P : θ is valid the natural transformation stutθ ◦ [P] is constructive, in that for alln, and
all h : W → W ′,

(stutθW
′ ◦ [P]W ′) ◦ [π]nh v [θ]n+1h ◦ (stutθW ◦ [P]W),

making precise the informal notion of constructivity alluded to earlier.
Whenπ ` rec ι.P : θ is valid, so thatπ, ι : θ ` P : θ is also valid, andu ∈ [π]W , the function

F = λp : 〈θ〉W. stutθW ([P]W (u | ι : p))

is a continuous map on the complete lattice〈θ〉W ⊇ [θ]W , and restricts to a function from[θ]W to
[θ]W . Its greatest fixed pointνF belongs to[θ]W . We therefore take

[rec ι.P]Wu = νp.stutθW ([P]W (u | ι : p).

This definition is natural, in that[θ]h([rec ι.P]Wu) = [rec ι.P]W ′([π]hu) wheneverh : W → W ′.
To show naturality, leth : W → W ′ and letF ′ be given by

F ′ = λp′ : [θ]W ′.stutθW
′([P]W ([[π]]hu | ι : p′)),

so that[rec ι.P]W ′([π]hu) = νF ′. We must show that[θ]h(νF) = νF ′. We argue as follows.

• By definition ofF ′, naturality ofP , naturality of stutθ, and the fixed point property, we have:

F ′([θ]h(νF)) = stutθW ′([P]W ′([π]hu | ι : [θ]h(νF)))
= stutθW ′([θ]h([P]W ′([π, ι : θ]h(u | ι : νF))))
= [θ]h(stutθW ([P]W (u | ι : νF)))
= [θ]h(νF),

so that[θ]h(νF) is a fixed point ofF ′. Hence[θ]h(νF) v νF ′.

8Again this terminology is reminiscent of a related notion used in models of CSP[18].

20

• For the converse inequality let top and top′ be the greatest elements of〈θ〉W and〈θ〉W ′, respec-
tively. We show first by induction that for allk ≥ 0 we have

F ′k(top′) v [θ]0h(F k(top)),

from which it follows thatνF ′ v [θ]0h(νF). Then we show, using the fixed point property and
constructivity of stutθ ◦ [P], that wheneverνF ′ v [θ]nh(νF) we have

νF ′ = F ′(νF ′) v F ′([θ]nh(νF))
v [θ]n+1h(F (νF))
= [θ]n+1h(νF).

Thus by induction we have for alln ≥ 0, νF ′ v [θ]nh(νF), and henceνF ′ v [θ]h(νF) as
required.

We can generalize the closure operator(−)† to all types inductively, obtaining for each typeθ a natural
transformationθ† : [θ] → [[θ]]. For example,comm†W is just the closure operator on trace sets overW ,
exactly as before; and closure at an arrow type is defined by

(θ → θ′)†Wp = λh : W → W ′. λx : [[θ]]W ′. θ′†W ′(phx).

Wheneverπ ` P : θ is valid, [P] respects closure, in that for allu0, u1 ∈ [π]W ,

π†W (u0) = π†W (u1) ⇒ θ†([P]Wu0) = θ†W ([P]Wu1).

In other words, the closure of[P]Wu depends only on the closure ofu. Thus it makes sense to define

[[rec ι.P]]Wu† = θ†W ([rec ι.P]Wu),

whereu is any environment in[π]W with closureu†.
Indeed with this as the interpretation of recursion the closed trace sets semantic function[[−]] can be

obtained as the quotient of[−]: wheneverπ ` P : θ is valid, we have[[P]]W (π†u) = θ†W ([P]Wu).
Since closure “absorbs” initial stuttering, i.e. for all typesθ we haveθ† ◦ stutθ = θ†, the validity of the
usual unrolling rule for recursive phrases follows:

[[rec ι.P]]Wu† = θ†W (νp. stutθW ([P]W (u | ι : p)))
= θ†W (stutθW ([P]W (u | ι : [rec ι.P]Wu)))
= θ†W ([P](u | ι : [rec ι.P]Wu))
= [[P]]W (u† | ι : [[rec ι.P]]Wu).

The Appendix contains further details.
It is easy to check that this semantics for recursion does indeed prescribe the operationally expected

meanings for the divergent phraserec ι.ι, at typecomm and at typecomm → comm. Similarly the
meaning ascribed to the divergent integer expressionrec n.n + 1 at worldW is W ω, again consistent
with operational intuition: no matter what state changes may occur as the result of parallel activity the
expression evaluation never stops.

It is also easy to verify that the meaning given to

rec ι. if B then C; ι else skip

coincides with the semantics given earlier for the loopwhile B do C, whenι does not occur free inC.

21

5.12. λ-calculus

The semantic clauses for identifiers, abstraction, and application are standard:

[[ι]]Wu = uι
[[λι : θ.P]]Wuh = λa : [[θ]]W ′.[[P]]W ′([[π]]hu | ι : a)
[[P (Q)]]Wu = [[P]]Wu(idW)([[Q]]Wu),

where, in the clause for abstraction,h ranges over morphisms fromW to W ′. The clauses for pairing
and projections are also standard, using the cartesian structure of the functor category:

[[〈P0, P1〉]]Wu = ([[P0]]Wu, [[P1]]Wu)
[[fst P]]Wu = fst([[P]]Wu)
[[sndP]]Wu = snd([[P]]Wu).

6. Reasoning about program behavior

The semantics validates a number of natural laws of program equivalence, including (whenι does not
occur free inP ′):

new[τ] ι in P ′ = P ′

new[τ] ι in (P‖P ′) = (new[τ] ι in P)‖P ′

new[τ] ι in (P ; P ′) = (new[τ] ι in P); P ′.

Similarly the semantics validates laws such as the following, which show that the order in which local
variables are declared is irrelevant:

new[τ1] ι1 in new[τ2] ι2 in P = new[τ2] ι2 in new[τ1] ι1 in P
new[τ] ι1 in new[τ] ι2 in P (ι1, ι2) = new[τ] ι1 in new[τ] ι2 in P (ι2, ι1).

These laws amount to naturality (of the meaning ofP) with respect to the natural isomorphism of worlds
(W × Vτ1) × Vτ2 and(W × Vτ2) × Vτ1, this being a composition of suitably chosenswapandassoc
isomorphisms as discussed earlier.

The semantics also validates familiar laws of functional programming, such asβ-equivalence and the
usual recursion law:

(λι : θ.P)P ′ = P [P ′/ι]
rec ι.P = P [rec ι.P/ι],

whereP [P ′/ι] is the phrase obtained by replacing every free occurrence ofι in P by P ′, with renaming
when necessary to avoid capture. In fact these equivalences follow easily from the semantic definitions
when combined with the following Substitution Theorem: wheneverπ ` P : θ is valid, π(ι) = θ′ and
π ` P ′ : θ′ is valid, andu ∈ [[π]]W ,

[[P [P ′/ι]]]Wu = [[P]]W (u | ι : [[P ′]]Wu).

As usual the Substitution Theorem may be proved by structural induction on the derivation ofπ ` P : θ.
Similarly the model validates laws relating the conditional construct with functional abstraction and

application:

(if B then P1 elseP2)(P) = if B then P1(P) elseP2(P)
λι : θ.if B then P1 elseP2 = if B then λι : θ.P1 elseλι : θ.P2 if ι not free inB,

22

and the semantics validates laws familiar from imperative programming, such as

(if B then X1 elseX2):=E = if B then X1:=E elseX2:=E
while B do C = if B then C; while B do C else skip
skip‖C = C‖skip = C
skip; C = C; skip = C

Our semantics also equateswhile true do skip andawait false then skip, because of the busy-wait in-
terpretation of conditional atomic actions.

The semantics supports compositional reasoning about safety and liveness properties. For instance, it
is possible to show the correctness of the mutual exclusion procedure discussed earlier, and to show the
equivalence of theworkersandbarrier procedures.

For a more complex example involving parallelism, consider the following implementation of a syn-
chronization “object”, generalizing the barrier synchronization example mentioned earlier:

booleanflag0, flag1;
proceduresynch(x, y); (x:=true; await y; y:=false);

flag0:=false; flag1:=false;
P (synch(flag0, flag1), synch(flag1, flag0))

HereP is a free identifier of type(comm×comm→ comm). SinceP is a non-local identifier, the only
way for this phrase to access the flag variables is by one of the two pre-packaged ways to callsynch.
Intuitively, the behavior of this phrase should remain identical if we use a “dualized” implementation of
the flags, interchanging the roles of the two truth values. Thus, this phrase should be equivalent to

booleanflag0, flag1;
proceduresynch(x, y); (x:=false; await ¬y; y:=true);

flag0:=true; flag1:=true;
P (synch(flag0, flag1), synch(flag1, flag0))

This is an example of the principle of representation independence. Our semantics for Parallel Algol
validates this equivalence, by virtue of the existence of an isomorphism of worlds that relates the two
implementations. To be specific, for all worldsW there is an isomorphism

dual : W × Vbool → W × Vbool

dual = (λ(w, b).(w,¬b), (W × Vbool)
2)

Naturality of the meaning ofP with respect to this isomorphism is enough to establish the desired
equivalence. Note that this is an equivalence between two terms containing a free identifier. In essence,
no matter how the “rest” of the program is filled in, provided it is only allowed access to the two flags
by calling one of the supplied procedures, the two implementations are indistinguishable. For example,
if we substitute forP the procedure

λ(left, right). (while true do (c0; left) ‖ while true do (c1; right))

we recover the barrier synchronization example discussed earlier.

23

This synchronizer object works well in the above context, but less satisfactorily in cases where several
threads can compete. For example, consider what can happen if we use forP the procedure

λ(left, right).
(left ; c0) ‖ (left ; c1) ‖ (right ; c2; right ; c3)

with the intention that the resulting program be equivalent to

((c0‖c2); (c1‖c3)) or ((c1‖c2); (c0‖c3)),

whereor is interpreted as non-deterministic choice9. Intuitively this equivalence may fail because it
is possible for two threads concurrently to executesynch(flag0,flag1) to completion, leading to the
simultaneous parallel activity ofc0, c1 andc2.

A more robust synchronizer can be defined as follows, using a conditional atomic action to guarantee
mutual exclusion between such competitor threads:

booleanflag0, flag1;
proceduresynch(x, y); (await ¬x then x:=true; await y then y:=false);

flag0:=false; flag1:=false;
P (synch(flag0, flag1), synch(flag1, flag0))

WhenP is instantiated as above the resulting program does behave as intended. This more sophisticated
synchronizer object also has an equivalent dualized version (in whichfalse and true are interchanged
systematically).

Although the above semantics validates many laws of program equivalence related to locality in par-
allel programming, there remain equivalences for which we can give convincing informal justification,
yet which are not valid in this model. Consider for example the following phrase:

new[int] x in (x:=0; P (x:=x + 1)),

whereP is a free identifier of typecomm→ comm. No matter howP is instantiated this should have the
same effect asP (skip). As observed by O’Hearn and Tennent, this equivalence holds for the sequential
language yet is not validated by the sequential possible worlds semantics. Indeed, the equivalence should
still hold in the parallel setting, because the two phrases obviously treat the non-local part of the state
the same way. This argument may be formalized by establishing an invariant relationship between the
states arising during executions of the two phrases; however, the preservation of this invariant does not
follow immediately from naturality of[[P]].

Similarly, and exactly as in the Reynolds–Oles semantics of Idealized Algol, our semantics typically
fails to support proofs of representation independence involvingnon-isomorphicrepresentations. This
is illustrated by the following example, adapted from [9]. Consider an abstract “switch” object, initially
“off”, with two capabilities which can be thought of as a method for turning the switch “on” and a test
to see if the switch has been turned on. One implementation uses a boolean variable:

booleanz;
procedureflick; (z:=true);
procedureon; return z;

z:=false;
P (flick, on)

9It is straightforward to add this construct to the programming language. The corresponding semantic clause is simply
[[P1 or P2]]Wu = [[P1]]Wu ∪ [[P2]]Wu.

24

Another implementation uses an integer variable, and treats all positive integers as “on”, zero as “off”:

integer z;
procedureflick; (z:=z + 1);
procedureon; return (z > 0);

z:=0;
P (flick, on)

Intuitively, even ifP is allowed to use parallelism, and even though assignment is not assumed to be
atomic, these two phrases will always be equivalent. Yet the possible worlds semantics fails to validate
this equivalence. Informally an argument supporting the equivalence can be given, by establishing an
invariant relation between the states produced during execution of the two phrases. The problem is that
naturality is not a sufficiently stringent requirement on phrase denotations, since it does not imply the
kind of relation-preserving properties necessary to justify equivalences such as this.

For an example exploiting parallelism, we remark that there is also a non-isomorphic implementation
of our synchronizer object, in which flags take on successive integer values and the parity of a flag is
used to indicate availability:

integer flag0, flag1;
proceduresynch(x, y); (await even(x) then x:=x + 1; await odd(y) then y:=y + 1);

flag0:=0; flag1:=0;
P (synch(flag0, flag1),

mboxsynch(flag1, flag0))

The equivalence of this and the above robust synchronizer cannot be proven in the model given so far.

7. Relational parametricity

In response to this inadequacy O’Hearn and Tennent [9] formulated a more refined semantics for Ide-
alized Algol embodying “relational parametricity”, in which values of procedure type are constrained by
certain relation-preservation properties that guarantee good behavior. This parametric model of Ideal-
ized Algol then supports relational reasoning of the kind needed to establish program equivalences based
on representation independence. We will show how to generalize their approach to the shared-variable
setting. We first summarize some background material from [9].

7.1. Relations between worlds

We introduce a category whose objects are relationsR between worlds; we writeR : W ↔ W ′

or R ⊆ W × W ′. For each worldW we let ∆W : W ↔ W denote the identity relation onW , i.e.
∆W = {(w, w) | w ∈ W}.

A morphism fromR : W0 ↔ W1 to S : X0 ↔ X1 is a pair(h0 : W0 → X0, h1 : W1 → X1) of
morphisms inW, such that, lettingh0 = (f0, Q0) andh1 = (f1, Q1),

• for all (x0, x1) ∈ S, (f0x0, f1x1) ∈ R;

• for all (x0, x1) ∈ S, x′0 ∈ X0 andx′1 ∈ X1, if (x′0, x0) ∈ Q0 & (x′1, x1) ∈ Q1 then(x′0, x
′
1) ∈ S.

25

Loosely, we refer to these properties as saying thath0 andh1 respectR andS. We represent such a
morphism in the following diagrammatic form:

W1

W0

6

R

?
X1

X0

6

S

?

-h0

-
h1

The identity morphism fromR to R corresponds to the diagram

W1

W0

6

R

?
W1

W0

6

R

?

-idW0

-
idW1

Composition in this category of relations is defined in the obvious way, building on composition in the
category of worlds: when(h0, h1) : R ↔ R′ and (h′0, h

′
1) : R′ ↔ R′′ the composite morphism is

(h0, h1); (h
′
0, h

′
1) = (h0; h

′
0, h1; h

′
1).

7.2. Parametric functors and natural transformations

For each typeθ we define aparametric functor[[θ]] from worlds to domains, i.e. a functor[[θ]] from W
to D equipped with an action on relations, such that:

• wheneverR : W0 ↔ W1, [[θ]]R : [[θ]]W0 ↔ [[θ]]W1;

• for all W , [[θ]]∆W = ∆[[θ]]W ;

• whenever

W1

W0

6

R

?
X1

X0

6

S

?

-h0

-
h1

holds then so does

[[θ]]W1

[[θ]]W0

6

[[θ]]R

?

[[θ]]X1,

[[θ]]X0

6

[[θ]]S

?

-
[[θ]]h0

-
[[θ]]h1

by which we mean that

(d0, d1) ∈ [[θ]]R ⇒ ([[θ]]h0d0, [[θ]]h1d1) ∈ [[θ]]S.

26

The first two conditions above say that[[θ]] constitutes a “relator” [5, 1]. The last condition is a para-
metricity constraint.

Whenπ ` P : θ is valid [[P]] is a parametric natural transformationfrom [[π]] to [[θ]], i.e. a natural
transformation obeying the following parametricity constraints: wheneverR : W0 ↔ W1, (u0, u1) ∈

[[π]]R ⇒ ([[P]]W0u0, [[P]]W1u1) ∈ [[θ]]R. This property may be expressed in diagram form as follows:

[[π]]W1

[[π]]W0 [[θ]]W0

[[θ]]W1
-

[[P]]W1

?

[[θ]]R
6

-[[P]]W0

?

[[π]]R
6

Parametric natural transformations compose in the usual pointwise manner. The category having all
parametric functors fromW to D as objects, and all parametric natural transformations as morphisms, is
cartesian closed [9].

Hence we may use the cartesian closed structure of this category in a perfectly standard way to inter-
pret theλ-calculus fragment of our language, exactly along the lines developed in [9]. To adapt these
ideas to the parallel setting, we must give trace-theoretic interpretations to typescomm, var[τ], and
exp[τ]. We give details onlycomm andexp[τ], the definitions forvar[τ] then being derivable. We also
suppress the details of atomic types, since their treatment is standard.

7.3. Commands

We define[[comm]]W and [[comm]]h as before. To define[[comm]]R : [[comm]]W0 ↔ [[comm]]W1,
whenR : W0 ↔ W1, let map(R) be the obvious extension ofR to traces of the same length, so that
map(R) ⊆ W∞

0 ×W∞
1 . We then define

(c0, c1) ∈ [[comm]]R ⇐⇒
(∀α0 ∈ c0. ∀ρ1. (map fstα0, ρ1) ∈ map(R) ⇒
∃α1 ∈ c1. map fstα1 = ρ1 & (map sndα0, map sndα1) ∈ map(R))

& (∀α1 ∈ c1. ∀ρ0. (ρ0, map fstα1) ∈ map(R) ⇒
∃α0 ∈ c0. map fstα0 = ρ0 & (map sndα0, map sndα1) ∈ map(R)).

This is intended to capture the following intuition:[[comm]]R relates two command meanings iff, when-
ever started in states related byR and interrupted in related ways, the commands respond in related ways.
This, informally, expresses the idea that a trace set represents a (non-deterministic) state-transformation
“extended in time”.

It is straightforward to verify that[[comm]] is indeed a parametric functor. In particular, since map∆W

is the identity relation onW∞, and two tracesα0 and α1 over W × W are equal iff map fstα0 =
map fstα1 and map sndα0 = map sndα1, it is easy to see that

(c0, c1) ∈ [[comm]]∆W ⇐⇒ c0 = c1,

as required. Now suppose(h0, h1) : R → S and(c0, c1) ∈ [[comm]]R. We must show that

([[comm]]h0c0, [[comm]]h1c1) ∈ [[comm]]S.

27

This follows by a routine calculation, using the fact that the morphismsh0 andh1 respect the relations
R andS.

As an example to illustrate this definition, supposex is a variable of data typeint corresponding to the
Vint component in states of shapeW × Vint . Let c0 andc1 be the trace sets corresponding tox:=x + 1
andx:=x− 1, respectively, i.e.

c0 = {((w0, v0), (w0, v0))((w1, v1), (w1, v0 + 1)) | w0, w1 ∈ W & v0, v1 ∈ Vint}†
c1 = {((w0, v0), (w0, v0))((w1, v1), (w1, v0 − 1)) | w0, w1 ∈ W & v0, v1 ∈ Vint}†.

Let R be the relation onW × Vint given by

(w, v)R(w′, v′) ⇐⇒ w = w′ & v = −v′.

Then(c0, c1) ∈ [[comm]]R.
As a further example, letc ∈ [[comm]]W and define the relationR : W ↔ W × V by

wR(w′, v) ⇐⇒ w = w′.

Then(c, [[comm]](−× V)c) ∈ [[comm]]R.
Note also that the above definition of[[comm]]R makes sense even when applied to arbitrary trace

sets, i.e. closure is not crucial for the definition. Clearly we have

(c0, c1) ∈ [[comm]]R ⇒ (c†0, c
†
1) ∈ [[comm]]R.

We also have

(p0, q0) ∈ [[comm]]R & (p1, q1) ∈ [[comm]]R ⇒ (p0; p1, q0; q1) ∈ [[comm]]R
(p0, q0) ∈ [[comm]]R & (p1, q1) ∈ [[comm]]R ⇒ (p0‖p1, q0‖q1) ∈ [[comm]]R

so that sequential and parallel composition (and hence also iteration) interact smoothly with the action
of [[comm]] on relations.

7.4. Expressions

For expressions, we define[[exp[τ]]]W and[[exp[τ]]]h as before. WhenR : W0 ↔ W1 we define

(e0, e1) ∈ [[exp[τ]]]R ⇐⇒
(∀ρ0 ∈ e0 ∩W ω. ∀ρ1. (ρ0, ρ1) ∈ map(R) ⇒ ρ1 ∈ e1

& ∀(ρ0, v) ∈ e0. ∀ρ1. (ρ0, ρ1) ∈ map(R) ⇒ (ρ1, v) ∈ e1)
& (∀ρ1 ∈ e1 ∩W ω. ∀ρ0. (ρ0, ρ1) ∈ map(R) ⇒ ρ0 ∈ e0

& ∀(ρ1, v) ∈ e1. ∀ρ0. (ρ0, ρ1) ∈ map(R) ⇒ (ρ0, v) ∈ e0)

Intuitively, two expression meanings are related if when evaluated in related ways they both terminate
with the same answer, or both fail to terminate.

As an example, suppose again thatx is a variable of typeint corresponding to theVint component in
states of shapeW × Vint . Using the same relation as before, so that

(w, v)R(w′, v′) ⇐⇒ w = w′ & v = −v′,

and assuming thatu is a suitable environment, we have

([[x]](W × Vint)u, [[−x]](W × Vint)u) ∈ [[exp[int]]]R.

28

7.5. Semantic definitions

The possible worlds semantics given above can be adapted to the parametric setting, provided we show
that each phrase denotes a parametric natural transformation. This is straightforward, using structural
induction. For instance, it is easy to see that whenR : W ↔ W ′, parametricity of[[skip]] amounts to the
fact that

({(w,w) | w ∈ W}†, {(w′, w′) | w′ ∈ W ′}†) ∈ [[comm]]R,

which holds obviously. Similarly, for the parallel construct the parametricity of[[P1‖P2]] follows from
parametricity of[[P1]] and[[P2]], since interleaving of trace sets respects[[comm]]R.

Recursion again requires a careful treatment. We define[[rec ι.P]] as the closure of[rec ι.P], making
use of a parametric version of the semantics[−] based on arbitrary trace sets, defined as before but
with suitable modifications to fit the relational setting. Also as before, we recover the closed trace set
semantics[[−]] as the quotient of[−] with respect to the equivalence induced by taking closure. We again
define[rec ι.P]Wu = νp.stutθW ([P]W (u | ι : p)), where the fixed point is taken over the complete
lattice 〈θ〉W extending[θ]W . The proof that this fixed point belongs to the subset[θ]W , and that this
semantic definition is natural, depends as before on constructivity and on naturality of[P]. We also need
to show that this is a parametric definition, i.e. for allR : W0 ↔ W1, whenever(u0, u1) ∈ [π]R,

([rec ι.P]W0u0, [rec ι.P]W1u1) ∈ [θ]R.

Let F0 andF1 be given by:

F0(p0) = stutθW0([P]W0(u0 | ι : p0)),
F1(p1) = stutθW1([P]W1(u1 | ι : p1)).

By assumption onP , whenever(p0, p1) ∈ [θ]R it follows that(F0(p0), F1(p1)) ∈ [θ]R. Consequently the
functionalF : [θ]W0 × [θ]W1 → [θ]W0 × [θ]W1 given by

F (p0, p1) = (F0(p0), F1(p1))

is a continuous function on a complete lattice, and maps the subset[θ]R into itself. Let top0 and top1
be the top elements of〈θ〉W0 and〈θ〉W1 respectively. One can then show, by induction onn, that for
all n ≥ 0 we have(F n

0 (top0), F
n
1 (top1) ∈ [θ]R. From this it follows easily that(νF0, νF1) ∈ [θ]R, as

required, by an obvious completeness property of[θ]R.

7.6. Examples of parametric reasoning

In addition to the laws and examples listed earlier, the relationally parametric semantics also validates
the problematic equivalence discussed above:

new[int] ι in (ι:=0; P (ι:=ι + 1)) = P (skip),

whereP is a free identifier of typecomm → comm. This can be shown with the help of the relation
R : W ↔ W × Vint given by

wR(w′, v) ⇐⇒ w = w′ ∈ W & v ∈ Vint .

29

It is easy to show that whenu is a suitable environment in[[π]]W andu′ bindsι to the “fresh variable”
corresponding to theVint component of state we get

([[skip]]Wu, [[ι:=ι + 1]](W × Vint)u
′) ∈ [[comm]]R.

The desired result follows by parametricity of[[P]].
Similarly, the parametric semantics validates the following equivalence,

new[int] ι in (ι:=1; P (ι)) = P (1),

whenP is a free identifier of typeexp[int] → comm.
Recall that we showed earlier that, whenu is an environment in whichx denotes the variable corre-

sponding to theVint component in states of shapeW × Vint , andR is the relation

(w, v)R(w′, v′) ⇐⇒ w = w′ & v = −v′,

we have
([[x:=x + 1]](W × Vint)u, [[x:=x− 1]](W × Vint)u) ∈ [[comm]]R
([[x]](W × Vint)u, [[−x]](W × Vint)u) ∈ [[exp[int]]]R.

It follows by parametricity that

new[int] x in (x:=0; P (x:=x + 1)) = new[int] x in (x:=0; P (x:=x− 1)),

wheneverP is a free identifier of typecomm→ comm. Similarly,

new[int] x in (x:=0; P (x, x:=x + 1)) = new[int] x in (x:=0; P (x, x:=x− 1))

whenP is a free identifier of type(exp[int] × comm→ comm). This example shows the equivalence
in the parallel setting of two implementations of an abstract “counter”. An analogous result was shown
for the sequential setting by O’Hearn and Tennent[9], but the validation of such equivalences in parallel
contexts requires our more detailed semantic model.

To illustrate the subtle differences between sequential and parallel settings, consider the following
phrase

new[int] x in (x:=0; P (x/2, x:=x + 2)),

which amounts to yet another representation for an abstract counter, and is equivalent to both versions
discussed above. In sequential Algol it is also equivalent to

new[int] x in (x:=0; P (x/2, x:=x + 1; x:=x + 1)),

but this equivalence fails in the parallel model. The reason lies in the inequivalence ofx:=x+1; x:=x+1
and x:=x + 2, and the ability, by looking at the value ofx in the intermediate state, to detect the
difference.

Despite this example, the phrases

new[int] x in (x:=0; P (x:=x + 1; x:=x + 1))

and
new[int] x in (x:=0; P (x:=x + 2))

30

are equivalent in sequential Algoland in parallel Algol, even thoughx:=x + 1; x:=x + 1 andx:=x + 2
are not semantically equivalent in the parallel model; no matter howP uses its argument, the only
differences involve the local variable, whose value is ignored. To establish the equivalence, one can use
the relationR : W ↔ W × Vint given by(w, (w′, z)) ∈ R ⇐⇒ w = w′.

In contrast the phrases
new[int] x in

(x:=0; P (x:=x + 1; x:=x + 1);
if even(x) then diverge else skip)

and
new[int] x in

(x:=0; P (x:=x + 2);
if even(x) then diverge else skip),

wherediverge is a divergent command, are equivalent in sequential but not in parallel Algol. For ex-
ample ifP is λc. c‖c the first phrase has an execution in which each argument thread readsx as 0, then
each setsx to 1, and the two final increments occur sequentially, leavingx with the value 3 and causing
termination; the other phrase, however, must diverge. The relation

(w, (w′, z)) ∈ R ⇐⇒ w = w′ & even(z)

works for the sequential model but not for the parallel.
Indeed, in sequential Algol, the phrase

new[int] x in
(x:=0; P (x:=x + 2);
if even(x) then diverge else skip)

discussed above is equivalent todiverge. This is because the semantics of a command is taken to be a
state transformation, and matter how many timesP calls its argument the value of the local variablex
stays even, causing the phrase to diverge. This equivalence fails for parallel Algol, because our semantics
“observes” intermediate states during execution. Instead the phrase is equivalent toP (skip); diverge.

In the O’Hearn-Tennent modelif x = 0 then f(x) else1 and if x = 0 then f(0) else1 fail to be
semantically equivalent, because the model includes procedure meanings that violate the irreversibility
of state change [9], yet the phrases behave identically in all sequential contexts. In contrast the equiv-
alence should (and does) fail in our parallel model, because expression evaluation need not be atomic.
For example, iff is λy.y and the phrase is evaluated in parallel with a command that may change the
value ofx from 0 to 2, the first case might yield the result 2.

The two dual implementations of synchronizers discussed earlier can be proven equivalent by an easy
argument involving parametricity. LetX = (W × Vbool)× Vbool , and define the relationR : X ↔ X by

((w, b1), b2)R((w′, b′1), b
′
2) ⇐⇒ w = w′ & b1 = ¬b′1 & b2 = ¬b′2.

The crucial step is to show that, whenu is an environment bindingflag0 andflag1 to variables corre-
sponding to the intended components of state,

([[synch(flag0, flag1)]]Xu, [[synch(flag1, flag0)]]Xu) ∈ [[comm]]R.

31

The desired equivalence then follows immediately.
The equivalence of boolean-based synchronizer and the parity-based version can be shown by means

of the relationR : W × Vbool ↔ W × Vint given by

(w, b)R(w′, n) ⇐⇒ w = w′ & (b = even(n)).

The two non-isomorphic implementations of a “switch”, discussed earlier, can be proved equivalent
using the relationR : W × Vbool ↔ W × Vint given by

(w, b)R(w′, v) ⇐⇒ w = w′ & b = (v > 0).

8. Conclusions

We have shown how to give semantic models for a parallel Algol-like language. The semantic mod-
els combine ideas from the theory of sequential Algol (possible worlds, relational parametricity) with
ideas from the theory of shared-variable parallelism (transition traces) in a rather appealing manner
which, we believe, supports the intuition that shared-variable parallelism and call-by-name procedures
are orthogonal. We have shown that certain laws of program equivalence familiar from shared-variable
programming remain valid when the language is expanded to include procedures; and certain laws of
equivalence familiar from functional programming remain valid when parallelism is added. Although
we do not claim a full conservative extension property, these results suggest that our language Parallel
Algol combines functional and shared-variable programming styles in a disciplined and well-behaved
manner. We have discussed a variety of examples intended to show the utility of the language and the
ability of our semantics to support rigorous arguments about the correctness properties of programs. Our
parametric model offers a formal and general way to reason about “concurrent objects”.

The trace semantics[[−]] was designed carefully to incorporateclosureas a basic property of the trace
set of a command; each step in a trace represents the effect of a finite (possibly empty) sequence of
atomic actions, and an entire trace records a fair interaction between a command and its environment.
Given a conventional operational semantics, in which the transition relation→ describes the effect of a
single atomic action, the closed trace set semantics is based on→∗, the reflexive, transitive closure of
the transition relation. We also introduced an auxiliary semantics[−] based on arbitrary (not necessarily
closed) trace sets, in which each step represents the effect of a single atomic action, so that this semantics
is based directly on the one-step transition relation. Clearly[−] is a more concrete semantics than[[−]],
distinguishing for example betweenskip andskip; skip. We therefore prefer[[−]], which identifies these
two commands and validates many laws of program equivalence that fail in the step-by-step semantics.
Nevertheless the step-by-step semantics is a key ingredient in understanding recursion. Indeed, note that
the single-step transition relation→ can be used to define both→∗ and→ω (the divergence predicate),
whereas→∗ by itself does not determine→ω. It is not surprising, therefore, that we needed to make a
detour. The relationship between the two semantic frameworks is simple: the closed trace set semantics
can be obtained by taking the quotient of the step-by-step semantics under closure equivalence.

Our semantics inherit both the advantages and limitations of the corresponding sequential models
and of the trace model for the simple shared-variable language. At ground typecomm we retain the
analogue of the full abstraction properties of [3]: two commands have the same meaning if and only
if they may be interchanged in all contexts without affecting the behavior of the overall program. The
extra discriminatory power provided by theλ-calculus facilities does not affect this. However, like their

32

sequential forebears, our models still include procedure values that violate the irreversibility of state
change [8], preventing full abstraction at higher types. Recent work of Reddy [13], and of O’Hearn and
Reynolds [8], incorporating ideas from linear logic, appears to handle irreversibility for sequential Algol;
we conjecture that similar ideas may also work for the parallel language, with suitable generalization;
this will be the topic of further research.

Shared-variable programs are typically designed to include parallel components intended tocoop-
erate, but semantically there is little distinction between cooperation and interference: both amount
to patterns of interactive state change, and the only pragmatic distinction concerns whether the state
changes are beneficial or detrimental to the achievement of some common goal, such as the satisfaction
of some safety or liveness property. As we have shown, local variables can be used to limit the scope
of interference between parallel components of a program, thus providing a form of “syntactic control
of interference”, somewhat in the spirit of [17, 16]. It would be interesting to see if this earlier work on
syntactic control of interference in the sequential setting, together with related developments [20, 6, 7],
can be adapted to the shared-variable parallel setting.

9. Acknowledgements

The work from which this paper grew began during a visit (July-September 1995) to the Isaac New-
ton Institute for the Mathematical Sciences (Cambridge, England), as part of a research programme on
Semantics of Computation. An early version appeared in the Proceedings of the 11th Annual IEEE Con-
ference on Logic in Computer Science (IEEE Computer Society Press, 1996) and was later incorporated
as a chapter in volume 2 ofAlgol-like Languages, edited by Peter O’Hearn and Bob Tennent. Thanks to
Peter O’Hearn, John Reynolds, Edmund Robinson, Pino Rosolini, Philip Scott, Bob Tennent, and Glynn
Winskel for helpful discussions and comments.

This work was sponsored in part by the Office of Naval Research, under Grant No. N00014-95-1-
0567, and in part by the National Science Foundation, under Grant No. CCR-9412980.

References

[1] S. Abramsky and T. P. Jensen. A relational approach to strictness analysis for higher-order polymorphic
functions. InConf. Record 18th ACM Symposium on Principles of Programming Languages, pages 49–54.
ACM Press, 1991.

[2] G. R. Andrews.Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991.
[3] S. Brookes. Full abstraction for a shared variable parallel language. InProc. 8th Annual IEEE Symposium

on Logic in Computer Science, pages 98–109. IEEE Computer Society Press, June 1993.
[4] J. Y. Halpern, A. R. Meyer, and B. A. Trakhtenbrot. The semantics of local storage, or What makes the free

list free? InACM Symposium on Principles of Programming Languages, pages 245–257, 1983.
[5] J. C. Mitchell and A. Scedrov. Notes on sconing and relators. In E. Boerger, editor,Computer Science Logic

’92, Selected Papers, volume 702 ofLecture Notes in Computer Science, pages 352–378. Springer-Verlag,
1993.

[6] P. W. O’Hearn. A model for syntactic control of interference.Mathematical Structures in Computer Science,
3(4):435–465, 1993.

[7] P. W. O’Hearn, A. Power, M. Takeyama, and R. Tennent. Syntactic control of interference revisited. In
Proceedings of11th Conference on Mathematical Foundations of Programming Semantics. Elsevier Science,
1995.

33

[8] P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-calculus.J.ACM, 47(1):167–
223, 2000.

[9] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables.J. ACM, 42(3):658–709, May 1995.
[10] P. W. O’Hearn and R. D. Tennent.Algol-like Languages. Birkhäuser, 1997.
[11] F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Languages. PhD thesis,

Syracuse University, 1982.
[12] D. Park. On the semantics of fair parallelism. In D. Bjørner, editor,Abstract Software Specifications,

volume 86 ofLecture Notes in Computer Science, pages 504–526. Springer-Verlag, 1979.
[13] U. S. Reddy. Global state considered unnecessary: object-based semantics of interference-free imperative

programming.Lisp and Symbolic Computation, 9(1):7–76, Feb. 1996.
[14] J. C. Reynolds. The essence of Algol. InAlgorithmic Languages, pages 345–372. North-Holland, Amster-

dam, 1981.
[15] J. C. Reynolds. Types, abstraction, and parametric polymorphism. InInformation Processing 83, pages

513–523. North-Holland, Amsterdam, 1983.
[16] J. C. Reynolds. Syntactic control of interference, part 2. InProceedings of the16th International Colloquium

on Automata, Languages and Programming, volume 372 ofLecture Notes in Computer Science, pages 704–
722. Springer-Verlag, Berlin, 1989.

[17] J. C. Reynolds. Syntactic control of interference. InConference Record of5th Annual ACM Symposium on
Principles of Programming Languages, pages 39–46. ACM, New York, January 1978.

[18] A. W. Roscoe.Theory and Practice of Concurrency. Prentice Hall, 1998.
[19] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pacific Journal of Mathematics, 5:285–

309, 1955.
[20] R. D. Tennent. Semantics of interference control.Theoretical Computer Science, 27:297–310, 1983.

34

10. Appendix

Here we provide some of the details behind the step-by-step semantics[−], and summarize some of
the relevant properties, each of which can be proved by structural induction.

• For each typeθ, the functor[θ] from worlds to domains is given by:

[comm]W = ℘((W ×W)∞)
[comm](f, Q) = λc.{α′ | map(f × f)α′ ∈ c & α′ respectsQ}
[comm]n(f, Q) = λc.{α′ | map(f × f)α′ ∈ c & α′ respectsQ for n steps}

[exp[τ]]W = ℘((W+ × Vτ) ∪W ω)
[exp[τ]]h = λe.{(ρ′, v) | (mapfρ, v) ∈ e} ∪ {ρ′ | mapfρ′ ∈ e ∩W ω}
[exp[τ]]nh = [exp[τ]]h

[var[τ]]W = (Vτ → [comm]W)× [exp[τ]]W
[var[τ]]h = λ(a, e).(λv.[comm]h(av), [exp[τ]]he)
[var[τ]]nh = λ(a, e).(λv.[comm]nh(av), [exp[τ]]nhe)

[θ × θ′] = [θ]× [θ′]
[θ × θ′]h = [θ]h× [θ′]h
[θ × θ′]nh = [θ]nh× [θ′]nh

[θ → θ′]W = {p(−) | ∀h : W → W ′. p(h) : [θ]W ′ → [θ′]W ′ &
∀h′ : W ′ → W ′′. [θ′]h′ ◦ ph = p(h; h′) ◦ [θ]h′ &

∀n ≥ 0. [θ′]nh
′ ◦ ph w p(h; h′) ◦ [θ]nh

′}
[θ → θ′]hp = λh′ : W ′ → W ′′.p(h; h′)
[θ → θ′]nh = [θ → θ′]h

The ordering on[comm]W and on[exp[τ]]W is set inclusion, and this is extended componentwise
and pointwise to other types as appropriate.

For each typeθ and morphismh, [θ]h is the limit of the[θ]nh, in that for alln ≥ 0, [θ]n+1h v [θ]nh,
and[θ]h = u∞n=0[θ]nh.

• For each typeθ the functor〈θ〉 from worlds to the category of complete lattices and continuous
functions is given by:

〈comm〉 = [comm]
〈exp[τ]〉 = [exp[τ]]
〈var[τ]〉W = [var[τ]]
〈θ × θ′〉 = 〈θ〉 × 〈θ′〉
〈θ → θ′〉W = {p(−) | ∀h : W → W ′. p(h) : 〈θ〉W ′ → 〈θ′〉W ′}

In each case the action of〈θ〉 on morphisms is defined exactly as for[θ].

For each worldW and each typeθ the domain[θ]W is a subset of〈θ〉W .

35

• For each typeθ the natural transformation stutθ from [θ] to [θ] is defined by:

stutcommWc = {(w, w)α | w ∈ W & α ∈ c}
stutexp[τ]We = {(wρ, v) | w ∈ W & (ρ, v) ∈ e} ∪ {wρ | w ∈ W & ρ ∈ e ∩W ω}
stutvar[τ]W (a, e) = (λv.stutcommW (av), stutexp[τ]We)
stutθ×θ′ = stutθ × stutθ′

stutθ→θ′Wp = λh : W → W ′. stutθ′W ′ ◦ (ph)

These definitions also make sense as natural transformations from〈θ〉 to 〈θ〉.

• Wheneverπ ` P :θ is valid, [P] : [π]→̇[θ] is defined as follows, by structural induction:

[1]Wu = {(w, 1) | w ∈ W}
[E1 + E2]Wu =

{(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [E1]Wu & (ρ2, v2) ∈ [E2]Wu}
∪ {ρ1ρ2 | ∃v1. (ρ1, v1) ∈ [E1]Wu & ρ2 ∈ [E2]Wu ∩W ω}
∪ {ρ ∈ W ω | ρ ∈ [E1]Wu}

[skip]Wu = {(w, w) | w ∈ W}
[X:=E]Wu =

{(map∆W ρ)β | (ρ, v) ∈ [E]Wu & β ∈ fst([X]Wu)v}
∪ {map∆W ρ | ρ ∈ [E]Wu ∩W ω}

[if B then P1 elseP2]Wu = if [B]Wu then [P1]Wu else[P2]Wu
[while B do P]Wu = ([B]ttWu · [P]Wu)∗ · [B]ffWu ∪ ([B]ttWu · [P]Wu)ω

[P1; P2]Wu = [P1]Wu · [P2]Wu
[P1‖P2]Wu = {α | ∃α1 ∈ [P1]Wu,α2 ∈ [P2]Wu. (α, α1, α2) ∈ fairmergeW}
[new[τ] ι in P]Wu = {map(fst× fst)α |

α ∈ [P](W × Vτ)([π](−× Vτ)u | ι : (a, e)) &
map(snd× snd)α interference-free}

[rec ι.P]Wu = νp : 〈θ〉W. stutθW ([P]W (u | ι:p))

In the clause for local variable declarations the “fresh variable”(a, e) ∈ [var[τ]](W×Vτ) is defined
by:

a = λv′:Vτ .{((w, v), (w, v′)) | w ∈ W & v ∈ Vτ}
e = {((w, v), v) | w ∈ W & v ∈ Vτ}.

Non-destructivity of[P], and the corresponding constructivity of stutθ ◦ [P], is needed to show that
the fixed point used to interpret[rec ι.P]Wu belongs to[θ]W , and to show naturality.

• For each typeθ we define a natural equivalence relation closθ on [θ]:

closcommW = {(c0, c1) | c†0 = c†1}
closexp[τ]W = {(e0, e1) | e†0 = e†1}
closvar[τ]W = {((a0, e0), (a1, e1)) | ∀v. (a0v, a1v) ∈ closcommW & (e0, e1) ∈ closexp[τ]W}

closθ×θ′W = {((x0, y0), (x1, y1)) | (x0, x1) ∈ closθW & (x1, y1) ∈ closθ′W}
closθ→θ′W = {(p0, p1) | ∀h : W → W ′.∀(x0, x1) ∈ closθW ′. (p0hx0, p1hx1) ∈ closθ′W ′}

For eachθ andW , closθW is an equivalence relation on[θ]W , and

∀h : W → W ′. ∀(x0, x1) ∈ closθW. ([θ]hx0, [θ]hx1) ∈ closθW
′.

36

• Wheneverπ ` P :θ is valid,

(u0, u1) ∈ closπW ⇒ ([P]Wu0, [P]Wu1) ∈ closθW.

• For all typesθ, the natural transformationθ† : [θ]→̇[[θ]] is given by:

comm†Wc = c†

exp[τ]†We = e†

var[τ]†(a, e) = (λv. comm†W (av), exp[τ]†We)
(θ × θ′)†W (p0, p1) = (θ†Wp0, θ

′†Wp1)
(θ → θ′)†Wp = λh : W → W ′. λx : [[θ]]W ′. θ′†W ′(phx).

The connection betweenθ† and closθ is expressed by:

closθW = {(p0, p1) | θ†p0 = θ†p1}.

Moreover, for all typesθ, θ† ◦ stutθ = θ†.

• Whenπ ` P : θ is valid, [[P]]W (π†u) = θ†W ([P]Wu).

37

