The essence of Parallel Algol

Stephen Brookes

Department of Computer Science Carnegie Mellon University

LICS '96

ESSENTIALS

- PARALLEL ALGOL =
 shared-variable parallel programs
 + call-by-name λ-calculus
- simply typed

$$\theta ::= \exp[\tau] \mid var[\tau] \mid comm$$
 $\mid (\theta \to \theta') \mid \theta \times \theta'$ phrase types
 $\tau ::= int \mid bool$ data types

recursion and conditional at each type

cf. Reynolds: The essence of ALGOL

RATIONALE

- Can write parallel programs that cooperate by reading and writing shared memory
- Procedures can encapsulate parallel idioms (e.g. mutual exclusion, readers—writers)
- Local variable declarations can be used to limit the scope of interference

INTUITION

Procedures and parallelism are orthogonal:

- should combine smoothly
- semantics should be "modular"
- should obtain a conservative extension

MUTUAL EXCLUSION

```
\begin{array}{l} \textbf{procedure} \ mutex(n_1,c_1,n_2,c_2);\\ \textbf{boolean} \ s;\\ \textbf{begin}\\ s:=&\textbf{true};\\ \textbf{while} \ \textbf{true} \ \textbf{do}\\ (n_1; \ \textbf{await} \ s \ \textbf{then} \ s:=&\textbf{false};\\ c_1; \ s:=&\textbf{true})\\ \parallel \textbf{while} \ \textbf{true} \ \textbf{do}\\ (n_2; \ \textbf{await} \ s \ \textbf{then} \ s:=&\textbf{false};\\ c_2; \ s:=&\textbf{true})\\ \textbf{end} \end{array}
```

- Encapsulates common use of a semaphore
- Correctness relies on *locality* of s
- Independent of n_i and c_i

OUTLINE of SEMANTICS

• Traditional "global state" models fail to validate natural equivalences, e.g.

$$\mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P = P$$

when ι does not occur free in P.

- We adapt "possible worlds" model of sequential ALGOL to the parallel setting...
- ... and simultaneously extend our "transition trace" semantics (LICS'93) to include procedures and recursion.
- We adapt a "relationally parametric" model of sequential ALGOL to the parallel setting...
- ... and introduce a form of parametric reasoning for shared-variable programs.

cf. Reynolds, Oles *cf.* O'Hearn, Tennent

CATEGORY of WORLDS

- Objects are countable sets (of "allowed states")
- Morphisms are "expansions":

$$h = (f, Q) : W \to X$$

where

- -f is a function from X to W
- -Q is an equivalence relation on X
- -f puts each Q-class in bijection with W

INTUITION

- ullet X is a set of "large" states extending the "small" states of W
- f extracts the "small" part of a state
- Q identifies states with the same extra parts

cf. Frank Oles' Ph.D. thesis

EXPANSIONS

ullet For each pair of objects W and V there is a canonical expansion morphism

$$-\times V:W\to W\times V$$

given by

$$- \times V = (\text{fst}: W \times V \to W, Q)$$

where

$$((w_0, v_0), (w_1, v_1)) \in Q \iff v_0 = v_1$$

• Every morphism is such an expansion composed with an isomorphism.

INTUITION

An expansion $- \times V_{\tau}$ models the introduction of a local variable of datatype τ .

SEMANTICS

• Types denote functors from worlds to domains:

$$\llbracket \theta \rrbracket : \mathbf{W} \to \mathbf{D}$$

• Phrases denote natural transformations:

$$\llbracket P \rrbracket : \llbracket \pi \rrbracket \xrightarrow{\cdot} \llbracket \theta \rrbracket$$

i.e. when $h: W \to X$,

commutes.

When h is an expansion naturality enforces locality.

CARTESIAN CLOSURE

- ullet The functor category ${\bf D^W}$ is cartesian closed.
- Can use ccc structure to interpret arrow types.

Procedures of type $\theta \to \theta'$ denote, at world W, natural families of functions p(-):

• When $h: W \to X$ and $h': X \to Y$,

$$\begin{bmatrix} \theta \end{bmatrix} X & p(h) & \theta' \end{bmatrix} X \\
\begin{bmatrix} \theta \end{bmatrix} h' & & & & & & & & & \\ & \theta \end{bmatrix} Y & & & & & & & & \\ & p(h; h') & & & & & & & \end{bmatrix} \theta' \end{bmatrix} Y$$

commutes.

INTUITION

Procedures can be called at expanded worlds, but naturality enforces locality constraints.

COMMANDS

• Commands denote sets of *traces*:

$$\llbracket \mathbf{comm} \rrbracket W = \wp^{\dagger}((W \times W)^{\infty})$$

- Trace sets are *closed*, e.g.
 - $-\alpha\beta \in c \& w \in W \implies \alpha(w, w)\beta \in c$
 - $-\alpha(w, w')(w', w'')\beta \in c \implies \alpha(w, w'')\beta \in c$
- When $h: W \to X$, $[\![\mathbf{comm}]\!]h$ converts a trace set over W to a trace set over X:

$$\begin{aligned} & [\![\mathbf{comm}]\!](f,Q)c = \\ & \{\beta \mid \mathrm{map}(f \times f)\beta \in c \ \& \ \mathrm{map}(Q)\beta \} \end{aligned}$$

INTUITION

- A trace $(w_0, w_0')(w_1, w_1') \dots (w_n, w_n')$ represents a fair interactive computation.
- Each step (w_i, w'_i) represents a finite sequence of atomic actions.
- [comm]hc behaves like c on the W-component of state and has no effect elsewhere.

EXPRESSIONS

Expressions denote trace sets:

$$[\![\exp[\tau]]\!]W = \wp^{\dagger}(W^{+} \times V_{\tau} \cup W^{\omega})$$

$$[\![\exp[\tau]]\!](f,Q)e = \{(\rho',v) \mid (\operatorname{map} f \rho', v) \in e\} \\ \cup \{\rho' \mid \operatorname{map} f \rho' \in e \cap W^{\omega}\}$$

VARIABLES

"Object-oriented" interpretation \hat{a} la Reynolds: variable = acceptor + expression

$$\llbracket \mathbf{var}[\tau] \rrbracket W = (V_{\tau} \to \llbracket \mathbf{comm} \rrbracket W) \times \llbracket \mathbf{exp}[\tau] \rrbracket W$$

RECURSION

Requires a careful use of greatest fixed points:

- Embed $\llbracket \theta \rrbracket W$ in a complete lattice $\llbracket \theta \rrbracket W$ (like $\llbracket \theta \rrbracket W$ but without closure and naturality)
- \bullet Generalize semantic definitions to [P]W.
- Introduce natural transformations

$$\operatorname{stut}_{\theta} : [\theta] \xrightarrow{\cdot} [\theta] \quad \operatorname{clos}_{\theta} : [\theta] \xrightarrow{\cdot} [\theta]$$

• Can then define $[\![\mathbf{rec}\ \iota.P]\!]Wu$ to be $\mathrm{clos}_{\theta}W(\nu x.\mathrm{stut}_{\theta}W([P]W(u\mid\iota:x)))$

EXAMPLE

• Divergence = infinite stuttering:

$$[\![\mathbf{rec}\ \iota.\iota]\!]Wu = (\nu c.\{(w,w)\alpha \mid \alpha \in c\})^{\dagger}$$
$$= \{(w,w) \mid w \in W\}^{\omega}$$

LAWS

• This semantics validates:

$$\begin{aligned} & \mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P' = P' \\ & \mathbf{new}[\tau] \ \iota \ \mathbf{in} \ (P \| P') = (\mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P) \| P' \\ & \mathbf{new}[\tau] \ \iota \ \mathbf{in} \ (P; P') = (\mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P); P' \end{aligned}$$

when ι does not occur free in P'.

• Also (still) validates:

$$(\lambda \iota : \theta.P)(Q) = P[Q/\iota]$$

 $\operatorname{rec} \iota.P = P[\operatorname{rec} \iota.P/\iota]$

• Orthogonal combination of laws of shared-variable programming with laws of λ -calculus.

PROBLEM

Semantics fails to validate

 $\mathbf{new[int]} \ \iota \ \mathbf{in} \ (\iota := 0; \ P(\iota := \iota + 1)) = P(\mathbf{skip}),$

where P is a free identifier of type **comm** \rightarrow **comm**.

REASON

- Equivalence proof relies on relational reasoning.
- Naturality does not enforce enough constraints on procedure meanings.

SOLUTION

- Same problem arose in sequential setting.
- Develop a relationally parametric semantics...

cf. O'Hearn and Tennent

PARAMETRIC MODEL

- Category of relations $R: W_0 \leftrightarrow W_1$
- A morphism from R to S is a pair (h_0, h_1) of morphisms in \mathbf{W} such that

$$W_0 \xrightarrow{h_0} X_0$$

$$R \downarrow \qquad \downarrow S$$

$$W_1 \xrightarrow{h_1} X_1$$

• Types denote parametric functors, e.g.

$$- \text{ if } R : W_0 \leftrightarrow W_1, \ [\![\theta]\!] R : [\![\theta]\!] W_0 \leftrightarrow [\![\theta]\!] W_1 \\ - (d_0, d_1) \in [\![\theta]\!] R \Rightarrow ([\![\theta]\!] h_0 d_0, [\![\theta]\!] h_1 d_1) \in [\![\theta]\!] S$$

• Phrases denote *parametric* natural transformations:

$$(u_0, u_1) \in [\pi]R \implies ([P]W_0u_0, [P]W_1u_1) \in [\theta]R$$

• The *parametric functor* category is cartesian closed.

COMMANDS

When $R: W_0 \leftrightarrow W_1$ define:

$$(c_0,c_1) \in \llbracket \mathbf{comm} \rrbracket R \iff$$

$$\forall (\rho_0,\rho_1) \in \mathrm{map}(R).$$

$$[\forall \alpha_0 \in c_0. \ \mathrm{map} \ \mathrm{fst} \ \alpha_0 = \rho_0 \Rightarrow$$

$$\exists \alpha_1 \in c_1. \ \mathrm{map} \ \mathrm{fst} \ \alpha_1 = \rho_1 \ \&$$

$$(\mathrm{map} \ \mathrm{snd} \ \alpha_0, \ \mathrm{map} \ \mathrm{snd} \ \alpha_1) \in \mathrm{map}(R)]$$

$$\&$$

$$[\forall \alpha_1 \in c_1. \ \mathrm{map} \ \mathrm{fst} \ \alpha_1 = \rho_1 \Rightarrow$$

$$\exists \alpha_0 \in c_0. \ \mathrm{map} \ \mathrm{fst} \ \alpha_0 = \rho_0 \ \&$$

$$(\mathrm{map} \ \mathrm{snd} \ \alpha_0, \ \mathrm{map} \ \mathrm{snd} \ \alpha_1) \in \mathrm{map}(R)].$$

This is parametric!

INTUITION

When related commands are started and interrupted in related states their responses are related.

LAWS

As before,

$$\begin{aligned} & \mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P' = P' \\ & \mathbf{new}[\tau] \ \iota \ \mathbf{in} \ (P \| P') = (\mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P) \| P' \\ & \mathbf{new}[\tau] \ \iota \ \mathbf{in} \ (P; P') = (\mathbf{new}[\tau] \ \iota \ \mathbf{in} \ P); P' \end{aligned}$$
 when ι does not occur free in P' .

• As before,

$$(\lambda \iota : \theta.P)Q = [Q/\iota]P$$

 $\mathbf{rec} \ \iota.P = [\mathbf{rec} \ \iota.P/\iota]P$

• In addition,

new[int]
$$\iota$$
 in $(\iota:=1; P(\iota)) = P(1)$
new[int] ι in $(\iota:=0; P(\iota:=\iota+1)) = P(\text{skip}),$
relying crucially on parametricity.

EXAMPLE

new[int]
$$x$$
 in $(x:=0; P(x:=x+1; x:=x+1);$ if $even(x)$ then diverge else skip)

and

$$(x:=0; P(x:=x+2);$$

if even(x) then diverge else skip)

are equivalent in sequential ALGOL but not equivalent in PARALLEL ALGOL.

The relation

$$(w, (w', z)) \in R \iff w = w' \& even(z)$$

works for sequential model but not for parallel.

CONCLUSIONS

- Can combine parallelism and procedures smoothly:
 - faithful to the essence of ALGOL
 - allows formalization of parallel idioms
 - retains laws of component languages
- Semantics by "modular" combination:
 - traces + possible worlds
 - traces + relational parametricity

• Advantages:

- full abstraction at ground types
- supports common reasoning principles:
 - o representation independence
 - o global invariants
 - o assumption—commitment

• Limitations:

does not build in irreversibility of state change

SEMANTICS of skip

Finite stuttering:

$$[skip]Wu = \{(w, w) \mid w \in W\}^{\dagger}$$

= $\{(w, w) \mid w \in W\}^{+}$

ASSIGNMENT

Non-atomic; source expression evaluated first:

$$\begin{split} \llbracket I := & E \rrbracket W u = \\ & \{ (\mathrm{map} \Delta_W \rho) \beta \mid (\rho, v) \in \llbracket E \rrbracket W u \\ & \& \ \beta \in \mathrm{fst}(\llbracket I \rrbracket W u) v \}^\dagger \\ & \cup \{ \mathrm{map} \Delta_W \rho \mid \rho \in \llbracket E \rrbracket W u \cap W^\omega \}^\dagger. \end{split}$$

PARALLEL COMPOSITION

$$[P_1||P_2]|Wu = \{\alpha \mid \exists \alpha_1 \in [P_1]|Wu, \ \alpha_2 \in [P_2]|Wu. \ (\alpha_1, \alpha_2, \alpha) \in fairmerge_{W \times W}\}^{\dagger}$$

where

$$fairmerge_{A} = both_{A}^{*} \cdot one_{A} \cup both_{A}^{\omega}$$

$$both_{A} = \{(\alpha, \beta, \alpha\beta), (\alpha, \beta, \beta\alpha) \mid \alpha, \beta \in A^{+}\}$$

$$one_{A} = \{(\alpha, \epsilon, \alpha), (\epsilon, \alpha, \alpha) \mid \alpha \in A^{\infty}\}$$

LOCAL VARIABLES

$$\begin{split} \llbracket \mathbf{new}[\tau] \; \iota \; \mathbf{in} \; P \rrbracket W u &= \{ \mathrm{map}(\mathrm{fst} \times \mathrm{fst}) \alpha \; | \\ \mathrm{map}(\mathrm{snd} \times \mathrm{snd}) \alpha \; \mathrm{interference\text{-}free} \; \& \\ \alpha &\in \llbracket P \rrbracket (W \times V_\tau) (\llbracket \pi \rrbracket (- \times V_\tau) u \; | \; \iota : (a,e)) \} \end{split}$$

- No external changes to local variable
- $(a, e) \in [var[\tau]](W \times V_{\tau})$ is a "fresh variable" corresponding to the V_{τ} component of the state

AWAIT

$$\begin{aligned} & [\![\mathbf{await} \ B \ \mathbf{then} \ P]\!] W u = \\ & \{(w,w') \in [\![P]\!] W u \mid (w,\mathsf{tt}) \in [\![B]\!] W u \}^\dagger \\ & \cup \{(w,w) \mid (w,\mathsf{ff}) \in [\![B]\!] W u \}^\omega \\ & \cup \{\mathsf{map} \Delta_W \rho \mid \rho \in [\![B]\!] W u \cap W^\omega \}^\dagger. \end{aligned}$$

- \bullet P is atomic, enabled only when B true.
- Busy wait when B false.

λ-CALCULUS

$$[\![\iota]\!] W u = u \iota$$

$$[\![\lambda \iota : \theta.P]\!] W u h a = [\![P]\!] W'([\![\pi]\!] h u \mid \iota : a)$$

$$[\![P(Q)]\!] W u = [\![P]\!] W u(\mathrm{id}_W)([\![Q]\!] W u),$$

• This is the standard interpretation, based on the ccc structure of the functor category.