The essence of
PARALLEL ALGOL

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

LICS "96

ESSENTIALS

e PARALLEL ALGOL =

shared-variable parallel programs
+ call-by-name A-calculus

e simply typed
0 ::=exp|r| | var[r] | comm
| (9 — (9/) | A phrase types
T = Int | bool data types

e recursion and conditional at each type

cf. Reynolds: The essence of ALGOL

RATIONALE

e Can write parallel programs that cooperate
by reading and writing shared memory

e Procedures can encapsulate parallel idioms
(e.g. mutual exclusion, readers—writers)

e [_ocal variable declarations can be used to
limit the scope of interference

INTUITION

Procedures and parallelism are orthogonal:
e should combine smoothly
e semantics should be “modular”

e should obtain a conservative extension

MUTUAL EXCLUSION

procedure mutex(ny, ci,n9, c9);
boolean s:
begin
s.=true;
while true do
(nq; await s then s:=false;
c1; s:=true)
| while true do
(no; await s then s:=false;
co; s:=true)
end

e Encapsulates common use of a semaphore
e Correctness relies on locality of s

e Independent of n; and ¢;

OUTLINE of SEMANTICS

e Traditional “global state” models fail to validate
natural equivalences, e.g.

new|r|cin P = P

when ¢ does not occur free 1in P.

e We adapt “possible worlds” model of sequential
ALGOL to the parallel setting. . .

9

e ... and simultaneously extend our “transition trace’
semantics (LICS’93) to include procedures and
recursion.

e We adapt a “relationally parametric” model of
sequential ALGOL to the parallel setting. ..

e ...and introduce a form of parametric reasoning
for shared-variable programs.

cf. Reynolds, Oles
cf. O’Hearn, Tennent

CATEGORY of WORLDS

e Objects are countable sets (of “allowed states”™)
e Morphisms are “expansions’:
h=(fQ)W—=X
where

— f 1s a function from X to W
— () 1s an equivalence relation on X
— f puts each ()-class in bijection with 1V

INTUITION

e X 1s asetof “large” states extending the “small”
states of W/

e f extracts the “small” part of a state

e () identifies states with the same extra parts

cf. Frank Oles’ Ph.D. thesis

EXPANSIONS

e For each pair of objects W and V' there is a
canonical expansion morphism

—xV: W -WxV
given by
—xV=>{fst: W xV =W, Q)

where

((wo, vo), (w1,v1)) € Q <= vp =11

e Every morphism is such an expansion composed
with an 1Isomorphism.

INTUITION

An expansion — X V- models the introduction of
a local variable of datatype 7.

SEMANTICS

e Types denote functors from worlds to domains:

0] : W — D

e Phrases denote natural transformations:

[P] - [=] — [6]
1.e. when h: W — X,

w PV g
[x]h [6]h
[7] X PIX [6] X
commutes.

When h is an expansion naturality enforces locality.

CARTESIAN CLOSURE

e The functor category DW is cartesian closed.

e Can use ccc structure to interpret arrow types.

Procedures of type § — 6’ denote, at world W,
natural families of functions p(—):

eWhenh: W — Xandh' : X =Y,

px P e x
0]4" 014
i L
commutes.
INTUITION

Procedures can be called at expanded worlds,
but naturality enforces locality constraints.

9

COMMANDS
e Commands denote sets of traces:
[comm]W = o (W x W)>)
e Trace sets are closed, e.g.

—afeckweW = alw,w)bec
—o(w,w (W, wBecec = alw,w’)bec

e When h : W — X, [comm]|h converts a trace
set over W to a trace set over X ;

[comm](f,Q)c =
{B | map(f x f)B € c& map(Q)3}

INTUITION

e A trace (wq, wj)(wy, w]) ... (wp,w)) represents
a fair interactive computation.

e Each step (w;, w!) represents a finite sequence
of atomic actions.

e [comm]|/c behaves like ¢ on the W-component
of state and has no effect elsewhere.

10

EXPRESSIONS

Expressions denote trace sets:
[exp[r]]W = oI(WT x V; U W¥)

[exp[7]](f, Q)e = {(¢/,v) | (mapfp’,v) € e}
U{p | mapfp' e en W}

VARIABLES

“Object-oriented” interpretation a la Reynolds:

variable = acceptor + expression

[var|7||W = (V; — [comm|WV) x [exp|7||W

11

RECURSION

Requires a careful use of greatest fixed points:

e Embed [0]WW in a complete lattice [9]WW/
(like [#]W but without closure and naturality)

e Generalize semantic definitions to |P|WV.
e Introduce natural transformations

stuty : [0] — 0] closy : |0] = 0]

e Can then define [rec ¢.P|WWu to be
closgW (va.stutyW ([PIW (u | ¢ : x)))

EXAMPLE
e Divergence = infinite stuttering:

[rec L.]Wu = (ve{(w, w)a | a €)l
= {(w,w) | we W}

12

LAWS

e This semantics validates:

new
new
new

7] vin P’ = P’
7] vin (P||P") = (new[r] ¢ in P)|| P’

| vin (P; P') = (new[r] ¢ in P); P’

T

when ¢ does not occur free in P’.

e Also (still) validates:

(Ae:0.P)(Q) = PQ/]
rec ..P = Plrec 1.P/\]

e Orthogonal combination of laws of shared-variable
programming with laws of A-calculus.

13

PROBLEM

Semantics fails to validate
new|int| . in (1:=0; P(t:=t+ 1)) = P(skip),

where P 1s a free 1identifier of type comm — comm.

REASON

e Equivalence proof relies on relational reason-
ing.

e Naturality does not enforce enough constraints
on procedure meanings.

SOLUTION

e Same problem arose in sequential setting.

e Develop a relationally parametric semantics. . .

cf. O’Hearn and Tennent

14

PARAMETRIC MODEL

e Category of relations R : Wy «— W;

e A morphism from R to .S is a pair (hg, hq) of
morphisms in W such that

w, o, x,
R| |S

. X
Wi hy o

e Types denote parametric functors, e.g.
—if R: Wy <~ Wy, [0|R : [0|Wy <« [0]W]
~ (do, d1) € [0]R = ([0]hodo, [0]hady) € [6]S

e Phrases denote parametric natural transforma-
tions:

(ug, u1) € [7]R = ([P]Wouo, [P[Wru1) € [0]R

e The parametric functor category 1s cartesian closed.

15

COMMANDS

When R : Wy <« Wy define:
(Co, 01> S [[comm]]R <~

V(po, p1) € map(R).
[VO&Q € co. map fst ag = pg =
Jag € ci. map fst g = p1 &
(map snd a, map snd a;j) € map(R)
&
Vag € cp. map fst o] = p; =
Jag € cg. map fst ag = pg &
(map snd «, map snd «1) € map(R)].

This is parametric!

INTUITION

When related commands are started and
interrupted 1n related states their responses
are related.

16

LAWS

e As before,
new|r| cin P’ = P’
new|7| . in (P||P’) = (new|[r] ¢ in P)|| P’
new|7r| ¢ in (P; P') = (new[r] ¢ in P); P’

when ¢ does not occur free in P’.

e As before,

(A:0.P)Q = |Q/|P
rec ..P = [rec t..P/.|P

e In addition,

newlint| . in (v:=1; P(1)) = P(1)
new|int| ¢ in (1:=0; P(v.=t+ 1)) = P(skip),

relying crucially on parametricity.

17

EXAMPLE

new|int| = in
(2:=0; P(r:=0+ 1;2:=0+1);
if even(x) then diverge else skip)

and
new|int| = in
(x:=0; P(x:=x+ 2);
if even(z) then diverge else skip)

are equivalent in sequential ALGOL
but not equivalent in PARALLEL ALGOL.

The relation
(w, (W', 2)) e R <= w =& even(z)

works for sequential model but not for parallel.

18

CONCLUSIONS

e Can combine parallelism and procedures smoothly:

— faithful to the essence of ALGOL
— allows formalization of parallel idioms
— retains laws of component languages

e Semantics by “modular” combination:

— traces + possible worlds
— traces + relational parametricity

e Advantages:

— full abstraction at ground types
— supports common reasoning principles:

o representation independence
o global invariants
o assumption—commitment

e [.1imitations:

— does not build in 1irreversibility of state change

19

SEMANTICS of skip

Finite stuttering:

[skip]Wu = {(w,w) | we W
= {(w,w) |weW}T
ASSIGNMENT

Non-atomic; source expression evaluated first:
[=E|Wu =
{(mapAyp)8 | (p,v) € [E]JWu
& 3 e fst([I[Wu)v}!
U {mapAyyp | p € [E]Wu N WY,

20

PARALLEL COMPOSITION

[P Po]Wu = {a | 3oy € [A]Wu, ag € [B]Wu.
(a1, a2, @) € fairmergeyy .y}
where

fairmerge 4 = both’y - one 4 U both"y
bothp = {(c, 8, a3), (e, B, Bar) | o, B € AT}

LOCAL VARIABLES

[new|7| ¢ in P|Wwu = {map(fst x fst)« |
map(snd x snd)« interference-free &
a e [Pl(W x Va)([r](—= x V)u | v: (a,e))}

e No external changes to local variable

e (a,e) € |var|T||(W x V;)is a “fresh variable”

corresponding to the V- component of the state

21

AWAIT

lawait B then P|Wu =
{(w,w') € [P]Wu | (w,tt) € [B]Wu}!
U{(w,w) | (w, £f) € [B]Wu}¥
U {mapAyyp | p € [B]Wun W},

e P 1s atomic, enabled only when B true.

e Busy wait when B false.

A-CALCULUS

[L]Wu = ue
[\e : 0.P|Wuha = [P]W([x]hu]| ¢ : a)

[P(Q)[Wu = [P]Wulidy)([Q[Wu),

e This 1s the standard interpretation, based on the
ccc structure of the functor category.

22

