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ABSTRACT
Astronomy increasingly faces the issue of massive datasets.
For instance, the Sloan Digital Sky Survey (SDSS) has so
far generated tens of millions of images of distant galax-
ies, of which only a tiny fraction have been morphologically
classified. Our aim is to reduce each dataset image to a
small set of informative features, in this case by using a
known parameterized model of the image contents, and re-
placing each image with its best-fit parameters. This is a
standard nonlinear regression problem, whose challenges are
fourfold, 1) the atmospheric and mirror-based distortion suf-
fered by each image, 2) large numbers of local minima, 3)
large amounts of noise, and 4) the speed required to cope
with the massiveness of the datasets.

Our strategy is to use the known model’s eigenimages to
form a new basis, then to map both the target images and
the model parameters into this eigenspace, and finally to
find the best image-to-parameter matches within the space.
To do this, we create a database of many random sets of pa-
rameters and their locations in eigenspace, thereby making
the fitting process a nearest-neighbor search. Complications
arise in the form of missing data and heteroskedasticity,
both of which are addressed with weighted linear regres-
sion. Compared to existing techniques, speedups achieved
are between 2 and 3 orders of magnitude. This enables the
analysis of the entire SDSS dataset, itself a scientific wealth.

1. INTRODUCTION
In order to understand the formation of large scale struc-
tures in the universe, a necessary step is the understanding
of the varied galaxy morphologies. This is still an open area
of research in astronomy; it is not known how galaxy shapes
arise. The distribution of shapes and their correlation with

other measured properties of galaxies is important to gener-
ating and testing hypotheses about the basic nature of the
universe. This endeavor requires extracting various types of
information from large numbers of faint and noisy images
of galaxies, e.,g., whether the galaxy is spherical, elliptical,
or disk-shaped, the size of the central bulge relative to the
size of the disk, etc. Some examples of such images are in
Figure 1.

There are significant obstacles, however, to fitting these
models. The most challenging is the Point Spread Function
(PSF.) Taking images of galaxies from ground-based tele-
scopes involves having the image smeared by a turbulent
atmosphere, and distortion also results from lens imperfec-
tions (telescope, filters, mirrors, lenses, etc.) All these effects
can be summarized in a PSF, which in this study takes the
form of an image, e.g., a two-dimensional Gaussian. As its
name implies, the PSF is the spread that a point source of
light would display had it been centered on the central de-
tector/pixel. The PSF can also be viewed as a probability
mass function for the arrival of a single photon at a given
pixel, given that the photon was initially aimed at the center
pixel.

Large numbers of local minima are another feature of this
problem. The noise of the images and a sometimes too-
flexible model make finding the correct fit difficult. Some
form of global search is generally necessary, and this is quite
time-consuming. The most trusted of the current 2-d mor-
phology techniques is a simulated annealing algorithm, which
is robust to local minima, but is slower due to its caution.

The state of the art is to use standard nonlinear regression
techniques to fit these images, such as simulated annealing
[6] and Levenberg-Marquardt [4]. These approaches are all
effective, but time-consuming, e.g., roughly 1-3 minutes per
64 × 64 image on a 1.4 GHz pentium desktop, so 10 mil-
lion galaxies would require about 20 years of CPU time.
For higher resolution images, performance rapidly degrades.
The code introduced in this paper performs the same fits in
less than a second, and is robust to changes in resolution
of the target image. Other machine learning approaches to
similar problems have analyzed the use of EM in classifying
certain “bent-double” galaxies [2] with good success.



Figure 1: Galaxy images taken from the Sloan Digital Sky Survey

2. PROBLEM
The general task is to fit a model to data, in this case the
data is in the form of images of galaxies. In the galactic
morphology task (herein referred to as the GM task), the
model is a function whose 12 free parameters are the mor-
phological characteristics of the galaxy, e.g., shape, size, and
location. This task is described in detail in [6]. We assume
all images are square with N pixels. Notationally, all im-
ages are represented as vectors, e.g., the columns of the im-
age are vertically concatenated. All vectors are boldfaced or
denoted with an overhead arrow (~·).

2.1 Generative Model
The most basic assumption that we make is that the target
image can be modelled. Here we use a model consisting of
set of four main elements: {ψ,Θ,Π, ε}:

• ψ is a sum of c component nonlinear functions: ψ(θ;π) =∑c
i ψi(θi;π). In the galactic morphology task, ψ is a

standard surface brightness function which has three
components: a disk, a bulge, and constant background.

• Θ is the space of possible values for the fittable param-
eters of ψ. In the GM task, these parameters are disk
flux, disk angle, disk inclination, bulge flux, bulge xy
location, etc. (see Appendix.)

• Π is the space of possible values for the fixed parame-
ters of ψ. These parameters are those that vary from
regression to regression, but are not controllable or
fittable. For the galactic morphology problem, this is
the PSF, π, since the PSF varies from image to image.
The Π space contains all the PSFs that could possibly
occur.

• ε is a noise model which also varies from regression to
regression. For this galactic morphology problem, we
assume additive, zero-mean gaussian noise, where εi

is the variance of the noise at i-th pixel of the model
image. This allows for heteroscedastic noise. For sim-
plicity, the ε component will be omitted in the text
where it is unnecessary.

The elements of the model above are illustrated in Figure 2.
The relationships between the elements are also described
in the following equation:

ψ(θ,π) =

c∑

i

ψi(θ,π) + ε (1)

where θ ∈ Θ. The model describes the probability distribu-
tion function for the image; each pixel has an independent
Gaussian distribution: pixel i is distributed asN (ψ(θ,π)i, εi).
This is a distribution over model’s output space. In the GM
task, the output space is equal to R

N .

2.1.1 The Function ψ
The model ψ is a function on a 2-dimensional plane which
indicates the amount of flux received at a given point on the
plane. The general shape of the function is a sharp peak at
the center of the galaxy, tapering off with distance. The disk
tapers off exponentially with respect to distance from the
center of the galaxy, and the bulge tapers off exponentially
w.r.t. the cube root of the distance. The appendix contains
the details of the function and its motivation. Importantly,
the model is not smooth and has no derivatives at (0, 0).
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Figure 2: The generative model. Parameters from the space Θ × Π are mapped into image space, R
N . The

error model ε describes the variance in each of the N dimensions of R
N .

There is a single sharp spike at this location, which creates
difficulties later on.

2.1.2 The Fixed Parameter(s) π
In the GM task, the relationship between the fixed param-
eter π (the PSF) and the model ψ is one of convolution1:

ψ(θ,π) = π ? ψ(θ) (2)

Since π is an image of the PSF, convolving an image with a
particular π is equivalent to blurring with a particular atmo-
spheric condition and/or mirror imperfection. Fortunately,
convolution is a linear operation, since each resulting pixel is
a linear combination of all other pixels. Hence, Equation 2
can be rewritten as

ψ(θ,π) = π ? ψdisk(θ) + π ? ψbulge(θ) (3)

Due to the physical interpretation of π, all the pixels must
be nonnegative and sum to one. Since light passes through
the atmosphere and mirror before hitting the detector, the
PSF is convolved with the image before the Poisson noise is
added, as is reflected in Equation 1.

2.1.3 The Noise Model ε
The noise model ε in general will be different for every tar-
get image. The noise in the image comes primarily from a
Poisson distribution. The brightness function, ψ(θ), only
describes the expected number of photons or counts at the
detector/pixel during the exposure. The actual number of
photons or “counts” that arrive at pixel i will follow a Pois-
son distribution whose mean and variance are equal to the
value of ψ(θ)i. This results in an image whose error vari-
ance at a pixel is proportional to the amount of signal at
that pixel. This heteroscedasticity must be accounted for in
the regression. We consider the Poisson to be well approx-
imated in this case with a Gaussian distribution, since the
number of photons is usually greater than 30 in the more
influential central pixels.

The noise model can also be used to effect a “mask” for the
input image. If the galaxy of interest is close to another

1The convolution operator is denoted as a ?. Additionally,
since the representation of all images are as vectors, any
convolution between two vectors is assumed to take place
with each vector’s image equivalent.

galaxy, or artifacts are present in the image, then a mask
can be used to specify which pixels are to be fit. By setting
a pixel’s ε value to be infinite, bad pixels can be masked out
entirely.

2.2 Objective
The task is to take a given target image y, PSF π, and
error model ε, and to find a parameter vector θ∗ ∈ Θ that,
when fed to the generative model of Equation 1, produces an
image close to y. By ‘close’ we mean to minimize the most
likely distance between the two images, taking into account
the noise model. This distance function will be denoted by
χ2.

χ2(y, θ,π, ε) =

N∑

i

(yi − ψ(θ,π)i)
2

ε2

i

(4)

This χ2 is the distance, between the target image y and the
image ψ(θ,π), taking into account the known noise proper-
ties of the target image.

3. NONPARAMETRIC REGRESSION
The algorithm must be able to invert the galaxy image
model and to deconvolve images that have been blurred by
a PSF, and it must be able to do so quickly. The most suc-
cessful algorithm type we found has been instance-based, the
nearest neighbor algorithm. This approach creates a map-
ping from galaxy image space R

N to parameter space Θ by
remembering and generalizing from many previous Θ-to-RN

mappings (via prototypes).

We are thus performing a parametric regression using a non-
parametric method. Several characteristics of the galaxy
morphology problem motivated this choice, though primar-
ily it is due to two reasons: 1) the model is expensive to
evaluate because the PSF convolution requires a Fourier
transform of the model (Equation 2) for every convolution.
Iterative techniques need to evaluate the generative model
at every step, so search becomes costly, and 2) the number
of local minima is large, so most descent-based methods are
inappropriate.

3.1 Brute Force
For purposes of exposition, we will start with the most di-
rect approach. The prototypes that will be used to map
from images to parameters are the members of the set of
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Figure 3: The first 8 eigengalaxies obtained from galaxies which have been convolved with a Gaussian PSF
with 2-pixel standard deviation.

prototypes {(xi, θi,πi)}
p
i=1

, wherein xi = ψ(θi,πi) and p
is the number of prototypes. We generate this set by sam-
pling uniformly from Θ and Π. This set of prototypes can
more conveniently be discussed later if we line up the image
vectors as the columns of a single matrix, X, so that the
i-th column of X is the i-th prototype image.

The regression task in this context is to find θ∗ by finding
the smallest distance between the target image and each of
the prototypes,

i∗ = argmini=1..p

[
χ2(xi,y, ε)

]
(5)

θ
∗ = θi∗ (6)

This is the core strategy of this regression algorithm. How-
ever, there are clear barriers to overcome. First, the dimen-
sionality of the prototypes/input space is very high; one di-
mension per pixel for a 32×32 image is equal to 1024 dimen-
sions. Comparing prototypes to incoming queries will thus
be expensive. Second, the presence of the uncontrollable
fixed parameters π means that a large number of prototypes
will be required to adequately sample the parameter space
Θ × Π. However, nearest neighbor search can exploit two
strategies, which account for most of the speed gains made,
1) Principal Components Analysis, 2) PSF-local Principal
Component Analysis, and 3) prototype decomposition.

4. EIGENSPACE CREATION
One problem with working in image space R

N is the compu-
tational load of so many dimensions, one per pixel. However,
ignoring noise, the model {ψ,Θ,Π} creates images that can
at most occupy a manifold whose dimension is equal to the
number of model parameters. Ideally, one should focus one’s
efforts in the most relevant subspace and ignore the rest.

Principal Components Analysis (PCA) is often used to do
just this, by determining the linear subspace in which most
of the variance resides.

To determine the best subspace of the model’s manifold,
{ψ(θ,π) | θ ∈ Θ,π ∈ Π} in R

N , we would like to know the
shape of the manifold. One measure of this shape is the
covariance between the values of each dimension (pixel) of
the images that the model produces.

UUT =

∫

Θ

∫

Π

[ψ(θ,π) − µ] [π ? ψ(θ,π) − µ]T dπdθ (7)

where µ is the mean model image over all θ and π. This is
the pixel covariance matrix, UUT , whose ij-th element is
the covariance between pixel i and pixel j in the model.
Once the pixel covariance is known, we can use PCA to
determine an “optimal” linear subspace of R

N that
captures the most model variance per subspace dimension.

Before commencing with PCA, we must first estimate UUT .
This can be done efficiently by sampling the model mani-
fold, i.e., by randomly choosing θs and πs from the param-
eter space Θ × Π and generating images from them using
the model {ψ,Θ,Π}. These sample images are then mean-
normalized2, lined up as column vectors into the matrix U ,
and multiplied to produce UUT .

In the PCA paradigm, the first K � N eigenvectors of

2The mean of all sample images is subtracted from each
image.



UUT form the basis for a new space, a space which opti-
mally captures the most model variance. The basis, Φ, is an
N ×K matrix, whose orthonormal columns are the first K
eigenvectors of UUT . The span of the columns of Φ will be
referred to as an eigenspace and the individual columns as
eigenimages. See Figure 3 for the first eight eigengalaxies.
Note that ΦT is a projection matrix such that ỹ = ΦTy.
Vectors in eigenspace will be denoted by •̃.

4.1 Projection into Eigenspace
The entire nearest neighbor search should now take place
within the eigenspace Φ. This requires projecting all of
the prototype images and all incoming input images into Φ.
Since the eigenvectors are orthogonal, projection of either
type of image into the eigenspace should be straightforward:

ỹ = ΦT
y (8)

However, if the noise is heteroscedastic, the projection re-
quires more care. The pixels with less noise should receive
relatively more weight than pixels with high noise. Given
our noise model, the optimal projection is a weighted linear
regression. The diagonal matrix Σy is the given covariance
of y, which is merely a reorganization of ε:

diag(Σy) = ε (9)

The projection of y is

ỹ = (ΦT Σ−1

y Φ)−1Σ−1

y ΦT
y (10)

and the resulting error covariance matrix of ỹ is

Σỹ = (ΦT Σ−1

y Φ)−1 (11)

The matrix Σỹ is the covariance matrix of ỹ, reflecting any
uncertainty in the eigenspace projection of y.

4.2 Nearest Neighbor in Eigenspace
Now we can attack the regression problem while inside the
eigenspace, where we enjoy a much reduced dimensional-
ity. Now the algorithm uses only the eigencoordinates of
the prototypes, denoted X̃. The algorithm is slightly more
complicated since the χ2 distance function must now ac-
count for any correlated errors in ỹ introduced in Equation
4. The new algorithm is as follows:

i∗ = argmini=1..p

[
(x̃i − ỹ)T Σ−1

ỹ (x̃i − ỹ)
]

(12)

θ
∗ = θi∗ (13)

where x̃ and ỹ are the eigencoordinates of x and y respec-
tively.

5. PSF­LOCAL PCA
Up to this point we have included all possible PSFs in our
PCA. The model manifold {ψ(θ,π) | θ ∈ Θ,π ∈ Π} is quite

large, as is the number of eigenspace dimensions required to
represent it adequately. There are at least two approaches
to this problem: attempting to remove the effect of π and
PSF-local PCA.

The most direct approach is to modify y to remove the ef-
fect of the fixed parameters π. This can be accomplished
via deconvolution. Unfortunately, deconvolution has diffi-
culty with regions of the image with sudden changes in in-
tensity, which is the part of the image with the most in-
formation relevent to our model. The central spike (which
is the galaxy center) is a discontinuity that is very difficult
for deconvolution to reconstruct. Also, deconvolution suffers
from instability in the presence of noise.

The next approach is PSF-local PCA. This maintains a dif-
ferent Φ for every PSF. Each eigenspace is obtained by fix-
ing π and repeating the steps of PCA in Section 4. Each
eigenspace is optimal for its π. The number of dimensions
required is therefore quite small, approximately 20 dimen-
sions.

This is feasible because most PSFs in a given run of galaxy
images are similar, and because small differences between
PSFs generally produce small differences in resulting images.

The algorithm stores a relatively small number ns of PSF-
specific eigenspaces {(πi,Φi)}

ns

i=1
. The initial PSF popula-

tion consists of a few Gaussians of varying standard devia-
tion, to which PSFs are added during on-line operation. The
decision to add a PSF to the database is made, somewhat
arbitrarily, when an incoming PSF differs by more than 0.02
in variance explained from its closest match in the database.
Variance explained here is 1 − ΣN

i (πi − π′

i)
2/Σiπ

′2

i . Where
π′ is a PSF from the existing database.

6. PROTOTYPE DECOMPOSITION
The fact that the model is of the formψ(θ,π) =

∑c
i ψi(θ,π)

can be used to good advantage; only prototypes for the com-
ponent ψi(θ,π) functions need to be generated and stored.

For example, in the GM task the component functions are
the disks, bulges, and background. Instead of generating
and storing large numbers of individual combinations of
disks and bulges (the prototype set X) we can instead store
two much smaller prototype sets, a disk set and a bulge set
(Xd and Xb). Far fewer prototypes will be needed to repre-
sent essentially the same information as before. The size of
the representable number of prototypes is now |Xd| × |Xb|.

Typically, nearest neighbor has only to look for neighbors
of a target which are single points. Since we are using
component prototypes, we must define a distance metric
between a particular combination of component prototypes{
x̃0, x̃1, x̃2, ..., x̃c

}
and a target image ỹ. In the GM task,

this would be finding the distance between a galaxy image
and, for instance, bulge #55 with disk #1244. Given our
error definition, the appropriate metric is the shortest dis-
tance is obtained by projecting ỹ onto the plane defined by
the c component prototypes. This distance χ2 is calculated
via weighted linear regression:



y
~

R
N

Θb

Θ d

Φ

Φ
T

b
ψ

ψ
d

Figure 4: Fitting image ỹ to component prototypes. The fitting is done in eigenspace Φ. The empty circle
is a disk component and the filled circle is a bulge component. The intersection of the dashed line and the
solid line is the best-fitting linear combination of this particular bulge and disk to ỹ.

Z =
[
x̃

0
x̃

1
x̃

2 ... x̃c
]

(14)

β = (ZT Σ−1

ỹ Z)−1Σ−1

ỹ ZT
ỹ (15)

χ2 = ỹ
T Σ−1

ỹ ỹ − βTZT Σ−1

ỹ ỹ (16)

which also determines the optimal linear combination coef-
ficients, β, of the prototypes for that particular target ỹ.
In the case of the GM problem, the coefficients β are the
optimal amounts of disk, bulge, and background. Figure 4
illustrates the procedure.

At this point, we in principle have only to calculate χ2 for all
combinations of disks and bulges, and select the combination
with the lowest error. Unfortunately, speed would then be
unacceptably compromised, so instead we search selectively.

7. NEAREST NEIGHBOR SEARCH
After the eigenspace has been selected and the target image
has been projected into the space, then the search for a near-
est neighbor begins. The search could be accomplished by an
exhaustive search of all bulge-disk combinations. However,
we save time with the following two-part search algorithm
which has global and a local search components:

1. Global: Random Pair Sampling starts by ran-
domly sampling a large number of disk/bulge pairs

from X̃d and X̃b. Each pair is fit to y via weighted lin-
ear regression as in Equation 16. We typically are able
to sample 50,000 pairs, which is an unusually large cov-
ering of the parameter space for this particular prob-
lem.

2. Local: Iterative search starts with the best candi-
date from phase 1. The bulge-related parameters are
held fixed while the bulge component is then paired
with all disk prototypes from X̃d and a χ2 is calculated
for each combination. The best combination becomes
the new start point for another ‘step’. Now the disk
is fixed while X̃b is searched for a better bulge. The
process continues in this manner until no improvement
results. To evaluate each combination, χ2 is obtained
by weighted linear regression as in Section 6.

Algorithm Strategy Speed

GIM2d Simulated Annealing ˜360 sec
Galfit Levenberg-Marquadt ˜30 sec

GMORPH Instance-Based ˜1 sec
1-d approaches Descent <1 sec

Table 1: Comparison of the different strategies and
speeds of existing algorithms for the galaxy mor-
phology task.

The process is guaranteed to converge because the search
space is finite, and the sequence of pairs must always have
a decreasing χ2. We repeat the search using the top 10
or 20 candidates from random sampling as starting points.
We have found this type of search to generally converge to a
better minimum than simple local (e.g., hillclimbing) search.
We conjecture that this is due to the large number of local
minima inherent in the problem.

8. RESULTS
Table 1 summarizes the strongest difference between this
algorithm and its predecessors, its speed. GMORPH can
analyze a 64 × 64 image in approximately 1 second. The
nearest competitor can do the same image in about 30 sec-
onds, but it is a descent method and vulnerable to local min-
ima. The times were obtained by generating random galaxy
parameters from the range Fd ∈ [0, 1], Fb ∈ [0, 1], µx =
0, µy = 0, rd ∈ (0, 16], γinc ∈ [0◦, 85◦], γd ∈ [0◦, 180◦], re ∈
(0, 16], ε ∈ [0, 0.7], and γb ∈ [0◦, 180◦], and were used to gen-
erate 64 × 64 images of galaxies. The PSFs were Gaussian
with a standard deviation of 2 pixels.

Figure 5 contains the results of a comparison between GMORPH
and the traditional and currently most-trusted measure of
galaxy shape: human classification. We tested the agree-
ment between GMORPH and an already-classified dataset
with 300 galaxies. Each image had been classified visually
by a panel of four human experts onto a scale which varies
from 0 (all bulge) to 5 (all disk), with 6 being ’irregular’.
The results show a clear correlation between GMORPH and
expert classification.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Galaxy Shape Class

F
it
te

d
 B

/T
 p

a
ra

m
e
te

r

Figure 5: Comparison to human expert classification
of 300 galaxies. The horizontal axis is the galaxy
classification, which varies from 0 (all bulge) to 5 (all
disk), with 6 being ’irregular’. The vertical axis is
the bulge-to-total flux ratio returned by GMORPH.
Each box indicates the 25th, 50th, and 75th quar-
tiles.

Figure 6 summarizes the agreement between GMORPH and
GIM2d on the disk radius for low-noise, predominantly disk
galaxy images from the Sloan Digital Sky Survey. Both algo-
rithms were run on 100 images, each with a unique PSF. The
catalog of prototypes used by GMORPH consisted of 1000
disk and 1000 bulge images. The size of the images varied,
but were approximately 50×50. The agreement between the
two methods is apparent here, however, in high-noise images
the two methods produce different results. Although we are
still investigating the source of these occasional discrepen-
cies, there is preliminary evidence that these are cases in
which either the galaxy morphology diverges from the as-
sumed bulge/disk model, or noise is too severe to reliably
fit the data.

9. CONCLUSIONS
We investigate the following nonlinear regression problem
from astronomy: given a massive dataset of noisy, distorted
images of unknown galaxies, rapidly fit a nonlinear model
to each image in the dataset. A instance-based method for
accomplishing this task has been described.

Instance-based methods allow for very fast identification of
these galaxies through sampling of the parameter space, the
use of eigenimages, and decomposing the prototypes into
components. GMORPH can avoid the expense of calculat-
ing the PSF during the search process, and can scan through
the space of galaxy images rapidly because it restricts search
to the much smaller subspace determined by PCA. We have
measured the performance via simulation and it should in
principle allow for unprecedented analysis of astronomical
datasets of galaxy images.
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APPENDIX

A. SURFACE BRIGHTNESS FUNCTION
Before being blurred by the PSF, the galaxy is created by the
surface brightness function, ψ, which takes as an argument
a vector from Θ. Here are the 12 model parameters of Θ, a
brief description, and their units:

Fb, Fd total integrated flux of bulge and disk components
(erg · cm2/sec)

µx, µy the x and y offset of the galactic center from the
center of the image (pixels)

re, rd bulge and disk scale lengths (pixels)

εb apparent bulge ellipticity (unitless)

γinc disk inclination (degrees). Rotation toward viewer

γb γd bulge and disk angle of rotation (degrees). Clockwise
rotation relative to viewer

sky sky background offset (flux/cm2)

Sersic a bulge shape parameter that is fixed to the value 4
for all experiments

The classic model of galaxies has been additive: a linear
combination of a bulge image, a disk image, and a sky (back-
ground) image [6, 4, 5]. The sky image is a constant, and
will omitted from the formulae for clarity. The model is

y(θ,π) = π ?

nc∑

i

ψi(θ) (17)

= π ?
[
ψdisk(θ) + ψbulge(θ)

]
(18)

the components of which we will refer to as the disk image
ψdisk(θ), and the bulge image ψbulge(θ).

The surface brightness, ψdisk, of a pure disk galaxy w.r.t.
radius has been found to have an exponential form [1, 3]. A
commonly used model consists of an infinitely thin disk with
brightness in the plane of the disk tapering off exponentially
away from the center. When projected onto the image plane,
the brightness ψdisk has the form

ψdisk(x, y) ∝ Fdexp

(
−

√
x2 + y2 cos−2 γinc

rd

)
(19)

where Fd is the integrated brightness of the disk, γinc is the
degree of inclination of the disk towards the viewer, and rd

is the disk “radius”, or scale parameter. Both Equation ??
and Equation 20 are simplified for presentation in that they
omit clockwise rotation and fix the center of the galaxy at
(0, 0).

The bulge is modeled with a classical de Vaucouleurs pro-
file. Also known as the r1/4 law, de Vaucouleurs’ law is
perhaps the most widely used empirical law to describe the
surface brightness profile of a pure bulge galaxy. The bulge
brightness is

ψbulge(x, y) ∝ Fbexp


−b

[√
x2 + y2(1 − εb)−2

rb

] 1

4


 (20)

where Fd is the integrated brightness of the bulge, εb de-
scribes the ellipticity of the bulge, and rb is the bulge “ra-
dius”.


