
Accepted To: 6th International Workshop on Requirements for High Assurance Systems (RHAS-6)

A Systematic Method for Acquiring Regulatory Requirements:
A Frame-Based Approach

Travis D. Breaux and Annie I. Antón

Department of Computer Science
North Carolina State University
{tdbreaux,aianton}@ncsu.edu

Abstract. Government laws and regulations

impose requirements on software-intensive information
systems. To comply with these laws and regulations,
organizations need to evaluate current and future
software systems early in the software development and
procurement process by using a set of regulatory
requirements. Acquiring requirements from regulations
is complex because regulations contain intended and
unintended ambiguity and because maintaining
traceability across paragraphs and cross-references is
essential to demonstrate due diligence in adhering to
the law. To address these challenges, we introduce the
Frame-Based Requirements Analysis Method (FBRAM)
to systematically acquire semi-formal representations of
requirements from regulations. The method provides a
means to identify and document certain and possibly
conflicting interpretations of regulatory requirements
using an upper ontology, a context-free markup
language and regulatory document model. This tool-
supported method produces frame structures that are
used to generate an HTML requirements document; this
document is then visually inspected by analysts and
domain experts who determine the correctness of the
resulting requirements documents.

1. Introduction
National and international standards, regulations and

policies impose dependability requirements (e.g.,
accessibility, safety, security requirements, etc.) on
industries and business practices that affect a software
system’s non-functional properties. Because these
requirements are broadly written to govern entire
industries and are not restricted to a single system with a
well-defined set of stakeholders, analysts must
strategically address the ambiguous syntax in regulatory
language while maintaining traceability from
regulations to requirements.

In this paper, we introduce the Frame-Based
Requirements Analysis Method (FBRAM) to extract
software requirements from regulations. The FBRAM
extends an earlier, entirely manual methodology [4] and
has been applied to two regulations: the Health

Insurance Portability and Accountability Act1 (HIPAA)
Privacy Rule and the Telecommunications Act2 of 1996,
Section 508. Throughout this paper, we introduce the
FBRAM using an example from a HIPAA Privacy Rule
case study. The paper is organized as follows: Section 2
summarizes related work; Section 3 discusses several
challenges to resolving ambiguity and improving
traceability in regulatory requirements; Section 4
presents the FBRAM; and Section 5 concludes with a
brief discussion and summary.

2. Related Work
In requirements engineering, goals are used to model

requirements, as in KAOS [10] and GBRAM [1]. Goals
represent states that a system must achieve, maintain or
avoid. Elaborated goals can include normative
statements about rights, permissions and obligations [2].
Rights and permissions describe actions that
stakeholders are permitted to perform, whereas
obligations describe actions that stakeholders are
required to perform. In this paper, we adapt a frame-
based representation to elaborated goals in which a
frame corresponds to a concept, comprising slots that
represent stereotypical properties of that concept [13,
18]. We use frames to formalize a subset of the deep
structure or semantics of regulatory language [8].

Ontologies are formal collections of knowledge
consisting of concepts and properties; an upper ontology
describes domain-independent concepts. Examples from
different upper ontologies can be found in Cyc [17] and
WordNet [12]. We align our frame concepts and
properties with an upper ontology consisting of
requirements knowledge in the form of a model of
elaborated, regulatory goals.

Lexicons and natural language (NL) patterns are
often used to analyze requirements. Wasson et al. [19]
and Cysneiros and Leite [9] employ lexicons to improve
natural language (NL) requirements analysis. NL
patterns are used to identify critical real-time properties

1 U.S. Public Law No. 104-191, 110 Stat. 1936 (1996)
2 U.S. Public Law No. 104-104, 110 Stat. 56 (1996)

Accepted To: 6th International Workshop on Requirements for High Assurance Systems (RHAS-6)

[15] and improve requirements quality for embedded
systems [11]. FBRAM complements this work by
providing a means to formalize NL patterns using a
standard lexicon (ontology). Lee et al. describe an
ontological approach to acquire requirements from
regulations [16]. Herein, our contribution to their work
is a method to help analysts systematically decompose
verbose regulatory statements into requirements.

3. Ambiguity and Traceability
This section discusses the two primary challenges

faced by analysts who extract requirements from
regulatory texts: ambiguity and traceability.

Ambiguity. U.S. Federal and state regulations
contain ambiguities that are intended by law makers to
be re-interpreted as business practices emerge and as
capabilities to comply with regulations change over
time. For example, HIPAA §164.512(e)(1)(iv) states
that an entity must make “reasonable” efforts to notify
individuals of certain requests for their protected health
information. The word “reasonable” is an intended
ambiguity: which mechanisms are considered
reasonable, (e.g., postal mail, secure electronic mail or
websites, etc.) varies depending on the type of
communities served and the prevalence of relevant,
existing technologies.

Law makers also define governed entities using
terms that are open to interpretation. For example, in
HIPAA §164.304, the term workstation is exemplified
by “a laptop or desktop computer, or any other device
that performs similar functions.” Compliance officers
must decide if this definition is intended to cover
handheld Personal Digital Assistants (PDAs). As PDAs
become better integrated into routine business practices,
organizations may need to re-interpret this ambiguity to
achieve compliance.

Regulations also contain unintended ambiguities that
are inherent to natural language syntax –– or English.
We distinguish (and address) three types of ambiguity in
this paper: logical, attributive, and referential. Because
one of these ambiguities can affect the interpretations of
multiple, related requirements in a requirements
document, Kamsties classifies these ambiguities as
requirements document ambiguity [14].

Logical ambiguity refers to English words that can be
mapped to different logical interpretations. Herein, we
only consider how English conjunctions (and, or) can be
assigned conflicting logical connectives; see Berry and
Kamsties for a separate discussion of universal and
existential qualification-related ambiguity [7]. For
example, in HIPAA §164.524(a)(1), an individual has
“a right of access to inspect and obtain” a copy of their
protected health information. While this statement uses
the English conjunction “and,” presumably an
individual can obtain a copy of their information

without needing to inspect the information; e.g., the
conjunction can be interpreted as a logical-or. In
contrast, interpreting this conjunction as a logical-and
may lead to systems that provide the information such
that an inspection is required and confirmable.

Attributive ambiguity is found in phrases that may be
reasonably ascribed to more than one phrase within a
sentence. For example, in HIPAA §164.520(b)(1)(vii),
“The [privacy] notice must contain the name or title and
telephone number of a person or office” may be
construed to mean the notice contains one of: (1) the
name of the person or office; (2) the title and telephone
number of the person or office; or (3) the name and
telephone number of the person or office. Because the
phrase “and telephone number” can be attributed to the
“name and title” or only the “title,” the analyst may
interpret either options (1) and (2) or options (2) and (3)
as valid interpretations. The former interpretation
permits the organization to withhold the telephone
number from the policy, making it more difficult for
recipients of the notice to contact the person or office.

Referential ambiguity occurs when a word or phrase
has multiple meanings; this includes intensional and
extensional polysemy [5]. Herein, we consider a type of
extensional polysemy in which words have an anaphoric
(backward-referencing) or cataphoric (forward-
referencing) function. These words include pronouns
(this, that, they), noun phrases that use definite articles
(the) and some adjectives (such). A statement that
contains the phrase “must provide such notices” refers
to notices that are elaborated upon in the broader
context of the statement or paragraph. The analyst must
identify additional implications or constraints on the
“notices,” that appear in the broader context before
determining which notices must be provided.

Traceability. Regulations present traditional and
novel traceability challenges to analysts. Similar to
other requirements sources (e.g. interviews, scenarios
and use cases), the loss of original context also affects
requirements that are extracted from regulations. Unlike
these other sources, the “context” of a regulatory
statement is distributed across multiple sections,
paragraphs and sub-paragraphs of the source document.
Analysts must reconstruct this context by employing
knowledge of the regulation document structure and the
cross-reference syntax. For example, a regulatory
statement can start in one paragraph and end in a sub-
paragraph; this break is called a continuation. Consider
the following continuation in HIPAA §164.520(a)(2)
(i)(B)(ii) that describes two requirements (obligations)
to maintain and provide a privacy notice to patients:

(ii) A group health plan… must:

(A) Maintain a notice under this
section; and

(B) Provide such notice to any person…

Accepted To: 6th International Workshop on Requirements for High Assurance Systems (RHAS-6)

During requirements acquisition, traceability must be
maintained between unique paragraph indices and
corresponding requirements to map paragraph cross-
references back to those requirements [6]. Therefore,
the paragraph index (ii) should trace to both
requirements (and vice versa), whereas the paragraph
index (ii)(A) should only trace to the maintenance
requirement and paragraph index (ii)(B) should only
trace to the provision requirement.

4. Frame-Based Requirements Analysis
In the Frame-Based Requirements Analysis Method

(FBRAM), analysts manually annotate a regulatory
document and an accompanying tool parses the
annotations to extract regulatory requirements (Figure
1). The manual annotation process uses the following
three artifacts:

1. A reusable upper ontology of requirements
concepts and properties, used to classify
regulatory statements independently of any single
regulatory domain.

2. A context-free markup language that describes
the deep structure of natural language [8] using
concepts in the upper ontology and logical
connectives.

3. A document model that describes the structural
organization of a regulatory document in terms of
hierarchical divisions (e.g., sections, paragraphs,
sub-paragraphs, etc.)

Figure 1: Overview of the FBRAM

During the manual annotation process (top of Figure
1), analysts use upper ontology concepts and the
context-free markup language to assign an interpretation
to a regulation text; this can remove logical, attributive
and referential ambiguity. The manual process yields an
annotated regulation that is then parsed by our tool to
produce the following two types of artifacts:

1. A requirement that is represented as a frame in
which original, unedited phrases from the
regulation text are assigned to slots in the frame.

2. For each requirement, a requirement pattern is
generalized from the requirement’s originating
natural language syntax in the regulation.

During parsing, the tool identifies and reports syntax
and semantic errors in the markup to the analyst. The
successfully parsed frame objects and patterns are
serialized using the W3C eXtensible Markup Language
(XML) and then transformed into the Hypertext Markup
Language (HTML) using eXtensible Stylesheet
Language Transformations (XSLT). The analyst uses
the HTML representation to validate whether the frame-
based semantics of the applied annotations match their
intended interpretation of the regulations.
4.1. The Upper Ontology

The upper ontology describes knowledge about the
semantic structure of regulatory requirements that is
domain-independent. Figure 2 presents the upper
ontology using the Unified Modeling Language (UML);
this ontology has been validated in two case studies in
the accessibility and privacy domains.

Figure 2: Regulatory Requirements
Upper Ontology

The concepts in the upper ontology are connected by
two types of arrows: (1) arrows that terminate with dark
triangles that lead from sub-classes to super-classes; and
(2) arrows that terminate with white diamonds that lead
from properties to classes, containing those properties.
The upper ontology consists of three types of concepts:

1. Statement-level concepts (represented by boxes
with bold-line borders) that are used to classify
individual regulatory statements;

2. Phrase-level concepts (represented by grayed
boxes) that are used to classify individual phrases
in a regulatory statement; and

3. Abstract placeholder concepts (represented by
boxes with dotted-line borders) that classify
statement and phrase-level concepts for analysts.

The statement-level concepts are defined below. Note
that an entity is any stakeholder, system or component,
including software or hardware:

• Exclusion means any state that an entity is not
required to achieve, maintain or avoid or any act
that an entity is not required to perform.

Accepted To: 6th International Workshop on Requirements for High Assurance Systems (RHAS-6)

• Fact means any state or act that is assumed true.
• Definition means a statement that describes a

term-of-art by equivocating the term with a
phrase or other word (synonym) or by listing its
kinds, specializations or varieties (hyponyms).

• Permission means any state that an entity is
permitted to achieve, maintain or avoid or any act
that an entity is permitted to perform;
permissions include stakeholder rights.

• Obligation means any state that an entity is
required to achieve or maintain or any act that an
entity is required to perform.

• Refrainment means any state that an entity is
required to avoid or any act that an entity is
required to not perform.

The phrase-level concepts are defined as follows:

• Subject is the entity that performs an action.
• Act is the act performed by an entity.
• Object is the object on which an action is

performed by an entity.
• Purpose is the purpose for which, or why, an

action is performed by an entity.
• Instrument is the method by which, or how, an

action is performed by an entity.
• Target is the recipient in a transaction.
• Condition is the pre-condition(s) that must be

true before an entity acts.
• Exception is the condition(s) that must be false

before an entity acts.
• Term is a term-of-art with a specialized meaning.
• Hyponym is a word or phrase that represents a

kind, specialization or variety of a more general
word or phrase.

• Synonym is a word or phrase that has an
equivalent meaning to another word or phrase.

The concepts in the upper ontology have been acquired
across multiple case studies that include an analysis of
privacy policies [2], a HIPAA consumer fact sheet [3]
and the HIPAA Privacy Rule [4, 6]. The upper ontology
has been formalized in Description Logic for the
purpose of reasoning about and comparing goals using
subsumption [5].
4.2. The Document Model

The document model enables forward and reverse-
mapping between requirements and the indices of
sections, paragraphs and sub-paragraphs in the
regulation that contain the originating statements for
these requirements. The indices are used in cross-
references that appear in exclusion statements or
exception phrases, which can be formalized as priorities
between requirements [6]. Regulatory statements may
begin in one paragraph and end in a sub-paragraph.

Usually, this syntactic device presents a set of shared
constraints (e.g., subjects, actions, conditions, etc.) in
the leading paragraph followed by alternative
permissions, obligations and refrainments in sub-
paragraphs. Consider the division syntax in HIPAA
Privacy Rule excerpt §164.520(a)(2)(i)(B)(ii); it
describes two obligations to notify patients of their
privacy practices and shares the same subject constraint
(a group health plan) for these obligations:

(ii) A group health plan… must:

(A) Maintain a notice under this
section; and

(B) Provide such notice to any person…

To support traceability, the document model
formalizes the divisions within the regulatory text. The
document model semantics are formalized in the W3C
eXtensible Schema Language (XSL). The analyst
applies the model to the regulation text by replacing
division headers with an XML <div> tag that maps the
header index and sub-title, if any, to corresponding
attributes index and title in the tag; the analyst adds the
XML </div> tag at end of the division. The above
excerpt appears in Figure 3, annotated with the
document model.

<document>

<!-- 164.520(a)(2)(i)(B) -->
...
<div index="(ii)">

A group health…, must:
<div index="(A)">

Maintain a notice under this
section; and

</div>
<div index="(B)">

Provide such notice to any person…
</div>
...

</div><!-- end of (ii) -->
</document>

Figure 3: The Document Model Applied to the
HIPAA §164.520(a)(2)(i)(B)(ii) Excerpt

Because the regulation text’s indentation and font
styles may be lost or corrupted when the text is
transferred to a plain text format, the analyst manually
applies the document model to the regulation plain text.
4.3. The Context-free Markup

Analysts use the context-free markup language to
codify their interpretation of a regulation text. The
interpretation requires analysts to align concepts from
the upper ontology with regulation sentences and
phrases, removing logical, attributive and referential
ambiguities. The context-free grammar for the markup
appears in Appendix A. Table 1 presents concept codes
that are used in the markup below to align sentences and
phrases with concepts in the upper ontology.

Accepted To: 6th International Workshop on Requirements for High Assurance Systems (RHAS-6)

Table 1: Codes Corresponding to
Upper Ontology Concepts

Code Concept Code Concept
a Act o Object
c Condition s Subject
F Fact t Target
O Obligation

The running example from HIPAA Privacy Rule
§164.520(a)(2)(i)(B)(ii) appears below with the markup
in bold; the document model has not been applied to
this example for easier reading:

1 (ii) {#O [#s/1 A group health plan [that
2 provides health benefits solely through
3 an insurance contract with a health
4 insurance issuer or HMO, & and that
5 creates or receives [protected health
6 information in addition to summary health
7 information as defined in §164.504(a) |
8 or information on whether the individual
9 is participating in the group health
10 plan, or is enrolled in or has
11 disenrolled from a health insurance
12 issuer or HMO offered by the plan]]],
13 {\2 must}:
14 (A) {{#a {*2} [Maintain]} [#o/3 a notice
15 under this section]; & and
16 (B) {#a {*2} [Provide]} [#o*3 such
17 notice] {#c upon [request]} {#t to
18 [any person]}}}. {#F [#s The
19 provisions of paragraph (c)(1) of
20 this section] {#a do not [apply]}
21 {#o to [*1 such group health plan]}}.

The markup is used to structure regulatory text into
two types of nested blocks denoted by opening and
closing brackets: (1) pattern blocks, denoted by curly
“{}” brackets, indicate the start of a requirements
pattern or sub-pattern; and (2) value blocks, denoted by
square “[]” brackets, indicate spans of text that will be
mapped to slot values by the parser. In addition, a block
is typed if the opening bracket is followed by a number
sign “#” and a letter. Within a block, the English
conjunctions “and” and “or” are mapped to logical
connectives using the operators “&” and “|” for logical-
and and logical-or, respectively (see lines 4, 7, 15).

To resolve attributive and referential context-
sensitive ambiguities, we introduced the copy “/”
operator, cut “\” operator and “*” paste operator
followed by a numbered clipboard location. Recall that
referential ambiguity includes words that have an
anaphoric or cataphoric function. The phrases “such
notice” (lines 16-17) and “such group health plan” (line
21) introduce this type of ambiguity. If the paste
operator is applied to a block that contains text, as is the
case in these two phrases, the text in the block will be
replaced by the pasted text.

The parser detects syntax and semantic errors, such
as missing brackets, cycles that occur in the copy/ cut/

paste operations, unknown concept codes, etc., and
alerts the analyst who must then resolve these errors.
4.4. Requirements

Parsing the annotated regulation text yields
requirements that are formalized as frame objects. These
frames are serialized using XML and transformed into
HTML using XSLT. In HTML, the requirements are
presented in a table format. Parsing the example markup
from Section 4.3 yields two requirements; the second
requirement is presented in Figure 4 using the same
table format that is used in practice.

Frame: Obligation
Pattern: [subject] {must [act]} [object]
 {upon [condition]} {to [target]}
Trace: ID 5, Line 1:0, Source: 164.520(a)(2)(i)(B)(ii)
Slots Values
condition upon… request
subject A group health plan that provides health

benefits solely through an insurance
contract with a health insurance issuer or
HMO

A group health plan that creates or
receives protected health information in
addition to summary health information
as defined in §164.504(a)
A group health plan that creates or
receives information on whether the
individual is participating in the group
health plan, or is enrolled in or has dis-
enrolled from a health insurance issuer
or HMO offered by the plan

act must… Provide
object a notice under this section
target to… any person

Figure 4: Example HTML Table Created after
Parsing the Annotated Regulation

The example in Figure 4 begins with the statement
frame type (Frame), the requirements pattern (Pattern)
and the traceability information (Trace) with the
requirement ID, the line number and line index and the
corresponding paragraph number in the regulation text.
Next in the table, each slot is listed with the slot type (a
phrase-level concept from the upper ontology) and the
slot value. Because the slot values may be expressed
using logical connectives (e.g. see the subject slot value
in Figure 4), the values are presented as trees comprised
of logical-and branches (solid line) and logical-or
branches (dotted line).

5. Discussion and Summary
The FBRAM is designed to help analysts

systematically acquire requirements from regulations
while addressing two challenges: the need to reduce
ambiguity and maintain traceability to support the need

Accepted To: 6th International Workshop on Requirements for High Assurance Systems (RHAS-6)

to demonstrate due diligence. We applied the FBRAM
to four sections §164.520-§164.526 in the HIPAA
Privacy Rule that we previously analyzed using an
earlier, entirely manual variant of this methodology [4]
to assess any improvement gained through automation.
In addition, we are currently applying the methodology
to extract accessibility requirements from the
Telecommunications Act of 1996, Section 508. These
requirements will be compared with a different set of
requirements that were acquired from the
Telecommunications Act using a different approach by
an industry partner. Extensions to the FBRAM that are
under development include algorithms to: generate
domain-dependent, lower ontologies from definitions,
expressed in the W3C Web Ontology Language (OWL),
prioritize requirements by using exceptions, and
improve requirements coverage and consistency by
identifying missing slot values and checking pattern
correspondences to upper ontology concepts.

The Frame-Based Requirements Analysis Method
(FBRAM) makes several assumptions about the
regulatory text and analysts’ skills. We assume the
markup is distinguishable from the regulation text, using
a separate character set, if necessary. The extent to
which the markup can be used to identify and resolve
ambiguity and to generate useful requirements patterns
relies upon the consistent and correct use of English
grammar. Although grammar checkers may assist
regulatory document authors in satisfying this
assumption, we do not expect this method to work on
interview transcripts that use verbal cues and similar
devices. In addition, we assume analysts can effectively:
identify divisions within the regulation text; consistently
classify and annotate sentences and phrases using the
upper ontology concept definitions; and identify and
resolve the logical, attributive and referential
ambiguities. We plan to validate these assumptions in a
case study with multiple participants.

Appendix A: Context-free Grammar
The context-free grammar is presented in Backus-

Naur Form. The symbol TEXT is a sequence of
characters excluding curly and square brackets.

〈s〉 := (block | TEXT)*
〈block〉 := [〈body〉] | { 〈body〉 }
〈body〉 := 〈type〉? 〈op〉? (block | TEXT)* 〈alt〉*
〈type〉 := HASH LETTER
〈op〉 := (COPY | CUT | PASTE) NUMBER
〈alt〉 := (AND | OR) 〈body〉

References
[1] A.I. Antón, Goal Identification and Refinement in the

Specification of Software-Based Information Systems,
PhD Thesis, Georgia Tech, 1997.

[2] T.D. Breaux, A.I. Antón, “Analyzing goal semantics for
rights, permissions and obligations,” IEEE 13th Int’l
Conf. Req’ts. Engr., pp. 177-188, 2005.

[3] T.D. Breaux, A.I. Antón, “Mining rule semantics to
understand legislative compliance,” ACM Workshop
Privacy in the Elec. Society, pp. 51-54, 2005.

[4] T.D. Breaux, M.W. Vail, A.I. Antón, “Towards
regulatory compliance: extracting rights and obligations
to align requirements with regulations,” IEEE 14th Int’l
Conf. Req’ts. Engr., pp. 49-58, 2006.

[5] T.D. Breaux, J. Doyle, A.I. Antón, “Semantic
parameterization: a conceptual modeling process for
domain descriptions,” To Appear: ACM Trans. Soft.
Engr. Methods, NCSU #TR-2006-35, 2006.

[6] T.D. Breaux, A.I. Antón, “Analyzing regulatory rules for
privacy and security requirements,” To Appear: IEEE
Trans. Soft. Engr., NCSU #TR-2007-9, 2007.

[7] D.M. Berry, E. Kamsties, “Syntactically Dangerous All
and Plural Specifications,” IEEE Software, pp. 55-57,
2006.

[8] N. Chomsky, Syntactic Structures, Janua Linguarum, no.
4, Mouton, p. 116, 1957.

[9] L.M. Cysneiros and J.C.S.P. Leite, “Nonfunctional
requirements: from elicitation to conceptual models,”
IEEE Trans. Knw. Data Engr., 30(5): 328-350, 2004.

[10] D. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-
directed requirements acquisition,” Sci. Comp.
Programming, 20:3-50, 1993.

[11] C. Denger, D.M. Berry, E. Kamsties, “Higher Quality
Requirements Specifications through Natural Language
Patterns,” IEEE Int’l Conf. Soft. – Sci., Tech. & Engr.,
pp. 80-90, 2003.

[12] C. Fellbaum, “WordNet: an electronic lexical database,”
MIT Press, 1998.

[13] C.J. Fillmore, “The case for case,” In E. Bach and R.
Harms (eds.), Universals in Linguistic Theory, Holt,
Rhinehart, Winston, NY, 1967, pp. 1-90.

[14] E. Kamsties, “Understanding Ambiguity in Requirements
Engineering,” Engr’ing and Mng’ing Soft. Req’ts, pp.
245-266, Springer, 2006.

[15] S. Konrad, B.H.C Cheung, “Real-time specification
patterns,” IEEE 27th Int’l Conf. Soft. Engr., pp. 372-381,
2005.

[16] S-W. Lee, D. Muthurajan, R. Gandhi, D. Yavagal, G-J.
Ahn, “Building decision support problem domain
ontology from sercurity requirements to engineer
software-intensive systems,” Int’l J. Soft. Engr. & Kno.
Engr. 16(6):, 851-884, 2006.

[17] C. Matuszek, J. Cabral, M. Witbrock, J. DeOliveira, “An
introduction to the syntax and content of Cyc,” AAAI
Spring Symp. Formalizing and Compiling Bg. Knowledge
and its Apps. to Knowledge. Rep. and Question
Answering, pp. 44-49, 2006.

[18] R.C. Schank, R.P. Abelson, Scripts, Plans, Goals and
Understanding: An Inquiry into Human Knowledge
Discovery. Lawrence Erlbaum Assoc., Hillsdale, NJ,
1977.

[19] K. Wasson, “Case study in systematic improvement of
language for requirements,” IEEE 14th Int’l Conf. Re’qts
Engr., pp. 6-15, 2006.

