

A Method to Acquire Compliance Monitors from Regulations

Travis D. Breaux
Institute for Software Research

School of Computer Science
Carnegie Mellon University

breaux@cs.cmu.edu

Abstract—Developing software systems in heavily
regulated industries requires methods to ensure systems
comply with regulations and law. A method to acquire
finite state machines (FSM) from stakeholder rights and
obligations for compliance monitoring is proposed. Rights
and obligations define what people are permitted or
required to do; these rights and obligations affect
software requirements and design. The FSM allows
stakeholders, software developers and compliance
officers to trace events through the invocation of rights
and obligations as pre- and post-conditions. Compliance
is monitored by instrumenting runtime systems to report
these events and detect violations. Requirements and
software engineers specify the rights and obligations, and
apply the method using three supporting tasks: 1)
identify under-specifications, 2) balance rights with
obligations, and 3) generate finite state machines.
Preliminary validation of the method includes FSMs
generated from U.S. healthcare regulations and tool
support to parse these specifications and generate the
FSMs.

I. INTRODUCTION
Software engineering is concerned with automating

tasks within and across the software development
lifecycle. Software requirements are one of the first
artifacts to enter this lifecycle. Due to their informal
specification in natural language, they are difficult to
manipulate and integrate directly into the verification
and testing of large software systems – the goal of
requirements monitoring. In highly regulated industries
within the United States, such as healthcare and
finance, requirements monitoring is necessary to
ensure systems comply with the law. For example, the
U.S. Health Insurance Portability and Accountability
Act1 (HIPAA) of 1996 and Gramm-Leach-Bliley Act2
of 1999 require organizations to implement programs
to develop and monitor legal compliance with security
and privacy policy and regulations. Legal compliance
refers to an organization’s “ability to maintain a
defensible position in a court of law” [9]. Legal
compliance consists of maintaining clear evidence that

1 Public Law No. 104-191 Stat. 1936 (1996)
2 Public Law No. 106-102, 113 Stat. 1338 (1999)

demonstrates both due diligence, which means
“reasonable efforts that persons make to satisfy legal
requirements”, and good faith, which means
“faithfulness to one’s duty or obligation” [14]. In this
paper, I propose a manual method to systematically
acquire finite state machines (FSM) from semantic
models of stakeholder rights and obligations. I
illustrate the method using legal requirements extracted
from the HIPAA Privacy Rule during a prior case
study [7] and with an attention to detail so that others
may replicate and expound upon this method.

The FSMs correlate real world events (the
transitions between states) to stakeholder rights and
obligations (the states). To evaluate risk and
compliance, software developers can map these events
to requirements and design specifications. Systems
developers can use these event mappings to focus their
verification efforts on those components most at-risk
for non-compliance. After deployment, the FSMs can
operate as compliance monitors by instrumenting
software components to provide records of these events
and demonstrate an organization’s ability to monitor
compliance failures; a good faith practice. As systems
evolve to adapt to new organizational needs, these
monitors ensure that new changes to existing software
systems continue to operate within the regulatory
framework of stakeholder rights and obligations.

It is estimated that healthcare organizations have
spent up to $17.6 billion over the last few years to
bring their systems and procedures into compliance
with the HIPAA [18]. Existing guidelines and
standards not only fail to provide specific solutions,
but also make compliance a significant challenge.
According to a 2007 Ernst & Young survey of chief
executives in over 1,100 international organizations,
compliance with regulations and policy surpassed
worms and viruses as the primary driver of information
security policy [12]. The consequence of not
complying with regulations is now forefront for those
responsible for assuring that software systems
containing sensitive information remain secure and
protected.

The remainder of this paper is organized as follows:
Section II reviews related work; Section III introduces
the method to generate compliance monitors; Section
IV presents the results of applying the method to rights
and obligations previously extracted from the HIPAA
Privacy Rule [7]; Section V discusses limitations and
future work, with the conclusion in Section VI.

II. RELATED WORK
This section discusses approaches that model

regulations, requirements and scenarios, that perform
consistency and model checking, and approaches to
requirements monitoring. It is important to stress that
requirements are limited to the scope of software
systems, whereas stakeholder rights and obligations (as
expressed in law) govern the broader scope of business
processes. Although requirements-based methods
generally assume a degree of system control that
cannot be assumed in a complete compliance
framework, these methods are highly relevant to the
specification of stakeholder rights and obligations as
requirements.

Prior work focuses on modeling regulations in
artificial intelligence [19, 24, 25, 26]. Sherman
developed Prolog models from the Income Tax Act of
Canada [26]. Sergot et al. have conducted similar case
studies, developing logic programs from the British
Nationality Act [24] and the Indian Central Service
Pension rules [25]. These logic programs abstract rule
elements as predicates to query legal expert systems.
Our general approach has been to further decompose
these predicates into semantic models [4, 5, 7]. I
leverage this decomposition to align rights and
obligations along shared events (see Section III.C.2).
Alternatively, Kerrigan and Law propose a system that
provides question-answering assistance with
environmental regulations modeled in first-order logic
[19].

In requirements engineering, relevant approaches
include those to model policies [5], regulations [7] and
stakeholder goals [20]. The notation developed from
our previous work modeling privacy policies in
healthcare and finance [5] is used to specify semantic
models in the method proposed in this paper. In
addition, Giorgini et al. present Secure Tropos (ST), a
formal framework for modeling security requirements
applied to Italian privacy regulations [15]. ST
distinguishes between rights or permissions (at-most)
and obligations (at-least) in the context of delegation.
ST employs Datalog to perform model checking and
find inconsistencies. The work reported in this paper
complements their framework by providing new
insight into how rights and obligations are conditioned
on shared events. Landtsheer et al. show how to map
KAOS goal models into Software Cost Reduction

(SCR) specifications amenable to event-based model
checking [20]. Goals are prescriptive actions of intent
whose satisfaction may require agent cooperation. Like
goals, our work with rights and obligations also
express stakeholder intent yet within the expressed
confines of regulations and normative theory.

Sutcliffe et al. and Maiden describe a partially
automated method to generate scenarios using use
cases and object system models [21, 28]. Maiden
defines object system models as patterns of
requirements that include attributes for agents, actions,
objects, and pre-conditions, among others. My
approach differs in that the compliance monitors derive
event sequences from regulations whereas use cases
are generally elicited from stakeholders. Furthermore,
the FSMs are intended to be used in verifying
requirements in post-deployed systems, whereas
Maiden’s scenarios were intended to be used in
requirements validation.

It is important to distinguish aspects of my approach
from those in consistency and model checking [1, 3,
10, 16]. Heitmeyer et al. propose consistency checking
as a formal method to statically identify ambiguities in
requirements specifications [16]. Similarly, the method
in this paper utilizes static checks on semantic models
to identify ambiguities, called under-specifications, and
further balance rights with obligations; this process is
called consistency checking. Alternatively, model
checking is used to assert that formal properties hold
across model states and has been applied to
requirements specifications to: check safety properties
using temporal logic [1]; reduce the number of model
states using abstraction [3]; and derive FSM from
design flow graphs (DFG) to check consistency
between requirements and design [10]. A future goal of
this work includes applying model checking techniques
to the acquired FSMs.

In requirements monitoring, various approaches use
different techniques to specify and deploy
requirements monitors. Among these, others have
recognized the need to: provide a generalized interface
to query assumptions at runtime [11]; model
relationships between events to distinguish between
expected and recorded system behavior [27]; and align
requirements monitoring with design methodologies
[23]. The approach in this paper accommodates these
needs by generating FSMs for event-based compliance
monitoring to evaluate design decisions based on risk
and compliance costs. On the other hand, Peters and
Parnas discuss design issues for requirements monitors
in real-time systems such as real-time notification
under discrete-time sampling, sample quantization to
measure error, and non-determinism [22]. However,
the U.S. federal regulations we analyzed in healthcare
did not exhibit these phenomena.

Fickas et al. describe a case study in which
ephemeral requirements are modeled as finite state
automata in the Promela language and monitored using
a web service called Emu [13]. Ephemeral or personal
requirements are difficult to monitor because the
system environment is beyond the scope of reasonable
control [13]. For example, advancing from one state to
another may require an indefinite human response. The
same limitation exists in compliance monitoring since
not all regulations are implementable within the scope
of software systems. However, due to diversity in
regulated industries, it is infeasible for the law to
prioritize implementing regulations based on factors
such as available technology, business value or costs.
Therefore, all regulations should appear in the scope of
compliance monitors, so as organizations evolve, they
can evaluate their individual non-compliance risks
against these factors.

III. ACQUIRING COMPLIANCE MONITORS
The method to acquire compliance monitors (see

Figure 1) accepts a semantic model of regulations [7]
as input and produces finite state machines (FSMs) as
output in two phases: (1) a consistency checking phase
to identify under-specifications, and balance rights
with obligations; and (2) a generation phase to produce
the states-event and transition tables comprising the
FSMs.

Figure 1: Method Process Overview

The inputs and outputs to the method are described
in detail in Section III.A before proceeding to discuss
the first and second phases in Sections III.B and III.C,
respectively.
A. The Input and Output

The method’s inputs and outputs are now discussed.
All examples employed below are derived from the
HIPAA Privacy Rule [18].

1) Input. Requirements and software engineers
provide semantic models of regulations as inputs to the
method. Breaux et al. developed a methodology that
engineers can use to extract these models from policy
and regulation text [7]. The methodology, which was
developed from a pilot study [6] and a summative case
study [7], employs a process called Semantic

Parameterization to derive the models from restricted
natural language statements [8].

The semantic models describe rights, obligations
and constraints: a right is an action a stakeholder is
permitted to perform; an obligation is an action a
stakeholder is required to perform; and a constraint
describes either an act or state-of-being that is a pre-
condition to a right or obligation. In this paper, legal
requirements are presented using Ri for a right and Oi
for an obligation where i is a unique index. Each legal
requirement has a corresponding first-order logic
expression consisting of constraints C1…Cn and logical
connectives (and, or, not).

To illustrate, consider the constraints and
obligations below, extracted from the HIPAA Privacy
Rule, for the obligation pairs (O4.10, C1 ∧ C2) and
(O4.11, C1 ∧ ¬C2) in which a covered entity (CE)
provides protected health information (PHI) to the
individual:

C1: The individual requests to access PHI in a
format.

C2: The requested format is readily available.

O4.10: The CE must provide the individual with access
to PHI in the requested format.

O4.11: The CE must provide the individual with access
to PHI in a readable hard copy format.

The obligation O4.10 requires the CE to provide access
to PHI in the requested format if the individual
requests the format (C1) and the format is available
(C2). Otherwise, the obligation O4.11 requires the CE to
provide access to PHI in a readable hard-copy format.

Semantic models are expressed in the KTL notation
[5], which has been formalized in Description Logic
[8] using two relations: the class relation δ(x, y), where
the equivalent expressions x[y] and y=x read “x is y”;
and the property relation α(x, y), where the symmetric
expressions x{y} and y : x reads “x has y” and “y of x”,
respectively. Symbols in semantic models are restricted
to one part-of-speech from nouns, adjectives, verbs and
adverbs; articles and prepositions are not allowed.
Symbols preceded by an exclamation point are
negated, while symbols preceded by a question mark
are query variables. Using unification [2], an
expression can be used to query a model [5] –– queries
are used to identify under-specifications consisting of
undefined properties that are required for a particular
class in a semantic model [7].

The model for obligation O4.10 appears in Figure 2,
expressed in the KTL notation. In Figure 2, symbols
taken from the obligation statement appear in bold; all
other symbols comprise part of the reusable meta-
model that is based upon one of several pre-defined
classes with required properties.

 1 activity [obligation] {
 2 subject = CE
 3 action = provide
 4 object = access {
 5 subject = individual
 6 action = access
 7 object = PHI {
 8 format [requested]
 9 }
 10 }
 11 target = individual
 12 }

Figure 2: Example Semantic Model

Several patterns have been identified to formalize
legal requirements statements using a consistent meta-
model [8]. The method discussed herein uses the
activity pattern that prescribes a meta-model consisting
of an activity class, which requires the properties
subject, action and object for the subject who performs
an action on the object in an activity [4]. An instance
of the activity class appears in Figure 2 for the activity
(Line 1), the subject (Lines 2 and 5), action (Lines 3
and 6) and object (Lines 4 and 7) properties. For a
legal requirement matching the activity pattern with
values assigned from the set of subjects S, actions A,
and objects O in the activity, we define the function
T : L → S × A × O that maps the domain of legal
requirements L to the range of SAO-triples. For
example, T (O4.10) = 〈CE, provide, access〉. The
function T is implemented using a static query through
existing tool support [5].

2) Output. The method produces finite state
machines as output in which each state corresponds to
a right or obligation for which stakeholders are
accountable. To “reach a state” means to assign a right
or obligation to a stakeholder; otherwise, the rights or
obligations are considered to be unassigned. From each
state, a stakeholder who is assigned a right may invoke
that right and a stakeholder who is assigned an
obligation must achieve or maintain that obligation. It
is considered a violation of a right or obligation if the
stakeholder cannot invoke an assigned right or cannot
achieve or maintain an assigned obligation in a
relevant state.

Each state is connected by one or more transitions
and each transition coincides with an event, which is
an act or state-of-being. The in-transitions to states
consist of pre-conditions to rights and obligations,
whereas the out-transitions from states consist of the
act of invoking a right or achieving and maintaining an
obligation. For the obligation pair (O4.10, C1 ∧ C2) from
the earlier example in Section III.A.1, we derive the
following events:

E1: The individual requests to access PHI in a
format.

E2: The requested format is readily available.
E3: The CE provides the individual with access to

the PHI in the requested format.

The constraint C1 maps to the event E1, the constraint
C2 maps to the event E2 and the act of achieving the
obligation O4.10 maps to the event E3. Since E1 and E2
were derived from the constraints, they become in-
transitions to the state that corresponds to O4.10. The
achievement E3 becomes an out-transition to that state.

The state and transitions are illustrated in Figure 3.

Figure 3: Example State with Transitions

The logical conjunction in the expression C1 ∧ C2 maps
to E1 ∧ E2 and appears as a bridge between the
corresponding in-transitions in Figure 3.

We now describe the individual steps in the first
and second phases of the method in Sections III.B and
III.C, respectively.
B. Phase 1: Checking Model Consistency

In the first phase of the method, semantic models
are checked for under-specifications and transformed
to balance rights with obligations. The procedure to
perform these steps and their contribution to the second
phase of the method is discussed in each sub-section
that follows.

1) Identify Ambiguities. The method requires the
user to resolve ambiguities called under-specifications.
The method employs two patterns for doing so: the
activity pattern and the verbs masquerading as nouns
pattern [8], which both yield an activity that has three
co-requisite properties: subject, action and object.
These properties must be specified in each activity
because they are required to generate events in the
second phase. We automatically detect these under-
specifications by applying a query algorithm based on
unification [2] that proceeds as follows: for each
symbol x, if x is a type of activity then α (x, y) is true
for some symbol y ∈{subject, action, object}; a
contradiction indicates an under-specification. The
algorithm compares each symbol in a requirement
expression for an under-specification and the user must
resolve such ambiguities using domain-expert
knowledge before proceeding to the next step.

The verbs masquerading as nouns pattern is applied
to nouns, including gerunds such as request, denial,

review, agreement, etc., that are types of activities. For
these nouns, an action is implied by the noun (e.g., the
action agree is implied by the noun agreement) and the
user maintains a list of these nouns for use in the
method. Based on our prior work analyzing policies in
healthcare and finance [4, 5], it is reasonable to expect
many of these nouns are generalizable across domains.
For example, in Figure 2 (above) if the object access
(Line 4) were specified without the object PHI (Line
7), the method would detect this ambiguity during this
step and require the user to complete the specification.

2) Balance Rights with Obligations. Rights and
obligations are balanced by identifying their implied
rights and obligations [7]. Implied rights or obligations
are not always stated in the regulation text but they are
always the logical consequences of expressed rights
and obligations and they are needed to improve
coverage and identify missing requirements in the
model. For this reason, they are logically inferred from
expressed rights and obligations and the method
provides patterns to do so.

Balancing is guided by four general cases in which
rights or obligations are implied by (1) delegations, (2)
direct provisions, (3) indirect provisions, and (4) an act
where a stakeholder is expressly not obliged, called an
anti-obligation [7]. Each case uses a transformation
comprised of a unique query to match the input
requirement and identify relevant values that are in
turn mapped to an output requirement describing the
implied right or obligation. For example, consider the
permitted delegation R6.3 balanced by implied
obligation OR-6.3:

R6.3: The CE may require an individual to request in
writing that the CE amend their PHI.

OR-6.3: The individual must request that the CE amend
their PHI in writing.

In Figure 4, the right R6.3 (Lines 1–15) and the implied
obligation OR-6.3 (nested in Lines 4–14) is extracted as
a separate obligation (Lines 16–25). In general, the
transformation uses a unique query to recognize the
actions permit and require as delegation verbs in which
the object of the delegation is always the implied right
or obligation, respectively. Consequently, for the
action require (Line 3) the activity (Lines 4–14) is
identified as an implied obligation (Line 16–25). Direct
and indirect provisions are also balanced using
transformations that rely on a unique query to identify
and resolve these cases [7].

In the fourth case, anti-obligations describe actions
that stakeholders are not required to perform. In this
case, the stakeholder’s implied right is to choose
whether or not to perform that action. Anti-obligations
are expressed using a negated obligation symbol and
balanced by replacing the negated obligation symbol

with a right symbol. These symbols appear in square
brackets after the activity symbol at the head of each
expression for anti-obligations.

 1 activity [right] {
 2 subject = CE
 3 action = require
 4 object = activity {
 5 subject = individual
 6 action = request
 7 object = activity {
 8 subject = CE
 9 action = amend
 10 object = PHI : individual
 11 }
 12 instrument = writing
 13 target = CE
 14 }
 15 }

 16 activity [obligation] {
 17 subject = individual
 18 action = request
 19 object = activity {
 20 subject = CE
 21 action = amend
 22 object = PHI : individual
 23 }
 24 instrument = writing
 25 }

 Figure 4: Right Balanced with an Obligation

Balancing rights and obligations requires special
handling to map constraints to implied rights or
obligations. For delegations and indirect provisions,
the balanced right or obligation produces an implied
requirement that is pre-conditioned on the invocation
of the original delegation or indirect provision. In other
words, a stakeholder must first be delegated a right
before they can invoke that right. For direct provisions
and anti-obligations, the implied requirement inherits
the constraints of the direct provision or anti-
obligation, because these cases represent the same
requirement but from a different stakeholder
perspective [7].

In the second phase, we see how events generated
from implied rights and obligations correspond to the
pre-conditions of other rights and obligations.
Balancing rights and obligations ensures these
dependent events in pre-conditions are accounted for.
C. Phase 2: State Machine Generation

In the method’s second phase, two tables are
generated: (1) the state-event table is generated by
querying the semantic models from the first phase; and
(2) the transition table is generated by iterating
constraints and entries in the state-event table. Both
steps are discussed in detail below.

1) Generate States and Events. In the first step, we
populate the state-event table by querying the semantic
model. Entries in the state-event table have four fields,
including a unique index for the state or event and a
SAO-triple with subject, action and object.

To populate the table from rights, obligations and
their constraints, recall from Section III we introduced
the function T(m) to identify the SAO-triple from a
semantic model m. In this step, we extend T as a
recurrence relation T(o) for the object o ∈ T(m),
whenever the object o is a type of activity. We ensured
T(o) is well-defined by disambiguating activities in
Section III.B.1. In addition, we introduce a similar
function Tʹ′(m) to extract one of two possible SAO-
triples conveying the regulation’s authority over the
stakeholder: Tʹ′(m) = 〈Rule, permit, T(m)〉 for a model
m of a right; and Tʹ′(m) = 〈Rule, require, T(m)〉 for a
model m of an obligation. In both cases, the subject of
the triple is the regulation, identified by Rule, whose
authority is described by the action, either permit or
require. Consider the example obligation model O6.3 in
Figure 5, below.

 1 activity [obligation] {
 2 subject = CE
 3 action = provide
 4 object = denial [written] {
 5 subject = CE
 6 action = deny
 7 object = request {
 8 subject = Individual
 9 action = request
 10 object = amendment {
 11 subject = CE
 12 action = amend
 13 object = PHI
 14 }
 15 }
 16 }
 17 target = Individual
 18 }

 Figure 5: Example Recurrence for SAO-triple

The model is an obligation (Line 1) that requires “the
CE provide the individual with a written denial to their
request for amendment to PHI.” Consequently, the
function Tʹ′(m) = 〈Rule, require, T(m)〉 and T(m) = 〈CE,
provide, T(denial)〉. Note how the object is an activity
(denial on Line 4) thus leading to the subsequent
recurrence T(denial). For now we ignore properties
other than those involved in the SAO-triple such as the
target in Line 13. Applying functions Tʹ′(m) and T(m)
yields the entries in Table I from the example
obligation O6.3.

In the state-event tables, states are entries where the
subject is the Rule and all other entries are events. Note
a state is either a right or an obligation depending on
the value in the action field, either permit or require,

respectively. Successive uses of the same subject,
action and object fields will reuse the first index to that
triple. Table entries for constraints are produced using
only the function T(m) and the recurrence when
applicable. For example, the right O6.3 has the
constraint “the CE denies an individual’s request to
amend PHI” in which the function T applied to the
model yields an event equivalent to event e2.

TABLE I: EXAMPLE STATE-EVENT TABLE

Index Subject Action Object
O6.3 Rule require E1
E1 CE provide E2
E2 CE deny E3
E3 Individual request E4
E4 CE amend PHI

2) Generate Transitions. In the second step, we
populate the transition table by generating transitions
using events from the first step in phase two. The
transition table has four fields: the set number shared
by constraints in a conjunction; the source state from
which the transition leads out; the event used to
generate the transition; and the target state to which the
transition leads in.

Each right and obligation state has the following
transitions: in-transitions generated for events that
were derived from pre-conditions; out-transitions
generated from the event in the object field for states in
the state table; and, if the state is an obligation,
transitions for the negation of the event in the object
field of the state table. The negation of the event for
obligations always leads to a non-compliant state (NC)
equivalent to violating the obligation. This is different
from negating the obligation, which is called an anti-
obligation. For rights, the target state of this transition
is unspecified. Continuing with the example from
Section III.C.1, we generate the transitions for
obligation O6.3 in Table II.

TABLE II: EXAMPLE TRANSITION TABLE

Set Source Event Target
1 E2 O6.3
2 O6.3 E1
3 O6.3 ¬ E1 NC6.3

The in-transition (first row) to O6.3 corresponds to
the constraint on O6.3 and the out-transition (second
row) corresponds to the object from the state
T(O6.3) = 〈Rule, require, e1〉 in Table I. The transition
to the non-compliant state (third row) must eventually
be conjoined with a time-out event or deadline to
complete this monitor. The graphic illustration of this
monitor appears in Figure 6, where the clouds
represent placeholder states that have yet to be
specified.

Figure 6: Example Compliance Monitor

After the state-event and transition tables have been
generated, one can derive a combined compliance
monitor by pairing events from in- and out-transitions
to connect states. The combined compliance monitor
more effectively illustrates the interactions between
rights and obligations. We present such a graphic in
Section IV as an application of the entire method.

IV. RESULTS FROM HIPAA PRIVACY RULE
In a previous case study [7], we derived semantic

models from rights, obligations and constraints that
were extracted from the Privacy Rule [18] – a U.S.
federal regulation for the HIPAA. The Rule governs
use and disclosure of patient healthcare information.
Based on discussions with chief security and privacy
officers, companies prioritize compliance with those
regulations most likely to interface with the public and
consumers. For this reason, the method was applied to
§164.520 – §164.526 in Subpart E of the Privacy Rule.
Results from §164.524, titled “Access of individuals to
protected health information,” are presented below.

The analysis of §164.524 in the case study yielded a
total of 20 rights, 26 obligations and 67 constraints.
From these, the following rights and obligations are
most relevant to generate the largest combined
compliance monitor using the method. The following
acronyms are used: covered entity (CE), licensed
healthcare professional (LHP), and protected health
information (PHI).

R4.1: The individual has a right to request access to
their PHI.

R4.3: The CE may deny an individual access to their
PHI. (C1)

R4.5: The individual may have a denial of requested
access reviewed by an LHP. (C2)

O4.1: The CE must permit an individual access to
their PHI. (C3)

O4.2: The CE must deny an individual access to their
PHI. (C4)

O4.3: The CE must permit an individual to request
access to their PHI.

O4.5: The CE must inform the individual that
requested access is permitted. (C5)

O4.7: The CE must inform the individual that the
requested access was denied. (C2)

O4.16: The CE must designate an LHP to review a
denial of requested access. (C6)

O4.18: The LHP must recommend that the CE permit or
deny the individual access to PHI. (C7 ∧ C8)

O4.19: The CE must inform the individual of the
recommendation of the LHP. (C3 ∨ C4)

Each right and obligation above is annotated with the
logical expression of constraints (in parenthesis) from
the following list:

C1: The individual requests access to their PHI.
C2: The CE denies requested access to PHI.
C3: The LHP recommends the CE permit access.
C4: The LHP recommends the CE deny access.
C5: The CE permits the requested access to PHI.
C6: The individual requires an LHP review a denial.
C7: The CE designates the LHP to review a denial.
C8: The LHP reviews the denial of access.

For the purpose of this illustration, only those
events that form transitions between states are
highlighted and constraints that only describe state-of-
being as they contribute no such events are ignored. As
a result, the following state-event and transition tables
are incomplete under the law but sufficient as an
exemplar in this paper.

In phase one (consistency checking), step one, the
user of the method identified several under-
specifications in the original semantic model for rights,
obligations and constraints. To resolve these
ambiguities, the user is required to specify 37 subjects,
35 actions and 32 objects by coordinating domain
expert elicitation with a review of the relevant context
in the source legal text.

In step two, the user balanced two rights and one
obligation. The rights R4.1 and R4.5 and the obligation
O4.3 were balanced with new models OR-4.1, OR-4.5 and
RO-4.3, respectively. Since OR-4.1 ≈ O4.3 and R4.1 ≈ RO-4.3,
the right R4.1 balanced directly with O4.3, which means
OR-4.1 and RO-4.3 were not new contributions to the
model. However, the right R4.5 only balances with
obligation OR-4.5 requiring the LHP to review denials of
requested access, so OR-4.5 is a new contribution.

In phase two (FSM generation), step one, the states
and events were generated (see Table III). There were
17 instances where events previously entered into the
table were duplicated with other states.

The generated transitions from step two appear in
Table IV. The in-transitions were generated from
constraints (Sets 1–11). The out-transitions were
generated from the object value of states (Sets 12–25),
the alternate transitions from rights (Sets 26–30) and
the transitions from states to non-compliant states (Sets
31–40) all from Table III.

TABLE III: STATE-EVENT TABLE FOR HIPAA §164.524

Index Subject Action Object
R4.1 Rule permit E1
E1 Individual request E2
E2 Individual access PHI
R4.3 Rule permit E3
E3 CE deny E2
R4.5 Rule permit E4
E4 Individual require E5
E5 LHP review E3
OR-4.5 Rule require E5
O4.1 Rule require E6
E6 CE permit E2
E7 LHP recommend E6
O4.2 Rule require E3
E8 LHP recommend E3
O4.3 Rule require E9
E9 CE permit E1
O4.5 Rule require E10
E10 CE inform E6
O4.7 Rule require E11
E11 CE inform E3
O4.16 Rule require E12
E12 CE designate LHP
O4.18 Rule require E7
O4.18 Rule require E8
O4.19 Rule require E13
E13 CE inform E7
O4.19 Rule require E14
E14 CE inform E8

The combined compliance monitor is illustrated in
Figure 7. In Figure 7, the transitions for events
produced by invoking rights are illustrated using dotted
lines whereas the transitions for events produced by
achieving or maintaining obligations are illustrated
using solid lines. For easier reading, the figure omits
transitions to non-compliant states and alternate
transitions for rights that do not align with existing
states. Unspecified states appear as clouds with events
E10, E11, E13 and E14 leading to such states.

Figure 7 makes it easier to recognize important
aspects of the combined compliance monitor. For
example, the unconditional rights and obligations such
as O4.3 have no in-transitions. Rights or obligations that
immediately follow unconditional obligations, like
right R4.1, are consequently unconditional, unless the
stakeholder violates the preceding obligation. In
addition, loops on states for obligations require
stakeholders to maintain that state. For example, based
on obligation O4.18, if the LHP determines the CE
should not provide access (via E8, bottom center), then
the CE must deny access (via E3 and the loop at O4.2).

Rights that provide stakeholders choices are also
easier to visualize. For example, in state R4.3, the CE
has a choice: (1) they can deny the requested access via

E3, in which case they must (a) inform the individual
via O4.7 and (b) provide the right to review via R4.5; or
(2) they can permit the requested access, in which case
they must inform the individual via O4.5.

TABLE IV: TRANSITION TABLE FOR HIPAA §164.524

Set Source Event Target
1 E1 R4.3
2 E3 R4.5
3 E4 OR-4.5
4 E3 O4.7
5 E3 O4.16
6 E7 O4.1
7 E7 O4.19
8 E8 O4.2
9 E8 O4.19

10 E6 O4.5
11 E12 O4.18
11 E5 O4.18
12 R4.1 E1
13 R4.3 E3
14 R4.5 E4
15 OR-4.5 E5
16 O4.1 E6
17 O4.2 E3
18 O4.3 E9
19 O4.5 E10
20 O4.7 E11
21 O4.16 E12
22 O4.18 E7
23 O4.18 E8
24 O4.19 E13
25 O4.19 E14
26 R4.1 ¬ E1
27 R4.3 ¬ E6
28 R4.3 ¬ E3
29 R4.5 ¬ E4
30 OR-4.5 ¬ E5
31 O4.1 ¬ E3 NC4.1
32 O4.2 ¬ E6 NC4.2
33 O4.3 ¬ E9 NC4.3
34 O4.5 ¬ E10 NC4.5
35 O4.7 ¬ E11 NC4.7
36 O4.16 ¬ E12 NC4.16
37 O4.18 ¬ E7 NC4.18
38 O4.18 ¬ E8 NC4.18
39 O4.19 ¬ E13 NC4.19
40 O4.19 ¬ E14 NC4.19

Rights and obligations assigned through delegation
are clearly shown. For example, the obligation
requiring the CE to permit the individual to request
access (the path O4.3 → E9 → R4.1 → E1) is distinct
from the right permitting the individual to require an
LHP to review a denial (the path R4.5 → E4 → OR-4.5 →
E5). However, the graphic does not clearly distinguish

between rights to obligate other stakeholders and
obligations that follow from invoking a stakeholder
right, such as the path R4.3 → E6 → O4.5 → E10.

Figure 7: Combined Compliance Monitor

V. DISCUSSION AND FUTURE WORK
Before concluding with future work, we quickly

discuss the current limitations.
In phase two, step one in Section III.C.1, the

method must determine if two events are equivalent in
order to reuse shared events. In this study, we only
used the SAO-triple to compare events and identify
duplicates; however, two different events can have the
same SAO-triple. For example, two similar requests to
two different recipients or a repeated event with
dissimilar temporal constraints could both have the
same subject, action, and object. We propose
addressing this problem by extending the method to
compare the semantic model sub-components used to
generate the events instead of the SAO-triple, since
they will have the necessary information to distinguish
these events – including any temporal constraints.

In phase two, step two in Section III.C.2, the set
number is sufficient to assign transitions to logical
conjunctions or disjunctions. However, we
encountered the need to support exclusive-or on the
out-transitions for obligations (see O4.18 in Section IV)
as a convenience to stakeholders. The consequences of
exclusive-or on out-transitions impacts how transitions
to non-compliant states are generated. For example, for

the two events, A and B, the out-transitions for an
obligation in the expression (A ∧ ¬B) ∨ (¬A ∧ B) only
require a transition to a non-compliant state for
(¬A ∧ ¬B) and not for ¬A independent of ¬B.

Future work includes integrating the compliance
monitors produced by the method into runtime systems
and additional validation to assess the repeatability of
the method. Formalization of rights and obligations
using FSM is a significant first step towards runtime
compliance monitoring, however, additional work is
needed to identify the software interfaces and functions
responsible for implementing these legal requirements.
Regarding validation, the method was rigorously
applied to four sections of the HIPAA Privacy Rule
and shown to yield compliance monitors for one
method user. Because humans have natural differences
in ability, however, we do not know the extent to
which requirements engineers can apply the method, in
general. This is a problem with formal methods in
general and requires additional experimental study in a
controlled laboratory. That said, understanding the
difficulty other users have with the method may
suggest directions for future automation and support to
improve consistency and coverage in the FSM.

Finally, future work includes the need to evaluate
risk and compliance associated with the decision to
implement a right or obligation in systems. Risk is the
probability that a regulation will be violated by a
business or system process. For each right or
obligation, calculating risk requires knowing the
frequencies of real-world events that pre-condition,
satisfy or violate the right or obligation. Furthermore,
risk must also factor in the penalty or cost of violating
a right or obligation. For rights or obligations with a
high penalty, frequent violation or with frequent
satisfaction of pre-conditions, there is a higher priority
to implement system processes to prevent violation and
monitor compliance at runtime.

For example, in Figure 7 in Section IV, the
individual is given the right to request access to PHI
via right R4.1 and, if denied that access, they receive the
right to have an LHP review the denial via right R4.5.
The review involves a complex set of stakeholder
interactions between the obligations of the LHP and
CE and the rights of the individual. If individuals
rarely exercise right R4.5, the cost of implementing
these obligations in systems may be incommensurate
with the frequency of violations due to human error in
the business process. Since the compliance monitors
can be aligned with both business and system
processes, stakeholders can use these monitors to
design and develop software systems commensurate
with risk and compliance costs.

VI. ACKNOWLEDGEMENTS
This work was funded by NSF ITR Grant #032-5269.

VII. REFERENCES
[1] J. Atlee, J. Gannon, “State-based Model Checking of

Event-driven System Requirements.” Conf. Soft. for
Critical Systems, New Orleans, LA, pp. 16-28, 1991.

[2] F. Baader, J.H. Siekmann, Unification Theory. Handbook
of Logic in AI and Logic Programming, Oxford
University Press, New York, NY, pp. 41-125, 1994.

[3] R. Bharadwaj, C.L. Heitmeyer, “Model Checking
Complete Requirements Specifications Using
Abstraction.” Auto. Soft. Engr., 6(1), pp. 37-68, 1999.

[4] T.D. Breaux, A.I. Antón, “Deriving Semantic Models
from Privacy Policies.” IEEE Workshop on Policies for
Distributed Sys. & Networks, Sweden, pp. 67-76, 2005.

[5] T.D. Breaux, A.I. Antón, “Analyzing Goal Semantics for
Rights, Permissions, and Obligations.” IEEE Req’ts.
Engr. Conf., Paris, France, pp. 177-186, 2005.

[6] T.D. Breaux, A.I. Antón, “Mining Rule Semantics to
Understand Legislative Compliance.” ACM Workshop on
Privacy in Electronic Society, USA, pp. 51-54, 2005.

[7] T.D. Breaux, M.W. Vail, A.I. Antón, “Towards
Regulatory Compliance: Extracting Rights and
Obligations to Align Requirements with Regulations,”
IEEE Int’l Conf. Reqts. Engr, pp. 49-58, 2006.

[8] T.D. Breaux, A.I. Anton, J. Doyle, “Semantic
Parameterization: A Process for Modeling Domain
Descriptions,” ACM Trans. on Software Engineering
Methodology, 18(2): 5, Nov. 2008.

[9] T.D. Breaux, A.I. Anton, C.-M. Karat, J. Karat,
“Enforceability vs. Accountability in Electronic
Policies,” IEEE 7th International Workshop on Policies
for Distributed Systems and Networks (POLICY'06),
London, Ontario, pp. 227-230, Jun. 2006

[10] M. Chechik, J. Gannon, “Automatic Analysis of
Consistency Between Requirements and Design.” IEEE
Trans. Soft. Eng., 27(7), pp. 651-672, 2001.

[11] D. Cohen, M.S. Feather, K. Narayanaswamy, S.F.
Fickas, “Automatic Monitoring of Software
Requirements.” IEEE Int’l Conf. Soft. Eng, pp. 602-603,
1997.

[12] Ernst & Young, 10th Annual Global Information
Security Survey: Achieving A Balance of Risk and
Performance, 2007.

[13] S.F. Fickas, T. Beauchamp, N.A.R. Mamy, “Monitoring
Requirements: A Case Study.” IEEE Int’l Conf. Auto.
Soft. Eng. Edinburgh, UK, pp. 299-304, 2002.

[14] B.A. Garner, editor. Blacks Law Dictionary, 8th ed.
Thompson West, St. Paul, Minnesota, 2004.

[15] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone.
“Modeling Security Requirements Through Ownership,
Permission and Delegation.” IEEE 13th Req’ts. Eng..
Conf., France, pp. 167-176, 2005.

[16] C.L. Heitmeyer, R.D. Jeffords, B.G. Labaw.
“Automated Consistency Checking of Requirements
Specifications,” ACM Trans. Soft. Eng. Methods, 5(3),
pp. 231-261, 1996.

[17] Health Insurance Portability and Accountability Act,
USC H.R. 3103-168, April 2000.

[18] Office for Civil Rights, “Standards for Privacy of
Individually Identifiable Health Information.” 45 CFR
Part 160, Part 164 Subpart E. In Federal Register, vol.
68, no. 34, February 20, 2003, pp. 8334 – 8381

[19] S. Kerrigan, K.H. Law, “Logic-based Regulation
Compliance-Assistance.” Int’l Conf. AI and Law, pp.
126-135, 2003.

[20] R. de Landtsheer, E. Letier, A. van Lamsweerde,
“Deriving Tabular Event-based Specifications from
Goal-Oriented Requirements Models.” IEEE Req’ts. Eng.
Conf., Monterrey, CA, pp. 200-210, 2003.

[21] N.A.M. Maiden, “CREWS-SAVRE: Scenarios for
Acquiring and Validating Requirements,” Auto. Soft.
Eng. 5(4), pp. 419-446, 1998.

[22] D.K. Peters, D.L. Parnas, “Requirements-based
Monitors for Real-time Systems.” IEEE Trans. Soft.
Eng., 28(2), pp. 146-158, 2002.

[23] W.N. Robinson, “A Requirements Monitoring
Framework for Enterprise Systems.” Req’ts. Eng.
Journal, 11(1), pp. 17-41, 2005.

[24] M.J. Sergot, F. Sadri, R.A. Kowalski, F. Kriwaczek, P.
Hammond, H.T. Cory, “The British Nationalisty Act as a
Logic Program,” Comm. of the ACM, 29(5), pp. 370-386,
1986.

[25] M.J. Sergot, A.S. Kamble, K.K. Bajaj, “Indian Central
Civil Service Pension Rules: A Case Study in Logic
Programming.” Int’l Conf. AI & Law, pp. 118-127, 1991.

[26] D. Sherman, “A Prolog Model of the Income Tax Act of
Canada.” Int’l Conf. AI & Law, pp. 127-136, 1987.

[27] G. Spanoudakis, K. Mahbub, “Requirements Monitoring
for Service-based Systems: Towards a Framework Based
on Event Calculus.” IEEE Int’l Conf. Auto. Soft. Eng.,
Linz, Austria, pp. 379-384, 2004.

[28] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel,
“Supporting Scenario-based Requirements Engineering,”
IEEE Trans. Soft. Eng., 24(12), pp. 1072-1088, 1998.

