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Abstract—Developing software systems in heavily 
regulated industries requires methods to ensure systems 
comply with regulations and law. A method to acquire 
finite state machines (FSM) from stakeholder rights and 
obligations for compliance monitoring is proposed. Rights 
and obligations define what people are permitted or 
required to do; these rights and obligations affect 
software requirements and design. The FSM allows 
stakeholders, software developers and compliance 
officers to trace events through the invocation of rights 
and obligations as pre- and post-conditions. Compliance 
is monitored by instrumenting runtime systems to report 
these events and detect violations. Requirements and 
software engineers specify the rights and obligations, and 
apply the method using three supporting tasks: 1) 
identify under-specifications, 2) balance rights with 
obligations, and 3) generate finite state machines. 
Preliminary validation of the method includes FSMs 
generated from U.S. healthcare regulations and tool 
support to parse these specifications and generate the 
FSMs. 

I. INTRODUCTION 
Software engineering is concerned with automating 

tasks within and across the software development 
lifecycle. Software requirements are one of the first 
artifacts to enter this lifecycle. Due to their informal 
specification in natural language, they are difficult to 
manipulate and integrate directly into the verification 
and testing of large software systems – the goal of 
requirements monitoring. In highly regulated industries 
within the United States, such as healthcare and 
finance, requirements monitoring is necessary to 
ensure systems comply with the law. For example, the 
U.S. Health Insurance Portability and Accountability 
Act1 (HIPAA) of 1996 and Gramm-Leach-Bliley Act2 
of 1999 require organizations to implement programs 
to develop and monitor legal compliance with security 
and privacy policy and regulations. Legal compliance 
refers to an organization’s “ability to maintain a 
defensible position in a court of law” [9]. Legal 
compliance consists of maintaining clear evidence that 
                                                             
1 Public Law No. 104-191 Stat. 1936 (1996) 
2 Public Law No. 106-102, 113 Stat. 1338 (1999) 

demonstrates both due diligence, which means 
“reasonable efforts that persons make to satisfy legal 
requirements”, and good faith, which means 
“faithfulness to one’s duty or obligation” [14]. In this 
paper, I propose a manual method to systematically 
acquire finite state machines (FSM) from semantic 
models of stakeholder rights and obligations. I 
illustrate the method using legal requirements extracted 
from the HIPAA Privacy Rule during a prior case 
study [7] and with an attention to detail so that others 
may replicate and expound upon this method.  

The FSMs correlate real world events (the 
transitions between states) to stakeholder rights and 
obligations (the states). To evaluate risk and 
compliance, software developers can map these events 
to requirements and design specifications. Systems 
developers can use these event mappings to focus their 
verification efforts on those components most at-risk 
for non-compliance. After deployment, the FSMs can 
operate as compliance monitors by instrumenting 
software components to provide records of these events 
and demonstrate an organization’s ability to monitor 
compliance failures; a good faith practice. As systems 
evolve to adapt to new organizational needs, these 
monitors ensure that new changes to existing software 
systems continue to operate within the regulatory 
framework of stakeholder rights and obligations. 

It is estimated that healthcare organizations have 
spent up to $17.6 billion over the last few years to 
bring their systems and procedures into compliance 
with the HIPAA [18]. Existing guidelines and 
standards not only fail to provide specific solutions, 
but also make compliance a significant challenge. 
According to a 2007 Ernst & Young survey of chief 
executives in over 1,100 international organizations, 
compliance with regulations and policy surpassed 
worms and viruses as the primary driver of information 
security policy [12]. The consequence of not 
complying with regulations is now forefront for those 
responsible for assuring that software systems 
containing sensitive information remain secure and 
protected. 



 

The remainder of this paper is organized as follows: 
Section II reviews related work; Section III introduces 
the method to generate compliance monitors; Section 
IV presents the results of applying the method to rights 
and obligations previously extracted from the HIPAA 
Privacy Rule [7]; Section V discusses limitations and 
future work, with the conclusion in Section VI. 

II. RELATED WORK 
This section discusses approaches that model 

regulations, requirements and scenarios, that perform 
consistency and model checking, and approaches to 
requirements monitoring. It is important to stress that 
requirements are limited to the scope of software 
systems, whereas stakeholder rights and obligations (as 
expressed in law) govern the broader scope of business 
processes. Although requirements-based methods 
generally assume a degree of system control that 
cannot be assumed in a complete compliance 
framework, these methods are highly relevant to the 
specification of stakeholder rights and obligations as 
requirements.  

Prior work focuses on modeling regulations in 
artificial intelligence [19, 24, 25, 26]. Sherman 
developed Prolog models from the Income Tax Act of 
Canada [26]. Sergot et al. have conducted similar case 
studies, developing logic programs from the British 
Nationality Act [24] and the Indian Central Service 
Pension rules [25]. These logic programs abstract rule 
elements as predicates to query legal expert systems. 
Our general approach has been to further decompose 
these predicates into semantic models [4, 5, 7]. I 
leverage this decomposition to align rights and 
obligations along shared events (see Section III.C.2). 
Alternatively, Kerrigan and Law propose a system that 
provides question-answering assistance with 
environmental regulations modeled in first-order logic 
[19]. 

In requirements engineering, relevant approaches 
include those to model policies [5], regulations [7] and 
stakeholder goals [20]. The notation developed from 
our previous work modeling privacy policies in 
healthcare and finance [5] is used to specify semantic 
models in the method proposed in this paper. In 
addition, Giorgini et al. present Secure Tropos (ST), a 
formal framework for modeling security requirements 
applied to Italian privacy regulations [15]. ST 
distinguishes between rights or permissions (at-most) 
and obligations (at-least) in the context of delegation. 
ST employs Datalog to perform model checking and 
find inconsistencies. The  work reported in this paper 
complements their framework by providing new 
insight into how rights and obligations are conditioned 
on shared events. Landtsheer et al. show how to map 
KAOS goal models into Software Cost Reduction 

(SCR) specifications amenable to event-based model 
checking [20]. Goals are prescriptive actions of intent 
whose satisfaction may require agent cooperation. Like 
goals, our work with rights and obligations also 
express stakeholder intent yet within the expressed 
confines of regulations and normative theory.  

Sutcliffe et al. and Maiden describe a partially 
automated method to generate scenarios using use 
cases and object system models [21, 28]. Maiden 
defines object system models as patterns of 
requirements that include attributes for agents, actions, 
objects, and pre-conditions, among others. My 
approach differs in that the compliance monitors derive 
event sequences from regulations whereas use cases 
are generally elicited from stakeholders. Furthermore, 
the FSMs are intended to be used in verifying 
requirements in post-deployed systems, whereas 
Maiden’s scenarios were intended to be used in 
requirements validation. 

It is important to distinguish aspects of my approach 
from those in consistency and model checking [1, 3, 
10, 16]. Heitmeyer et al. propose consistency checking 
as a formal method to statically identify ambiguities in 
requirements specifications [16]. Similarly, the method 
in this paper utilizes static checks on semantic models 
to identify ambiguities, called under-specifications, and 
further balance rights with obligations; this process is 
called consistency checking. Alternatively, model 
checking is used to assert that formal properties hold 
across model states and has been applied to 
requirements specifications to: check safety properties 
using temporal logic [1]; reduce the number of model 
states using abstraction [3]; and derive FSM from 
design flow graphs (DFG) to check consistency 
between requirements and design [10]. A future goal of 
this work includes applying model checking techniques 
to the acquired FSMs. 

In requirements monitoring, various approaches use 
different techniques to specify and deploy 
requirements monitors. Among these, others have 
recognized the need to: provide a generalized interface 
to query assumptions at runtime [11]; model 
relationships between events to distinguish between 
expected and recorded system behavior [27]; and align 
requirements monitoring with design methodologies 
[23]. The approach in this paper accommodates these 
needs by generating FSMs for event-based compliance 
monitoring to evaluate design decisions based on risk 
and compliance costs. On the other hand, Peters and 
Parnas discuss design issues for requirements monitors 
in real-time systems such as real-time notification 
under discrete-time sampling, sample quantization to 
measure error, and non-determinism [22]. However, 
the U.S. federal regulations we analyzed in healthcare 
did not exhibit these phenomena. 



 

Fickas et al. describe a case study in which 
ephemeral requirements are modeled as finite state 
automata in the Promela language and monitored using 
a web service called Emu [13]. Ephemeral or personal 
requirements are difficult to monitor because the 
system environment is beyond the scope of reasonable 
control [13]. For example, advancing from one state to 
another may require an indefinite human response. The 
same limitation exists in compliance monitoring since 
not all regulations are implementable within the scope 
of software systems. However, due to diversity in 
regulated industries, it is infeasible for the law to 
prioritize implementing regulations based on factors 
such as available technology, business value or costs. 
Therefore, all regulations should appear in the scope of 
compliance monitors, so as organizations evolve, they 
can evaluate their individual non-compliance risks 
against these factors.  

III. ACQUIRING COMPLIANCE MONITORS 
The method to acquire compliance monitors (see 

Figure 1) accepts a semantic model of regulations [7] 
as input and produces finite state machines (FSMs) as 
output in two phases: (1) a consistency checking phase 
to identify under-specifications, and balance rights 
with obligations; and (2) a generation phase to produce 
the states-event and transition tables comprising the 
FSMs.  

 
Figure 1: Method Process Overview 

 

The inputs and outputs to the method are described 
in detail in Section III.A before proceeding to discuss 
the first and second phases in Sections III.B and III.C, 
respectively. 
A. The Input and Output 

The method’s inputs and outputs are now discussed. 
All examples employed below are derived from the 
HIPAA Privacy Rule [18]. 

 

1) Input. Requirements and software engineers 
provide semantic models of regulations as inputs to the 
method. Breaux et al. developed a methodology that 
engineers can use to extract these models from policy 
and regulation text [7]. The methodology, which was 
developed from a pilot study [6] and a summative case 
study [7], employs a process called Semantic 

Parameterization to derive the models from restricted 
natural language statements [8].  

The semantic models describe rights, obligations 
and constraints: a right is an action a stakeholder is 
permitted to perform; an obligation is an action a 
stakeholder is required to perform; and a constraint 
describes either an act or state-of-being that is a pre-
condition to a right or obligation. In this paper, legal 
requirements are presented using Ri for a right and Oi 
for an obligation where i is a unique index. Each legal 
requirement has a corresponding first-order logic 
expression consisting of constraints C1…Cn and logical 
connectives (and, or, not).  

To illustrate, consider the constraints and 
obligations below, extracted from the HIPAA Privacy 
Rule, for the obligation pairs (O4.10, C1 ∧ C2) and 
(O4.11, C1 ∧ ¬C2) in which a covered entity (CE) 
provides protected health information (PHI) to the 
individual: 

 

C1: The individual requests to access PHI in a 
format. 

C2: The requested format is readily available. 
 

O4.10: The CE must provide the individual with access 
to PHI in the requested format.  

O4.11: The CE must provide the individual with access 
to PHI in a readable hard copy format. 

 

The obligation O4.10 requires the CE to provide access 
to PHI in the requested format if the individual 
requests the format (C1) and the format is available 
(C2). Otherwise, the obligation O4.11 requires the CE to 
provide access to PHI in a readable hard-copy format. 

Semantic models are expressed in the KTL notation 
[5], which has been formalized in Description Logic 
[8] using two relations: the class relation δ(x, y), where 
the equivalent expressions x[y] and y=x read “x is y”; 
and the property relation  α(x, y), where  the symmetric 
expressions x{y} and y : x reads “x has y” and “y of x”, 
respectively. Symbols in semantic models are restricted 
to one part-of-speech from nouns, adjectives, verbs and 
adverbs; articles and prepositions are not allowed. 
Symbols preceded by an exclamation point are 
negated, while symbols preceded by a question mark 
are query variables. Using unification [2], an 
expression can be used to query a model [5] –– queries 
are used to identify under-specifications consisting of 
undefined properties that are required for a particular 
class in a semantic model [7].  

The model for obligation O4.10 appears in Figure 2, 
expressed in the KTL notation. In Figure 2, symbols 
taken from the obligation statement appear in bold; all 
other symbols comprise part of the reusable meta-
model that is based upon one of several pre-defined 
classes with required properties. 

 



 

 

 1 activity [ obligation ] { 
 2  subject = CE 
 3  action = provide 
 4  object = access { 
 5   subject = individual 
 6   action = access 
 7   object = PHI { 
 8    format [ requested ] 
 9   } 
 10  }  
 11  target = individual 
 12 } 

 

Figure 2: Example Semantic Model 
 

Several patterns have been identified to formalize 
legal requirements statements using a consistent meta-
model [8]. The method discussed herein uses the 
activity pattern that prescribes a meta-model consisting 
of an activity class, which requires the properties 
subject, action and object for the subject who performs 
an action on the object in an activity [4]. An instance 
of the activity class appears in Figure 2 for the activity 
(Line 1), the subject (Lines 2 and 5), action (Lines 3 
and 6) and object (Lines 4 and 7) properties. For a 
legal requirement matching the activity pattern with 
values assigned from the set of subjects S, actions A, 
and objects O in the activity, we define the function 
T : L → S × A × O that maps the domain of legal 
requirements L to the range of SAO-triples. For 
example, T (O4.10) = 〈CE, provide, access〉. The 
function T is implemented using a static query through 
existing tool support [5]. 

 

2) Output. The method produces finite state 
machines as output in which each state corresponds to 
a right or obligation for which stakeholders are 
accountable. To “reach a state” means to assign a right 
or obligation to a stakeholder; otherwise, the rights or 
obligations are considered to be unassigned. From each 
state, a stakeholder who is assigned a right may invoke 
that right and a stakeholder who is assigned an 
obligation must achieve or maintain that obligation. It 
is considered a violation of a right or obligation if the 
stakeholder cannot invoke an assigned right or cannot 
achieve or maintain an assigned obligation in a 
relevant state.  

Each state is connected by one or more transitions 
and each transition coincides with an event, which is 
an act or state-of-being. The in-transitions to states 
consist of pre-conditions to rights and obligations, 
whereas the out-transitions from states consist of the 
act of invoking a right or achieving and maintaining an 
obligation. For the obligation pair (O4.10, C1 ∧ C2) from 
the earlier example in Section III.A.1, we derive the 
following events: 

 

E1: The individual requests to access PHI in a 
format. 

E2: The requested format is readily available. 
E3: The CE provides the individual with access to 

the PHI in the requested format.  
 

The constraint C1 maps to the event E1, the constraint 
C2 maps to the event E2 and the act of achieving the 
obligation O4.10 maps to the event E3. Since E1 and E2 
were derived from the constraints, they become in-
transitions to the state that corresponds to O4.10. The 
achievement E3 becomes an out-transition to that state. 

The state and transitions are illustrated in Figure 3.  

 
Figure 3: Example State with Transitions 

 

The logical conjunction in the expression C1 ∧ C2 maps 
to E1 ∧ E2 and appears as a bridge between the 
corresponding in-transitions in Figure 3.  

We now describe the individual steps in the first 
and second phases of the method in Sections III.B and 
III.C, respectively. 
B. Phase 1: Checking Model Consistency 

In the first phase of the method, semantic models 
are checked for under-specifications and transformed 
to balance rights with obligations. The procedure to 
perform these steps and their contribution to the second 
phase of the method is discussed in each sub-section 
that follows. 

 

1) Identify Ambiguities. The method requires the 
user to resolve ambiguities called  under-specifications. 
The method employs two patterns for doing so: the 
activity pattern and the verbs masquerading as nouns 
pattern [8], which both yield an activity that has three 
co-requisite properties: subject, action and object. 
These properties must be specified in each activity 
because they are required to generate events in the 
second phase. We automatically detect these under-
specifications by applying a query algorithm based on 
unification [2] that proceeds as follows: for each 
symbol x, if x is a type of activity then α (x, y) is true 
for some symbol y ∈{subject, action, object}; a 
contradiction indicates an under-specification. The 
algorithm compares each symbol in a requirement 
expression for an under-specification and the user must 
resolve such ambiguities using domain-expert 
knowledge before proceeding to the next step. 

The verbs masquerading as nouns pattern is applied 
to nouns, including gerunds such as request, denial, 



 

review, agreement, etc., that are types of activities. For 
these nouns, an action is implied by the noun (e.g., the 
action agree is implied by the noun agreement) and the 
user maintains a list of these nouns for use in the 
method. Based on our prior work analyzing policies in 
healthcare and finance [4, 5], it is reasonable to expect 
many of these nouns are generalizable across domains. 
For example, in Figure 2 (above) if the object access 
(Line 4) were specified without the object PHI (Line 
7), the method would detect this ambiguity during this 
step and require the user to complete the specification. 

 

2) Balance Rights with Obligations. Rights and 
obligations are balanced by identifying their implied 
rights and obligations [7]. Implied rights or obligations 
are not always stated in the regulation text but they are 
always the logical consequences of expressed rights 
and obligations and they are needed to improve 
coverage and identify missing requirements in the 
model. For this reason, they are logically inferred from 
expressed rights and obligations and the method 
provides patterns to do so.  

Balancing is guided by four general cases in which 
rights or obligations are implied by (1) delegations, (2) 
direct provisions, (3) indirect provisions, and (4) an act 
where a stakeholder is expressly not obliged, called an 
anti-obligation [7]. Each case uses a transformation 
comprised of a unique query to match the input 
requirement and identify relevant values that are in 
turn mapped to an output requirement describing the 
implied right or obligation. For example, consider the 
permitted delegation R6.3 balanced by implied 
obligation OR-6.3: 

 

R6.3:  The CE may require an individual to request in 
writing that the CE amend their PHI. 

OR-6.3: The individual must request that the CE amend 
their PHI in writing. 

 

In Figure 4, the right R6.3 (Lines 1–15) and the implied 
obligation OR-6.3 (nested in Lines 4–14) is extracted as 
a separate obligation (Lines 16–25). In general, the 
transformation uses a unique query to recognize the 
actions permit and require as delegation verbs in which 
the object of the delegation is always the implied right 
or obligation, respectively. Consequently, for the 
action require (Line 3) the activity (Lines 4–14) is 
identified as an implied obligation (Line 16–25). Direct 
and indirect provisions are also balanced using 
transformations that rely on a unique query to identify 
and resolve these cases [7]. 

In the fourth case, anti-obligations describe actions 
that stakeholders are not required to perform. In this 
case, the stakeholder’s implied right is to choose 
whether or not to perform that action. Anti-obligations 
are expressed using a negated obligation symbol and 
balanced by replacing the negated obligation symbol 

with a right symbol. These symbols appear in square 
brackets after the activity symbol at the head of each 
expression for anti-obligations. 

 
 

 1 activity [ right ] { 
 2  subject = CE 
 3  action = require 
 4  object = activity { 
 5   subject = individual  
 6   action = request 
 7   object = activity { 
 8    subject = CE 
 9    action = amend 
 10    object = PHI : individual 
 11   } 
 12   instrument = writing 
 13   target = CE 
 14  } 
 15 } 

 

 16 activity [ obligation ] { 
 17  subject = individual 
 18  action = request 
 19  object = activity { 
 20   subject = CE 
 21   action = amend 
 22   object = PHI : individual 
 23  } 
  24  instrument = writing 
 25 } 

 

 Figure 4: Right Balanced with an Obligation 
 

Balancing rights and obligations requires special 
handling to map constraints to implied rights or 
obligations. For delegations and indirect provisions, 
the balanced right or obligation produces an implied 
requirement that is pre-conditioned on the invocation 
of the original delegation or indirect provision. In other 
words, a stakeholder must first be delegated a right 
before they can invoke that right. For direct provisions 
and anti-obligations, the implied requirement inherits 
the constraints of the direct provision or anti-
obligation, because these cases represent the same 
requirement but from a different stakeholder 
perspective [7]. 

In the second phase, we see how events generated 
from implied rights and obligations correspond to the 
pre-conditions of other rights and obligations. 
Balancing rights and obligations ensures these 
dependent events in pre-conditions are accounted for.  
C. Phase 2: State Machine Generation 

In the method’s second phase, two tables are 
generated: (1) the state-event table is generated by 
querying the semantic models from the first phase; and 
(2) the transition table is generated by iterating 
constraints and entries in the state-event table. Both 
steps are discussed in detail below. 

 



 

1) Generate States and Events. In the first step, we 
populate the state-event table by querying the semantic 
model. Entries in the state-event table have four fields, 
including a unique index for the state or event and a 
SAO-triple with subject, action and object.  

To populate the table from rights, obligations and 
their constraints, recall from Section III we introduced 
the function T(m) to identify the SAO-triple from a 
semantic model m. In this step, we extend T as a 
recurrence relation T(o) for the object o ∈ T(m), 
whenever the object o is a type of activity. We ensured 
T(o) is well-defined by disambiguating activities in 
Section III.B.1. In addition, we introduce a similar 
function Tʹ′(m) to extract one of two possible SAO-
triples conveying the regulation’s authority over the 
stakeholder: Tʹ′(m) = 〈Rule, permit, T(m)〉 for a model 
m of a right; and Tʹ′(m) = 〈Rule, require, T(m)〉 for a 
model m of an obligation. In both cases, the subject of 
the triple is the regulation, identified by Rule, whose 
authority is described by the action, either permit or 
require. Consider the example obligation model O6.3 in 
Figure 5, below. 

 

  1 activity [ obligation ] { 
 2  subject = CE 
 3  action = provide 
 4  object = denial [ written ] { 
 5   subject = CE  
 6   action = deny 
 7   object = request { 
 8    subject = Individual 
 9    action = request 
 10    object = amendment { 
 11     subject = CE 
 12     action = amend 
 13     object = PHI 
 14    } 
 15   } 
 16  } 
 17  target = Individual 
 18 } 

 

 Figure 5: Example Recurrence for SAO-triple 
 

The model is an obligation (Line 1) that requires “the 
CE provide the individual with a written denial to their 
request for amendment to PHI.” Consequently, the 
function Tʹ′(m) = 〈Rule, require, T(m)〉 and T(m) = 〈CE, 
provide, T(denial)〉. Note how the object is an activity 
(denial on Line 4) thus leading to the subsequent 
recurrence T(denial). For now we ignore properties 
other than those involved in the SAO-triple such as the 
target in Line 13. Applying functions Tʹ′(m) and T(m) 
yields the entries in Table I from the example 
obligation O6.3.  

In the state-event tables, states are entries where the 
subject is the Rule and all other entries are events. Note 
a state is either a right or an obligation depending on 
the value in the action field, either permit or require, 

respectively. Successive uses of the same subject, 
action and object fields will reuse the first index to that 
triple. Table entries for constraints are produced using 
only the function T(m) and the recurrence when 
applicable. For example, the right O6.3 has the 
constraint “the CE denies an individual’s request to 
amend PHI” in which the function T applied to the 
model yields an event equivalent to event e2. 

 

TABLE I: EXAMPLE STATE-EVENT TABLE 
 

Index Subject Action Object 
O6.3 Rule require  E1 
E1 CE provide  E2 
E2 CE deny  E3 
E3 Individual request  E4 
E4 CE amend  PHI 

 
 

2) Generate Transitions. In the second step, we 
populate the transition table by generating transitions 
using events from the first step in phase two. The 
transition table has four fields: the set number shared 
by constraints in a conjunction; the source state from 
which the transition leads out; the event used to 
generate the transition; and the target state to which the 
transition leads in.  

Each right and obligation state has the following 
transitions: in-transitions generated for events that 
were derived from pre-conditions; out-transitions 
generated from the event in the object field for states in 
the state table; and, if the state is an obligation, 
transitions for the negation of the event in the object 
field of the state table. The negation of the event for 
obligations always leads to a non-compliant state (NC) 
equivalent to violating the obligation. This is different 
from negating the obligation, which is called an anti-
obligation. For rights, the target state of this transition 
is unspecified. Continuing with the example from 
Section III.C.1, we generate the transitions for 
obligation O6.3 in Table II. 

 

TABLE II: EXAMPLE TRANSITION TABLE 
 

Set Source Event Target 
1   E2 O6.3 
2 O6.3  E1  
3 O6.3 ¬ E1 NC6.3 

 

The in-transition (first row) to O6.3 corresponds to 
the constraint on O6.3 and the out-transition (second 
row) corresponds to the object from the state 
T(O6.3) = 〈Rule, require, e1〉 in Table I. The transition 
to the non-compliant state (third row) must eventually 
be conjoined with a time-out event or deadline to 
complete this monitor. The graphic illustration of this 
monitor appears in Figure 6, where the clouds 
represent placeholder states that have yet to be 
specified.  



 

 
Figure 6: Example Compliance Monitor 

 

After the state-event and transition tables have been 
generated, one can derive a combined compliance 
monitor by pairing events from in- and out-transitions 
to connect states. The combined compliance monitor 
more effectively illustrates the interactions between 
rights and obligations.  We present such a graphic in 
Section IV as an application of the entire method. 

IV. RESULTS FROM HIPAA PRIVACY RULE 
In a previous case study [7], we derived semantic 

models from rights, obligations and constraints that 
were extracted from the Privacy Rule [18] – a U.S. 
federal regulation for the HIPAA. The Rule governs 
use and disclosure of patient healthcare information. 
Based on discussions with chief security and privacy 
officers, companies prioritize compliance with those 
regulations most likely to interface with the public and 
consumers. For this reason, the method was applied to 
§164.520 – §164.526 in Subpart E of the Privacy Rule. 
Results from §164.524, titled “Access of individuals to 
protected health information,” are presented below. 

The analysis of §164.524 in the case study yielded a 
total of 20 rights, 26 obligations and 67 constraints. 
From these, the following rights and obligations are 
most relevant to generate the largest combined 
compliance monitor using the method. The following 
acronyms are used: covered entity (CE), licensed 
healthcare professional (LHP), and protected health 
information (PHI). 

 

R4.1: The individual has a right to request access to 
their PHI. 

R4.3: The CE may deny an individual access to their 
PHI. (C1) 

R4.5: The individual may have a denial of requested 
access reviewed by an LHP. (C2) 

O4.1: The CE must permit an individual access to 
their PHI. (C3) 

O4.2: The CE must deny an individual access to their 
PHI. (C4) 

O4.3: The CE must permit an individual to request 
access to their PHI. 

O4.5: The CE must inform the individual that 
requested access is permitted. (C5) 

O4.7: The CE must inform the individual that the 
requested access was denied. (C2) 

O4.16: The CE must designate an LHP to review a 
denial of requested access. (C6) 

O4.18: The LHP must recommend that the CE permit or 
deny the individual access to PHI. (C7 ∧ C8) 

O4.19: The CE must inform the individual of the 
recommendation of the LHP. (C3 ∨ C4) 

 

Each right and obligation above is annotated with the 
logical expression of constraints (in parenthesis) from 
the following list: 

 

C1: The individual requests access to their PHI. 
C2: The CE denies requested access to PHI. 
C3: The LHP recommends the CE permit access. 
C4: The LHP recommends the CE deny access. 
C5: The CE permits the requested access to PHI. 
C6: The individual requires an LHP review a denial. 
C7: The CE designates the LHP to review a denial. 
C8: The LHP reviews the denial of access. 

 

For the purpose of this illustration, only those 
events that form transitions between states are 
highlighted and constraints that only describe state-of-
being as they contribute no such events are ignored. As 
a result, the following state-event and transition tables 
are incomplete under the law but sufficient as an 
exemplar in this paper. 

In phase one (consistency checking), step one, the 
user of the method identified several under-
specifications in the original semantic model for rights, 
obligations and constraints. To resolve these 
ambiguities, the user is required to specify 37 subjects, 
35 actions and 32 objects by coordinating domain 
expert elicitation with a review of the relevant context 
in the source legal text. 

In step two, the user balanced two rights and one 
obligation. The rights R4.1 and R4.5 and the obligation 
O4.3 were balanced with new models OR-4.1, OR-4.5 and 
RO-4.3, respectively. Since OR-4.1 ≈ O4.3 and R4.1 ≈ RO-4.3, 
the right R4.1 balanced directly with O4.3, which means 
OR-4.1 and RO-4.3 were not new contributions to the 
model. However, the right R4.5 only balances with 
obligation OR-4.5 requiring the LHP to review denials of 
requested access, so OR-4.5 is a new contribution. 

In phase two (FSM generation), step one, the states 
and events were generated (see Table III). There were 
17 instances where events previously entered into the 
table were duplicated with other states.  

The generated transitions from step two appear in 
Table IV. The in-transitions were generated from 
constraints (Sets 1–11). The out-transitions were 
generated from the object value of states (Sets 12–25), 
the alternate transitions from rights (Sets 26–30) and 
the transitions from states to non-compliant states (Sets 
31–40) all from Table III.  

 
 
 
 
 



 

TABLE III: STATE-EVENT TABLE FOR HIPAA §164.524 
 

Index Subject Action Object 
R4.1 Rule permit  E1 
E1 Individual request  E2 
E2 Individual access  PHI 
R4.3 Rule permit  E3 
E3 CE deny  E2 
R4.5 Rule permit  E4 
E4 Individual require  E5 
E5 LHP review  E3 
OR-4.5 Rule require  E5 
O4.1 Rule require  E6 
E6 CE permit  E2 
E7 LHP recommend  E6 
O4.2 Rule require  E3 
E8 LHP recommend  E3 
O4.3 Rule require  E9 
E9 CE permit  E1 
O4.5 Rule require  E10 
E10 CE inform  E6 
O4.7 Rule require  E11 
E11 CE inform  E3 
O4.16 Rule require  E12 
E12 CE designate  LHP 
O4.18 Rule require  E7 
O4.18 Rule require  E8 
O4.19 Rule require  E13 
E13 CE inform  E7 
O4.19 Rule require  E14 
E14 CE inform  E8 
 

The combined compliance monitor is illustrated in 
Figure 7. In Figure 7, the transitions for events 
produced by invoking rights are illustrated using dotted 
lines whereas the transitions for events produced by 
achieving or maintaining obligations are illustrated 
using solid lines. For easier reading, the figure omits 
transitions to non-compliant states and alternate 
transitions for rights that do not align with existing 
states. Unspecified states appear as clouds with events 
E10, E11, E13 and E14 leading to such states. 

Figure 7 makes it easier to recognize important 
aspects of the combined compliance monitor. For 
example, the unconditional rights and obligations such 
as O4.3 have no in-transitions. Rights or obligations that 
immediately follow unconditional obligations, like 
right R4.1, are consequently unconditional, unless the 
stakeholder violates the preceding obligation. In 
addition, loops on states for obligations require 
stakeholders to maintain that state. For example, based 
on obligation O4.18, if the LHP determines the CE 
should not provide access (via E8, bottom center), then 
the CE must deny access (via E3 and the loop at O4.2).  

Rights that provide stakeholders choices are also 
easier to visualize. For example, in state R4.3, the CE 
has a choice: (1) they can deny the requested access via 

E3, in which case they must (a) inform the individual 
via O4.7 and (b) provide the right to review via R4.5; or 
(2) they can permit the requested access, in which case 
they must inform the individual via O4.5. 

 
TABLE IV: TRANSITION TABLE FOR HIPAA §164.524 

 

Set Source Event Target 
1   E1 R4.3 
2   E3 R4.5 
3   E4 OR-4.5 
4   E3 O4.7 
5   E3 O4.16 
6   E7 O4.1 
7   E7 O4.19 
8   E8 O4.2 
9   E8 O4.19 

10   E6 O4.5 
11   E12 O4.18 
11   E5 O4.18 
12 R4.1  E1  
13 R4.3  E3  
14 R4.5  E4  
15 OR-4.5  E5  
16 O4.1  E6  
17 O4.2  E3  
18 O4.3  E9  
19 O4.5  E10  
20 O4.7  E11  
21 O4.16  E12  
22 O4.18  E7  
23 O4.18  E8  
24 O4.19  E13  
25 O4.19  E14  
26 R4.1 ¬ E1  
27 R4.3 ¬ E6  
28 R4.3 ¬ E3  
29 R4.5 ¬ E4  
30 OR-4.5 ¬ E5  
31 O4.1 ¬ E3 NC4.1 
32 O4.2 ¬ E6 NC4.2 
33 O4.3 ¬ E9 NC4.3 
34 O4.5 ¬ E10 NC4.5 
35 O4.7 ¬ E11 NC4.7 
36 O4.16 ¬ E12 NC4.16 
37 O4.18 ¬ E7 NC4.18 
38 O4.18 ¬ E8 NC4.18 
39 O4.19 ¬ E13 NC4.19 
40 O4.19 ¬ E14 NC4.19 

 

Rights and obligations assigned through delegation 
are clearly shown. For example, the obligation 
requiring the CE to permit the individual to request 
access (the path O4.3 → E9 → R4.1 → E1) is distinct 
from the right permitting the individual to require an 
LHP to review a denial (the path R4.5 → E4 → OR-4.5 → 
E5). However, the graphic does not clearly distinguish 



 

between rights to obligate other stakeholders and 
obligations that follow from invoking a stakeholder 
right, such as the path R4.3 → E6 → O4.5 → E10.  

 

 
 

Figure 7: Combined Compliance Monitor  
 

V. DISCUSSION AND FUTURE WORK 
Before concluding with future work, we quickly 

discuss the current limitations. 
In phase two, step one in Section III.C.1, the 

method must determine if two events are equivalent in 
order to reuse shared events. In this study, we only 
used the SAO-triple to compare events and identify 
duplicates; however, two different events can have the 
same SAO-triple. For example, two similar requests to 
two different recipients or a repeated event with 
dissimilar temporal constraints could both have the 
same subject, action, and object. We propose 
addressing this problem by extending the method to 
compare the semantic model sub-components used to 
generate the events instead of the SAO-triple, since 
they will have the necessary information to distinguish 
these events – including any temporal constraints. 

In phase two, step two in Section III.C.2, the set 
number is sufficient to assign transitions to logical 
conjunctions or disjunctions. However, we 
encountered the need to support exclusive-or on the 
out-transitions for obligations (see O4.18 in Section IV) 
as a convenience to stakeholders. The consequences of 
exclusive-or on out-transitions impacts how transitions 
to non-compliant states are generated. For example, for 

the two events, A and B, the out-transitions for an 
obligation in the expression (A ∧ ¬B) ∨ (¬A ∧ B) only 
require a transition to a non-compliant state for 
(¬A ∧ ¬B) and not for ¬A independent of ¬B. 

Future work includes integrating the compliance 
monitors produced by the method into runtime systems 
and additional validation to assess the repeatability of 
the method. Formalization of rights and obligations 
using FSM is a significant first step towards runtime 
compliance monitoring, however, additional work is 
needed to identify the software interfaces and functions 
responsible for implementing these legal requirements. 
Regarding validation, the method was rigorously 
applied to four sections of the HIPAA Privacy Rule 
and shown to yield compliance monitors for one 
method user. Because humans have natural differences 
in ability, however, we do not know the extent to 
which requirements engineers can apply the method, in 
general. This is a problem with formal methods in 
general and requires additional experimental study in a 
controlled laboratory. That said, understanding the 
difficulty other users have with the method may 
suggest directions for future automation and support to 
improve consistency and coverage in the FSM.  

Finally, future work includes the need to evaluate 
risk and compliance associated with the decision to 
implement a right or obligation in systems. Risk is the 
probability that a regulation will be violated by a 
business or system process. For each right or 
obligation, calculating risk requires knowing the 
frequencies of real-world events that pre-condition, 
satisfy or violate the right or obligation. Furthermore, 
risk must also factor in the penalty or cost of violating 
a right or obligation. For rights or obligations with a 
high penalty, frequent violation or with frequent 
satisfaction of pre-conditions, there is a higher priority 
to implement system processes to prevent violation and 
monitor compliance at runtime.  

For example, in Figure 7 in Section IV, the 
individual is given the right to request access to PHI 
via right R4.1 and, if denied that access, they receive the 
right to have an LHP review the denial via right R4.5. 
The review involves a complex set of stakeholder 
interactions between the obligations of the LHP and 
CE and the rights of the individual. If individuals 
rarely exercise right R4.5, the cost of implementing 
these obligations in systems may be incommensurate 
with the frequency of violations due to human error in 
the business process. Since the compliance monitors 
can be aligned with both business and system 
processes, stakeholders can use these monitors to 
design and develop software systems commensurate 
with risk and compliance costs. 
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