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Abstract 

Software requirements, rights, permissions, 

obligations, and operations of policy enforcing systems 

are often misaligned. Our goal is to develop tools and 

techniques that help requirements engineers and policy 
makers bring policies and system requirements into 

better alignment. Goals from requirements engineering 

are useful for distilling natural language policy 

statements into structured descriptions of these 

interactions; however, they are limited in that they are 
not easy to compare with one another despite sharing 

common semantic features. In this paper, we describe a 

process called semantic parameterization that we use to 

derive semantic models from goals mined from privacy 

policy documents. We present example semantic models 

that enable comparing policy statements and present a 
template method for generating natural language policy 

statements (and ultimately requirements) from unique 

semantic models. The semantic models are described by 

a context-free grammar called KTL that has been 

validated within the context of the most frequently 

expressed goals in over 100 Internet privacy policy 
documents. KTL is supported by a policy analysis tool 

that supports queries and policy statement generation. 

1. Introduction 

Internet privacy policies inform consumers about 

how organizations collect and use their personal 

information.  These policies theoretically serve as a 

basis for consumer browsing and transaction decisions. 

Each policy differs greatly because of the lack of 

standardization across different industries and 

organizations. This lack of standardization for 

expressing organizational privacy practices presents a 

daunting learning curve for consumers who wish to 

compare different organizations’ policies before 

deciding to whom they will entrust their personal 

information. Because both software requirements 

specifications and privacy policy documents establish, 

at a minimum, a semi-formal contract, it is important 

that the statements expressed in both artifacts be 

accessible through natural language regardless of the 

stakeholders’ technical expertise.   

Policies and requirements are similar in that they 

express what must or ought to be done [1], but they also 

differ significantly. Policies have broader scope than a 

system’s requirements because they govern multiple 

systems and the activities of users. Just as a law must 

survive constitutional challenge, a specified system 

should be demonstrably policy-compliant [1]. Policies 

are also more open-ended than requirements and 

subsequently more open to interpretation. Thus, while 

policy and requirements are sets of rules, they are not 

equally subject to formal specification and analysis. 

Alignment of policies and requirements is therefore not 

a matter of mere logical consistency.   The inherent 

ambiguity in policies makes them especially vulnerable 

to potential misinterpretation as well as inconsistent 

enforcement, making it difficult to properly 

operationalize policies into software requirements. 

Goal analysis [2, 3, 4] offers methodical and 

systematic approaches both for formulating policy goals 

and guaranteeing that a system’s requirements are in 

compliance with these policies [5]. A teleological 

model consists of a hierarchy of goals, in which some 

goals are sub-goals of higher-level goals [2, 6, 7]. High-

level goals represent business objectives or high-level 

mandates. Lower-level refinements consist of 

achievement goals that are associated with the 

performance of tasks either by the system or its users. 

Goal-driven approaches address why systems are 

specified and implemented as they are, expressing the 

rationale and justification for specific features.

The GBRAM (Goal-Based Requirements Analysis 

Method) [6, 7, 8] is a straightforward methodical 

approach to identify system and enterprise goals and 

requirements.  It is useful for identifying and refining 

the goals that software systems must achieve, managing 

trade-offs among goals, and converting them into 

operational requirements. The method has been 

successfully applied to analyze systems for various 

organizations [6, 7, 8] and goals have proven useful for 

analyzing and refining privacy policies [9, 10]. 

Natural language privacy policy statements can be 

systematically analyzed using the GBRAM and a 

content analysis technique called goal-mining. Goal-
mining refers to extracting goals from data sources by 

applying goal-based requirements analysis methods 

[10]. The extracted goals are expressed in structured 
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natural language [9]. Goals are organized according to 

goal class (privacy protection or vulnerability [10]) and 

according to keyword and subject (e.g. browsing 

patterns, personalization, cookies, etc.). These goals are 

documented in a Web-based Privacy Goal Management 

Tool (PGMT) [9].  To date, the tool contains over 1,200 

goal statements extracted from over 100 Internet 

privacy policy documents. The following are example 

goals as expressed in the PGMT:  

G642: SHARE customer information with 
subsidiaries to recommend services to 
customer

G867: USE customer email address for 
marketing and promotional purposes 

G1166: SHARE customer information with third-
parties to perform marketing services on 
our behalf 

Researchers have acknowledged the need for 

methods to analyze and refine policy specifications 

[11]. Bandara et al. note the need to derive enforceable 

policies from high-level goals. Their approach relies on 

Event Calculus and abductive reasoning to derive the 

operations that together satisfy system policy goals. Our 

approach seeks to develop rich models that enable 

specification and enforcement of specific rights, 

permissions and obligations established by 

organizations, individuals, or a combination of parties 

involved in deciding how information is used. 

We have developed a preliminary framework for 

specifying and analyzing privacy policies [12], but 

given the informal nature of structured natural language 

goal statements, we need a “language”:  

• in which rights are made concrete and applicable to 

descriptions of states and actions (the matter of 

system specifications);  

• that forces analysts to think about relational 

commitments and communication among parties 

(the matter of information systems); and  

• that defines right as relationships between parties 

so that we can analyze the rights as well as their 

conditions of legitimacy and relativity to various 

circumstances [13].   

For example, we can ask whether a company is entitled 

to disclose certain information according to its 

published policy in the United States and/or Europe 

given different International privacy laws. To this end, 

we seek ways to represent the rights, permissions, 

obligations and other relationships relevant to privacy 

policies so that they may be compared and 

systematically analyzed.  Ultimately, this will enable 

companies and government agencies to automatically 

monitor and audit policy enforcement. 

This paper is organized as follows:  section 2 

introduces relevant background, terminology and the 

semantic parameterization process. Section 3 discusses 

queries and their role in an application: the natural 

language correspondence between semantic models and 

policy statements. Section 4 provides validation and 

observations from example semantic models developed 

using the proposed process. Section 5 explains how our 

proposed approach compares to relevant work in 

requirements engineering. Finally, Section 6 

summarizes our findings and plans for future work. 

2. From policy goals to semantic models 

Semantic models are structural representations of 

meaning that are sufficiently unique to distinguish 

different concepts from one another. We seek a 

modeling formalism in the spirit of Minsky’s frames or 

Schank’s scripts [14, 15]. Whereas frames and scripts 

refer to the full scope of natural language, our work has 

the restricted scope of requirements and machine-

readable policies. For our work, semantic models

consist of three formal relations defined over natural 

language words: a unary relation that identifies the 

main idea, an associative, binary relation that relates a

concept to a set of unique conceptual relations and a 

declarative, binary relation that relates a conceptual 

relation to a set of concepts. The range of acceptable 

words for each concept and conceptual relation share a 

single part of speech. The full definition of semantic 

models is presented with an example in section 2.2. 

Our approach is motivated by grounded theory, 

where the discovery of theory that was systematically 

obtained is valid for that dataset [16]. We develop our 

semantic models using a process called semantic 

parameterization that includes identifying restricted 

natural language statements (RNLSs) and expressing 

them as comparable semantic models. In this approach 

(see Figure 1), goals that were previously (a) mined 

from privacy policy documents [9] and stored in the 

PGMT are now (b) re-stated to form RNLSs that are 

then (c) parameterized to derive semantic models.  

Figure 1: Semantic Parameterization Process.

Developing automated policy analysis techniques 

relies on the minimal capability to compare policy 

statements. Because natural language statements are 

intractable for our purposes, we initially compared 

policies using policy goals that offer more concise and 
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consistent representations of information. Goals are 

semantically difficult to compare due to the various 

ways the same goal can be re-stated in natural language. 

However, they are well suited for semantic 

parameterization because their structure often satisfies 

the requirements for RNLS. Furthermore, the 

parameterization process yields semantic models that 

are easily comparable using automated techniques.  

2.1. Restating goals into RNLS 

The PGMT contains over 1,200 privacy goals 

extracted from over 100 website privacy policy 

documents. The goals are expressed in structured 

natural language typical of requirements specifications 

that describe an event and allow nested activities that 

identify the actors, actions and objects. Each goal 

begins with a specific keyword, a verb that describes 

the primary action performed by the actor. Consider 

goal G161 from the PGMT repository: 

G161: COLLECT information from non-
affiliates.

In this goal, the action is “collect” (a verb) and the 

object is “information” (a noun). The actor is specified 

as the “provider” in the PGMT. Depending on the 

action, other parts of speech will consistently follow the 

action-object pair.  For example, in this goal a noun 

“non-affiliates” follows the preposition “from”. The 

verb “collect” suggests the pairing of this preposition 

with some noun; however, it is not required by the verb. 

In other words, “from non-affiliates” could have been 

omitted in the goal statement, but this would have 

generalized the statement’s meaning. 

RNLS, like goals, have exactly one primary actor, 

action and at least one object. Unlike goals that may 

describe nested activities in the full scope of natural 

language, each RNLS is consistently composed from a 

single activity with nested activities identified as 

separate RNLSs. Consider goal G359:

G359: RECOMMEND customer limit providing 
access ID and password to when customer’s 
browser indicates an encrypted connection 

Re-stating G359 as RNLSs requires decomposing the 

goal into discrete but related activities. Each activity 

described by an RNLS has exactly one actor and action, 

and must exhaustively describe the essential 

information in the original goal. In the decomposition, 

the modal “may” distinguishes rights and “will” 

distinguishes obligations. The following RNLSs 

correspond to goal G359:

RNLS #1: The customer’s browser indicates an 

encrypted connection. 

RNLS #2: The customer will provide access ID 

and password. 

RNLS #3: The customer will limit (RNLS #2) to 

when (RNLS #1). 

RNLS #4: The provider will recommend (RNLS 

#3) to the customer.

The above decomposition demonstrates the re-

statement of goals into RNLS(s) with respect to two 

common cases: transitive verbs and objects described 

by other activities. In RNLS #4, note the parenthetical 

reference to the activity in RNLS #3: this reference is 

characteristic of transitive verbs like “recommend” that 

describe another activity. In RNLS #3, we observe the 

conditioning of the activity expressed in RNLS #2 on 

the event of the activity expressed in RNLS #1. 

Semantic models maintain these and other important 

relationships to ensure information is consistently 

encoded and comparable across multiple RNLSs.  

2.2. Building semantic models from RNLS 

Semantic models describe the relationships between 

concepts necessary to map RNLSs into a consistent, 

machine-readable format. Semantic models are 

formally defined using a modeling notation with only a 

unary relation and two asymmetric, binary relations. 

Each model has only one unary root relation σ that 

defines the root concept or main idea. The root concept 

is represented by the shaded box in the model figures 

(see Figures 2, 3, 6, 7, 8). Parameters in the model are 

defined using the associative relation α over a concept 

and a parameter name. Values are assigned to a 

parameter using the declarative relation δ over a 

parameter and a concept. The solid directed arrows in 

the model figures represent declarative relations from 

the parameters to their assigned concepts. Different 

concept and parameter labels are distinguished in the 

notation using subscripts.  

RNLS are parameterized by assigning words from 

the RNLS with a single part of speech to specific 

parameters and values. Consider RNLS #5:  

RNLS #5: The provider may share information.

From RNLS #5, the values for the actor, action and 

object parameters are “provider,” “share” and 

“information” (see Figure 2). 

Figure 2: The activity model instance. 

Parameter values never combine two or more parts of 

speech in order to ensure models representing similar 

concepts are comparable. For example, from RNLS #5 
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the assignments correspond to a noun, verb and noun in 

the semantic model.  Modals such as “will” or “may” 

are subsumed by the parameters right and obligation
not represented in the model figures. The 

parameterization process systematically accounts for 

other parts-of-speech including adjectives, articles, 

determiners, possessive qualifiers and conjunctions. 

Continuing with RNLS #5, we derive the root 

relation σ (activity1), associative relations α(activity1,

actor1), α(activity1, action1), and α(activity1, object1),

as well as the declarative relations δ(actor1, provider),

δ(action1, share), and δ(object1, information). Using 

only these three relations, the parameterization process 

is complete if and only if every word in an RNLS is 

assigned to or subsumed by one parameter or value. 

Completeness of the process guarantees that each 

semantic model maintains a natural language 

correspondence that enables reconstructing natural 

language statements from the instantiated model. 

It is common for semantic models to have parameter 

values that are concepts with other parameters. In some 

instances, these concepts are also activities. We define 

the purpose “to market services” in RNLS #6 and 

restate RNLS #5 as RNLS #7 including this purpose: 

RNLS #6: The provider may market services. 

RNLS #7: The provider may share information 

to (RNLS #6). 

We complete the second parameterization by 

defining the associative relation α(activity1, purpose1)

and declarative relation δ(purpose1, activity2) in 

addition to other parameters and values (see Figure 3).  

Figure 3: Semantic model with a purpose. 

In the case of the purpose parameter, the preposition 

“to” will always be subsumed by this parameter; and in 

general, prepositions are normally subsumed by 

parameters. The new concept for “to market services”, 

includes the associative relations α(activity2, action2),

α(activity2, object2) and declarative relations δ(action2,

market), and δ(object2, services). Unless the purpose 

explicitly states a different actor, the actor for the new 

activity is assumed to be the same actor as the first 

activity. Therefore, the relations α(activity2, actor2) and 

δ(actor2, provider) are also implied by the purpose 

parameter.  

Using these models, we can compare RNLSs by 

holding select parameter values constant and querying 

the remaining parameters’ values across a set of 

instantiated models.  Consider RNLSs #6, 7 and 8, 

below:  

RNLS #8: The provider may contact the 

customer to (RNLS #6).

We can build a query to ask the question, “What 

activity can the provider perform to market services?”  

The query will constrain the parameters α(activity1,

actor1), α(activity2, action2), and α(activity2, object2)

using the values δ(actor1, provider), δ(action2, market),

and δ(object2, services), respectively. The query 

parameters α(activity1, action1), and α(activity1,

object1) will then acquire the values àshare,

informationð and àcontact, customerð from both 

parameterizations, respectively. These result sets are 

indeed the answers to our query. 

2.3. Formalization in a context-free grammar 

 To ensure correctness of the semantic models 

throughout the parameterization process, the models are 

formally expressed in a context-free grammar called the 

Knowledge Transformation Language (KTL) 

pronounced ‘kettle’. Future iterations of KTL are being 

developed and this discussion refers to the first iteration 

of the grammar KTL–1 included in Appendix A. KTL 

extends the formal notation to account for conjunctions, 

disjunctions and negations, and provides capabilities for 

analysis through queries. A static interpreter was 

developed to validate KTL and automate queries. 

In KTL, an RNLS with logical conjunctions and 

disjunctions that are attributed to a single parameter 

value require special treatment. For example, the 

objects of an activity in an RNLS might be “employees 

or contractors.” In this case, the restricted statement is 

divided into two statements, one whose object is 

“employees” and another whose object is “contractors”.  

Such disjunctions are encountered with actions, objects 

and purposes, and each is handled in the same fashion. 

To limit the burden placed on the user, KTL 

includes operators to describe conjunctions and 

disjunctions while defining special interpretations that 

are handled by the static interpreter. Conjunctions are 

handled by interpreting the declarative relation δ as a 

set relation with a new conjunction operator. In 

contrast, disjunctions describe different interpretations 

of a semantic model for each value. For example, the 

interpretation of disjunctions of values v1, v2 for a 

parameter p in Figure 4 includes cloning the model 

instance I for each value v1, v2, … , vn in a disjunction 
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and assigning each distinct value vi to the same 

corresponding parameter p in one of the cloned models 

Ii. For n separate disjunctions there are 2
n
 total model 

clones.

Figure 4: Interpreting a disjunction of values. 

Queries are expressed in KTL as semantic models 

with the addition of special query variables (written 

?name for the name of the variable) that may substitute 

for parameters and values. When a query matches a 

model instance, the corresponding parameter or value is 

stored by variable name. The variable names are used in 

the tool to access the results from queries. 

3. Queries in semantic analysis 

Queries play an important role in analyzing 

semantic models because they enable the comparison of 

information across models. Queries may be designed to 

ask several degrees of open-ended questions by 

utilizing the structure of semantic models. Furthermore, 

queries are necessary to build more advanced 

applications such as the template method for 

maintaining natural language correspondences between 

semantic models and policy statements. 

There are two types of queries: Boolean queries or 

multi-variable wh-queries (i.e., who, what, when, 

where, why and how); the latter are used to obtain 

answers in the form of model parameters or parameter 

values.  All queries have an underlying semantic model, 

although, the wh-queries allow special variables in 

place of parameters and values in these models. 

Consider RNLS #9 below: 

RNLS #9: The provider may share information 

with third-parties. 

The Boolean query for this statement would simply ask 

the question, “May the provider share information with 

third-parties?” However, one possible wh-query, “With 

whom may the provider share information?” applied to 

RNLS #9 would yield the response “third-parties.” The 

wh-queries are useful for abstracting a class of semantic 

models that all share the same grammatical structure 

but differ by specific parameters and values. 

Queries are subsumptive, meaning they will match 

models that at minimum describe the information 

specified in the query. Model information beyond the 

scope of the query is ignored and does not cause the 

query to fail. For example, the Boolean query “May the 

provider share information?” would also match the 

model for RNLS #9 despite the information “with third-

parties” being represented in the model but missing 

from the query.  Finally, queries can be partially 

ordered (by comparison) and used to iteratively refine 

the detail of information in a semantic model. 

3.1. Asking targeted, open-ended questions 

In order to illustrate the impact of queries on the 

parameterized goal subset, we present the results from 

an example query that asks the open-ended question, 

“What type of information is shared and with whom?”

The answer includes the goal ID for each matching 

parameterized goal. In this query, we restrict the action 

to “share” and the object of the main activity to types of 

information. The goal ID, actor, and target parameters 

are allowed to range over any possible value. In this 

example, the “target” is the recipient of the action 

“share.” Each row in Table 1 represents a result from 

the query over the 100 most frequently occurring goals 

in our set. The repetition of the goal IDs among 

responses is characteristic of model cloning resulting 

from disjunctions in the goal statements.  

Table 1: Results from Qualitative Analysis 

ID Object Target 

155 transaction information subsidiary 

155 experience information subsidiary 

822 PII
†
 affiliate 

822 PII service-provider 

954 Information third-party 

954 Statistics third-party 

156 transaction information affiliate 

156 experience information affiliate 

170 PII subsidiary 

The query results demonstrate the comparability of 

instantiated models and corresponding RNLS(s). The 

ability to formulate such queries is prerequisite to tasks 

such as automated conflict identification and 

requirement categorization by purpose. Queries can 

play a significant role in goal refinement and 

requirements specification by iteratively eliciting 

statements that answer important wh-questions. 

                                                          
†
 Personally-Identifiable Information (PII) 
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3.2. Natural language correspondence 

Semantic models may be mapped to natural 

language statements using a template method based on 

queries. Each template consists of two parts: a query 

and an output statement. The query establishes a class 

of models that match a given template. The output 

statement is used to generate the natural language 

statement to express the model’s meaning in human-

readable form. 

Query subsumption dictates that multiple templates 

may match a single semantic model. We resolve this 

conflict by selecting the template whose query matches 

the most information for any given model. We 

determine which query elicits more information by 

establishing a partial-order relation based on the 

comparability of queries. For example, given two 

queries q1 and q2, we determine if the class of models 

M1 defined by q1 are a subset of the class M2 defined by 

q2 by applying the query q1 to the model underlying q2.

If q1 matches q2 and q2 does not match q1 then q1

subsumes q2 and furthermore q2 elicits more 

information than q1.

The output statements for the two types of queries 

Boolean or wh-queries are recognizably different. If the 

query is Boolean, then the output statement exactly 

describes the meaning of the matching models and 

therefore contains no variable names. In a wh-query, the 

output statement may contain variable names matching 

those used in the query. For example, consider the 

model m and template T = { q1, s1 } in KTL: 

m: activity { 

 actor = provider 

 action = share 

 object = information 

 target = affiliates 

}

q1: activity { 

 actor = ?actor

 action = share 

 object = ?object

 target = ?target

}

s1: The ?actor may share ?object with ?target.

The parameter value “share” in q1 works like a 

constraint that must match within a given model, while 

variables may assume any possible value. Therefore, if 

we apply q1 to m, then the variables à?actor, ?object,

?targetð would acquire the values àprovider,

information, affiliatesð, respectively. Matching q1 from 

the template T would cause the variable data acquired 

from m to be used to populate the variables in s1. The 

final statement generated from this template would be: 

“The provider may share information with affiliates.” 

In addition, sub-queries may be used to generate 

custom output for query responses that represent special 

cases. Consider the following queries q2 and q3 and 

corresponding output statements s2 and s3:

q2: ?thing { attribute = ?attribute } 

q3: ?thing [ property : ?owner ] 

s2: ?attribute1 and ?attribute2 ?thing

s3: ?owner’s ?thing

These sub-queries require special handlers to 

correctly format the output statements. For example, in 

query q2, it is not uncommon to have multiple attributes 

describing a particular entity. The output separates the 

first n – 1 adjectives by commas and the last two 

adjectives by the conjunction “and.” Similarly, the 

proper output for q3 must determine if the value for the 

variable ?owner ends with the character ‘s’ to know 

how to output the correct possessive form. Without 

these special handlers, the output statement may be 

vague because the presence of adjectives and/or the 

possessive form are used to disambiguate information. 

4. Results 

For this investigation, the semantic parameterization 

process was applied to the 100 most frequent goals in 

the Privacy Goal Management Tool (PGMT). These 

goals were restated in a two-stage process to form 

proper RNLS(s).  In the first pass, the semantic models 

were derived from the goals only when an obvious 

combination of parameters in the model notation was 

identified for a complete parameterization. In the 

second pass, the goals that were not previously 

parameterized were re-stated using observations from 

the first pass to produce a complete parameterization. 

Although this process is partially subjective, the first 

pass produced general models that were re-used during 

the second pass to simplify more elaborate models. In 

general, identifying the atomic activities and making 

explicit the implied actors and objects is all that is 

required to restate goals into proper RNLS(s) and build 

a complete semantic model. The two-pass procedure 

made it possible to consistently parameterize the entire 

goal set; this required less than eight person-hours. 

Applying the semantic parameterization process to 

the policy goal subset produced valuable insights into 

the semantic relationships within privacy policies. 

These insights are exemplified via three distinct cases. 

In the first case, a parameter of an activity is assigned a 

value of another activity as in section 4.1. Recall, this 

type of assignment was first introduced in Section 2.2 

and shown in Figure 3. In the second case, a parameter 
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value is shared and thus distinguished by two different 

activities as in section 4.2. In the third case, two models 

may have a semantic correspondence where the 

meaning of one model is equivalent to another despite 

significant structural differences as in section 4.3. In 

these three cases, the only formal relations mentioned 

are those that characterize the point of interest. 

4.1. Objects as other activities 

Transitive verbs that describe how an actor may 

affect another activity can be captured by a unique 

semantic model. In some situations, these models may 

describe how actors delegate permissions and 

obligations to other parties.  In other situations, these 

models may describe notifications and warnings that 

actors provide to other parties. In the semantic model of 

Figure 5, we examine the situation where an actor 

provides notification to another party. Consider goal 

G102, an obligation where the main actor is the provider: 

G102: NOTIFY customer of changes to privacy 
policy.

We use the parameterization process to decompose 

G102 into RNLS #10 and #11. 

RNLS #10: The provider changes the privacy 

policy.

RNLS #11:  The provider will notify the 

customer that (RNLS #10).

Recognizing the transitive verb “notify” in RNLS #11 

we derive the parameter α(activity1, object1) and assign 

it the value δ(object1, activity2) derived from RNLS 

#10. We add a parameter, α(activity1, target1), to 

account for the customer who is the recipient of the 

notification. 

Figure 5: Object value is an activity. 

In general, the model in Figure 5 covers situations 

where a transitive verb directly affects another activity. 

In addition to “notify”, other transitive verbs identified 

in the goal subset during this process include “allow,” 

“deny,” “restrict,” “limit,” and “recommend.” From the 

entire goal subset, this case occurred in 17 goals. 

4.2. Objects shared by two activities 

Entities may be described by multiple activities. 

References to other activities constrain the scope of the 

main activity to only those objects that have been 

affected by the other activities. Consider goal G779, a 

right where the actor is the provider.  

G779: COLLECT information provided by 
customer.

We use the parameterization process to decompose G779

into RNLS #12 and #13.  

RNLS #12: The customer will provide 

information.

RNLS #13: The provider will collect 

information.

The relations α(activity1, object1) and δ(object1,

information) from RNLS #12 are aligned with the 

relations α(activity2, object2) and δ(object2,

information) from RNLS #13 (see Figure 6). 

Figure 6: Object value shared by two activities. 

Twelve goals were identified that generated the 

above semantic model. Most actions (verbs) referred to 

by the second activity for these models (object value 

shared by two activities) were in the past tense, 

although, a few were in the present-continuous tense. 

4.3. Reflexivity of purpose and instruments 

Semantic models are reflexive when the structural 

representation of information in two models is different 

yet the meaning remains the same. The choice to use 

one model over the other is determined by the desire to 

emphasize different information. For example, a model 

with the action parameter value “use” is reflexive with 

a separate model whose instrument parameter value 

matches the first model’s object parameter value. 

Consider goals G291a and G291b, both express rights 

where the main actor is the provider: 

G291a: USE cookies to collect information. 

G291b: COLLECT information using cookies. 

We use the parameterization process to decompose 

G291a into RNLS #14 and G291b into RNLS #15. 
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RNLS #14: The provider may use cookies to 

collect information.

RNLS #15: The provider may collect 

information using cookies.

Recognizing the verb “use” in RNLS #14 combined 

with the purpose “to collect information,” we can 

establish the reflexivity between these two statements 

by mapping the parameter values δ(object1, cookies),

δ(action2, collect) and δ(object2, information) from 

RNLS #14 to δ(instrument1, cookies), δ(action1, collect)

and δ(object1, information) from RNLS #15. The 

corresponding models appear in Figures 7 and 8. 

Figure 7: Model with action “use” and purpose. 

Figure 8: Semantic model with instrument. 

It is important to recognize reflexive cases because 

it is common to use different models to emphasize 

different information. However, to guarantee the correct 

comparability of models without ambiguity, these cases 

must be formally identified and treated as equivalent. In 

all, 26 goals conform to this type of reflexivity. 

4.4. Range of possible models 

The above examples provide a glimpse of the range 

of possible models. While these examples idealize the 

separation of these cases, it is not uncommon for 

models to combine multiple cases. We performed 

queries over the parameterized goals to identify 

individual cases. Table 2 lists the queries encoded using 

KTL (Expression) and the frequency (Freq.) of 

responses among the entire goal subset.  

Table 2: Queries to identify model differences 

 ID Expression Freq.

1 goal [ right ] = ?x 40.63% 

2 goal [ obligation ] = ?x 50.78% 

3 goal [ !responsibility ] = ?x 8.59% 

4

goal [ ?x ] = activity { 
  actor = ?a 
  action = ?b 
  object = ?c 
}

92.19%

5
goal [ ?x ] = activity { 
  target = ?y 
}

26.56%

6
goal [ ?x ] = activity { 
  instrument = ?y 
}

20.31%

7
goal [ ?x ] = activity { 
  purpose = ?y 
}

12.50%

8
goal [ ?x ] = activity { 
  object = activity 
}

17.19%

9

goal [ ?x ] = activity { 
  object = object :
    activity { object = ?y } 
}

11.72%

The first three queries fully partition the goal subset 

since each goal only describes a right, obligation, or 

disclaimer of responsibility. Until now, organizing 

goals has emphasized hierarchies. Using semantic 

models and queries, goals may be dynamically 

categorized based on rich semantic structures such as 

rights, obligations, purpose, instruments, and 

relationships sharing the elements of multiple activities, 

allowing requirements engineers to view goals from 

different viewpoints. 

5. Related Work 

This section distinguishes our work from two 

prominent modeling frameworks in requirements 

engineering and provides an overview of two related 

approaches that transform requirements artifacts such as 

goals into conceptual models or semantic graphs.  

The KAOS framework enables specifying system 

requirements in formal goal and agent models [2]. 

These models include a meta-level description that 

provides definitions for concepts, relationships and 

attributes relevant to goals and agents. For example, the 

agent model includes relations that identify agent 

responsibilities as states or activities represented by 

single predicates. The model semantics are influenced 

by first-order, temporal logic to support formal 

reasoning in conflict identification and goal 

management [17]. Unlike our semantic models, KAOS 

does not enable semantically comparing goals.  
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The i* framework has been applied to security and 

privacy requirements analysis to analyze vulnerabilities 

[18]. The models in i* represent dependencies between 

agents, goals, resources, and tasks using a high-level 

system of nodes and relations. For example, a 

healthcare system may depend on the activity “Perform 

Insurance Transaction” that in turn depends on the 

agent “Insurance Agent”. Transforming the agent into 

an attacker, the dependency between agent and activity 

becomes a vulnerability. In contrast to i*, our semantic 

models express general dependencies as specific 

references to the objects, instruments, and purposes 

expressed in natural language requirements. We further 

use these references in automated queries to identify 

privacy vulnerabilities across multiple activities with a 

high degree of detail as seen in the results in Table 1. 

Delugach presents an algorithm for converting 

requirements specifications encoded in Entity-

Relationships (ER), data flow, or state transition 

diagrams into Conceptual Graphs (CGs) with temporal 

extensions [19]. Our parameterization process begins 

with natural language goals, not structured 

specifications. Furthermore, Delugach does not impose 

strict modeling guidelines on CGs to ensure separate 

graphs are comparable. For example, two nodes in a 

CG labeled “withPurpose” and “hasPurpose” may be 

synonymous to the reader; however the relationship 

between “has” and “with” in this case is lost in the node 

labeling strategy. Alternatively, the relationships “with” 

and “has” could have been specified using individual 

arcs. Unlike general CGs, our semantic models enforce 

specific guidelines that ensure parameter values are 

limited to single parts of speech that represent atomic 

concepts. Relationships like “with” and “has” are 

consistently subsumed by the same parameters, 

ensuring relevant information remains comparable. 

Koch et al. describe a framework that combines 

semantic graphs with goal-oriented policies [20]. The 

goal-oriented policies are derived from requirements 

specifications and defined using templates with the 

attributes subject, action, target object, and modality

that determine authorization or obligation policies. The 

templates are populated using natural language 

requirements that describe discrete activities. Our 

semantic models are more expressive than the goal 

templates given their ability to represent purpose (see 

Figure 3) and actors and objects distinguished by 

separate activities (see Figure 6). Unlike Koch et al., 

our approach has been validated using an extensive 

repository of privacy goals. 

6. Discussion and future work 

In requirements engineering, the goals for a system 

are the customer’s stated or inferred goals; and in 

organizational policies, the goals are those of the 

organization. In many situations, however, the reality 

and determinative role of goals has been questioned 

[21]. We believe that while rights, permissions and 

obligations are not traditionally distinguished in the 

goal-based framework they can be incorporated simply 

by admitting multiple sets of goals and indexing each 

set with the stakeholder that wishes to achieve them. 

We leave it to the politics of the situation to determine 

which goal set (or stakeholder) will ultimately prevail. 

To this end, this paper presents a generalizable 

process for developing semantic models from goals that 

supports analysis through queries and natural language 

correspondences using a template method. Furthermore, 

these models and queries aid in the identification of 

conflicts, redundancies, and responsibilities of actors. 

We foresee semantic models playing a role in 

requirements engineering, but we must still address the 

limitations of our approach. For example, using the 

semantic parameterization process, we were able to 

completely parameterize 88 of the 100 privacy goals. 

The remaining 12 goals were not completely 

parameterized due to limitations in the context-free 

grammar for temporal relations.  

Temporal relations were required to completely 

parameterize goals. In many model instances with 

shared objects, the action value of the second activity 

was a past-tense verb unlike the action value of the first 

activity. For example, “information provided by the 

customer” uses the past-tense verb “provided.” In 

addition, different activities were related using temporal 

conditions. These conditions include the conjunction 

“unless” or the preposition “upon” (preconditions). For 

example, a customer right may be withheld “unless the 

customer initiates the transaction” or a provider 

obligation must be fulfilled “upon customer 

notification.” Each of these examples relates the main 

activity conditionally with the completion of a separate 

activity. Temporal relations were also identified from 

the adverbs “annually,” “monthly,” “periodically,” and 

“repeatedly.” We treat such adverbs as attributes to 

actions in much the same way adjectives are handled 

for actors and objects. 

We recognize that the RNLS restatement process, 

whether applied to goals or directly to policy 

statements, may change the meaning from what was 

intended in the original policy documents. For this 

reason, we foresee the RNLS(s) and semantic models 

playing a direct role in the authorship process; when 

policy authors need to specify policy semantics. 

Goal semantics can help requirements engineers and 

policy makers bring policies and system requirements 

into better alignment. The semantic models allow 

analysts to compare goals and policy statements using 

queries to search policy or requirements documents and 

determine if systems comply with specific stakeholder 
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needs. The template method for generating natural 

language policy statements and ultimately requirements 

provides non-technical analysts the ability to validate 

the correctness of semantic models. 
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Appendix A 

Following is the context-free grammar KTL–1 

represented using EBNF notation modeled on the 

original syntax for the ANTLR parser generator toolset 

developed by Terence Parr [22]. 

<start> ::= (<term>)+ 

<term> ::= (IDENT|VAR) <dblock>? <ablock>? 

<ablock>::= LCURL (<stmt>)+ RCURL 

<dblock>::= LBRKT (<set>)+ RBRKT 

<ref> ::= <num>? NEGATE? <abs> 

<abs> ::= <term> (ABS <abs>)? 

<item> ::= <set> ((OR | AND) <item>)? 

<set> ::= LPAR <item> RPAR | <ref> 

<stmt> ::= (IDENT|VAR) EQ <set> 

<num> ::= NUMBER ((GT | LT) NUMBER)? HASH 
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