
Analyzing Goal Semantics for Rights, Permissions, and Obligations

Travis D. Breaux and Annie I. Antón

Department of Computer Science

North Carolina State University

{tdbreaux, aianton}@eos.ncsu.edu

Abstract

Software requirements, rights, permissions,

obligations, and operations of policy enforcing systems

are often misaligned. Our goal is to develop tools and

techniques that help requirements engineers and policy
makers bring policies and system requirements into

better alignment. Goals from requirements engineering

are useful for distilling natural language policy

statements into structured descriptions of these

interactions; however, they are limited in that they are
not easy to compare with one another despite sharing

common semantic features. In this paper, we describe a

process called semantic parameterization that we use to

derive semantic models from goals mined from privacy

policy documents. We present example semantic models

that enable comparing policy statements and present a
template method for generating natural language policy

statements (and ultimately requirements) from unique

semantic models. The semantic models are described by

a context-free grammar called KTL that has been

validated within the context of the most frequently

expressed goals in over 100 Internet privacy policy
documents. KTL is supported by a policy analysis tool

that supports queries and policy statement generation.

1. Introduction

Internet privacy policies inform consumers about

how organizations collect and use their personal

information. These policies theoretically serve as a

basis for consumer browsing and transaction decisions.

Each policy differs greatly because of the lack of

standardization across different industries and

organizations. This lack of standardization for

expressing organizational privacy practices presents a

daunting learning curve for consumers who wish to

compare different organizations’ policies before

deciding to whom they will entrust their personal

information. Because both software requirements

specifications and privacy policy documents establish,

at a minimum, a semi-formal contract, it is important

that the statements expressed in both artifacts be

accessible through natural language regardless of the

stakeholders’ technical expertise.

Policies and requirements are similar in that they

express what must or ought to be done [1], but they also

differ significantly. Policies have broader scope than a

system’s requirements because they govern multiple

systems and the activities of users. Just as a law must

survive constitutional challenge, a specified system

should be demonstrably policy-compliant [1]. Policies

are also more open-ended than requirements and

subsequently more open to interpretation. Thus, while

policy and requirements are sets of rules, they are not

equally subject to formal specification and analysis.

Alignment of policies and requirements is therefore not

a matter of mere logical consistency. The inherent

ambiguity in policies makes them especially vulnerable

to potential misinterpretation as well as inconsistent

enforcement, making it difficult to properly

operationalize policies into software requirements.

Goal analysis [2, 3, 4] offers methodical and

systematic approaches both for formulating policy goals

and guaranteeing that a system’s requirements are in

compliance with these policies [5]. A teleological

model consists of a hierarchy of goals, in which some

goals are sub-goals of higher-level goals [2, 6, 7]. High-

level goals represent business objectives or high-level

mandates. Lower-level refinements consist of

achievement goals that are associated with the

performance of tasks either by the system or its users.

Goal-driven approaches address why systems are

specified and implemented as they are, expressing the

rationale and justification for specific features.

The GBRAM (Goal-Based Requirements Analysis

Method) [6, 7, 8] is a straightforward methodical

approach to identify system and enterprise goals and

requirements. It is useful for identifying and refining

the goals that software systems must achieve, managing

trade-offs among goals, and converting them into

operational requirements. The method has been

successfully applied to analyze systems for various

organizations [6, 7, 8] and goals have proven useful for

analyzing and refining privacy policies [9, 10].

Natural language privacy policy statements can be

systematically analyzed using the GBRAM and a

content analysis technique called goal-mining. Goal-
mining refers to extracting goals from data sources by

applying goal-based requirements analysis methods

[10]. The extracted goals are expressed in structured

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

natural language [9]. Goals are organized according to

goal class (privacy protection or vulnerability [10]) and

according to keyword and subject (e.g. browsing

patterns, personalization, cookies, etc.). These goals are

documented in a Web-based Privacy Goal Management

Tool (PGMT) [9]. To date, the tool contains over 1,200

goal statements extracted from over 100 Internet

privacy policy documents. The following are example

goals as expressed in the PGMT:

G642: SHARE customer information with
subsidiaries to recommend services to
customer

G867: USE customer email address for
marketing and promotional purposes

G1166: SHARE customer information with third-
parties to perform marketing services on
our behalf

Researchers have acknowledged the need for

methods to analyze and refine policy specifications

[11]. Bandara et al. note the need to derive enforceable

policies from high-level goals. Their approach relies on

Event Calculus and abductive reasoning to derive the

operations that together satisfy system policy goals. Our

approach seeks to develop rich models that enable

specification and enforcement of specific rights,

permissions and obligations established by

organizations, individuals, or a combination of parties

involved in deciding how information is used.

We have developed a preliminary framework for

specifying and analyzing privacy policies [12], but

given the informal nature of structured natural language

goal statements, we need a “language”:

• in which rights are made concrete and applicable to

descriptions of states and actions (the matter of

system specifications);

• that forces analysts to think about relational

commitments and communication among parties

(the matter of information systems); and

• that defines right as relationships between parties

so that we can analyze the rights as well as their

conditions of legitimacy and relativity to various

circumstances [13].

For example, we can ask whether a company is entitled

to disclose certain information according to its

published policy in the United States and/or Europe

given different International privacy laws. To this end,

we seek ways to represent the rights, permissions,

obligations and other relationships relevant to privacy

policies so that they may be compared and

systematically analyzed. Ultimately, this will enable

companies and government agencies to automatically

monitor and audit policy enforcement.

This paper is organized as follows: section 2

introduces relevant background, terminology and the

semantic parameterization process. Section 3 discusses

queries and their role in an application: the natural

language correspondence between semantic models and

policy statements. Section 4 provides validation and

observations from example semantic models developed

using the proposed process. Section 5 explains how our

proposed approach compares to relevant work in

requirements engineering. Finally, Section 6

summarizes our findings and plans for future work.

2. From policy goals to semantic models

Semantic models are structural representations of

meaning that are sufficiently unique to distinguish

different concepts from one another. We seek a

modeling formalism in the spirit of Minsky’s frames or

Schank’s scripts [14, 15]. Whereas frames and scripts

refer to the full scope of natural language, our work has

the restricted scope of requirements and machine-

readable policies. For our work, semantic models

consist of three formal relations defined over natural

language words: a unary relation that identifies the

main idea, an associative, binary relation that relates a

concept to a set of unique conceptual relations and a

declarative, binary relation that relates a conceptual

relation to a set of concepts. The range of acceptable

words for each concept and conceptual relation share a

single part of speech. The full definition of semantic

models is presented with an example in section 2.2.

Our approach is motivated by grounded theory,

where the discovery of theory that was systematically

obtained is valid for that dataset [16]. We develop our

semantic models using a process called semantic

parameterization that includes identifying restricted

natural language statements (RNLSs) and expressing

them as comparable semantic models. In this approach

(see Figure 1), goals that were previously (a) mined

from privacy policy documents [9] and stored in the

PGMT are now (b) re-stated to form RNLSs that are

then (c) parameterized to derive semantic models.

Figure 1: Semantic Parameterization Process.

Developing automated policy analysis techniques

relies on the minimal capability to compare policy

statements. Because natural language statements are

intractable for our purposes, we initially compared

policies using policy goals that offer more concise and

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

consistent representations of information. Goals are

semantically difficult to compare due to the various

ways the same goal can be re-stated in natural language.

However, they are well suited for semantic

parameterization because their structure often satisfies

the requirements for RNLS. Furthermore, the

parameterization process yields semantic models that

are easily comparable using automated techniques.

2.1. Restating goals into RNLS

The PGMT contains over 1,200 privacy goals

extracted from over 100 website privacy policy

documents. The goals are expressed in structured

natural language typical of requirements specifications

that describe an event and allow nested activities that

identify the actors, actions and objects. Each goal

begins with a specific keyword, a verb that describes

the primary action performed by the actor. Consider

goal G161 from the PGMT repository:

G161: COLLECT information from non-
affiliates.

In this goal, the action is “collect” (a verb) and the

object is “information” (a noun). The actor is specified

as the “provider” in the PGMT. Depending on the

action, other parts of speech will consistently follow the

action-object pair. For example, in this goal a noun

“non-affiliates” follows the preposition “from”. The

verb “collect” suggests the pairing of this preposition

with some noun; however, it is not required by the verb.

In other words, “from non-affiliates” could have been

omitted in the goal statement, but this would have

generalized the statement’s meaning.

RNLS, like goals, have exactly one primary actor,

action and at least one object. Unlike goals that may

describe nested activities in the full scope of natural

language, each RNLS is consistently composed from a

single activity with nested activities identified as

separate RNLSs. Consider goal G359:

G359: RECOMMEND customer limit providing
access ID and password to when customer’s
browser indicates an encrypted connection

Re-stating G359 as RNLSs requires decomposing the

goal into discrete but related activities. Each activity

described by an RNLS has exactly one actor and action,

and must exhaustively describe the essential

information in the original goal. In the decomposition,

the modal “may” distinguishes rights and “will”

distinguishes obligations. The following RNLSs

correspond to goal G359:

RNLS #1: The customer’s browser indicates an

encrypted connection.

RNLS #2: The customer will provide access ID

and password.

RNLS #3: The customer will limit (RNLS #2) to

when (RNLS #1).

RNLS #4: The provider will recommend (RNLS

#3) to the customer.

The above decomposition demonstrates the re-

statement of goals into RNLS(s) with respect to two

common cases: transitive verbs and objects described

by other activities. In RNLS #4, note the parenthetical

reference to the activity in RNLS #3: this reference is

characteristic of transitive verbs like “recommend” that

describe another activity. In RNLS #3, we observe the

conditioning of the activity expressed in RNLS #2 on

the event of the activity expressed in RNLS #1.

Semantic models maintain these and other important

relationships to ensure information is consistently

encoded and comparable across multiple RNLSs.

2.2. Building semantic models from RNLS

Semantic models describe the relationships between

concepts necessary to map RNLSs into a consistent,

machine-readable format. Semantic models are

formally defined using a modeling notation with only a

unary relation and two asymmetric, binary relations.

Each model has only one unary root relation σ that

defines the root concept or main idea. The root concept

is represented by the shaded box in the model figures

(see Figures 2, 3, 6, 7, 8). Parameters in the model are

defined using the associative relation α over a concept

and a parameter name. Values are assigned to a

parameter using the declarative relation δ over a

parameter and a concept. The solid directed arrows in

the model figures represent declarative relations from

the parameters to their assigned concepts. Different

concept and parameter labels are distinguished in the

notation using subscripts.

RNLS are parameterized by assigning words from

the RNLS with a single part of speech to specific

parameters and values. Consider RNLS #5:

RNLS #5: The provider may share information.

From RNLS #5, the values for the actor, action and

object parameters are “provider,” “share” and

“information” (see Figure 2).

Figure 2: The activity model instance.

Parameter values never combine two or more parts of

speech in order to ensure models representing similar

concepts are comparable. For example, from RNLS #5

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

the assignments correspond to a noun, verb and noun in

the semantic model. Modals such as “will” or “may”

are subsumed by the parameters right and obligation
not represented in the model figures. The

parameterization process systematically accounts for

other parts-of-speech including adjectives, articles,

determiners, possessive qualifiers and conjunctions.

Continuing with RNLS #5, we derive the root

relation σ (activity1), associative relations α(activity1,

actor1), α(activity1, action1), and α(activity1, object1),

as well as the declarative relations δ(actor1, provider),

δ(action1, share), and δ(object1, information). Using

only these three relations, the parameterization process

is complete if and only if every word in an RNLS is

assigned to or subsumed by one parameter or value.

Completeness of the process guarantees that each

semantic model maintains a natural language

correspondence that enables reconstructing natural

language statements from the instantiated model.

It is common for semantic models to have parameter

values that are concepts with other parameters. In some

instances, these concepts are also activities. We define

the purpose “to market services” in RNLS #6 and

restate RNLS #5 as RNLS #7 including this purpose:

RNLS #6: The provider may market services.

RNLS #7: The provider may share information

to (RNLS #6).

We complete the second parameterization by

defining the associative relation α(activity1, purpose1)

and declarative relation δ(purpose1, activity2) in

addition to other parameters and values (see Figure 3).

Figure 3: Semantic model with a purpose.

In the case of the purpose parameter, the preposition

“to” will always be subsumed by this parameter; and in

general, prepositions are normally subsumed by

parameters. The new concept for “to market services”,

includes the associative relations α(activity2, action2),

α(activity2, object2) and declarative relations δ(action2,

market), and δ(object2, services). Unless the purpose

explicitly states a different actor, the actor for the new

activity is assumed to be the same actor as the first

activity. Therefore, the relations α(activity2, actor2) and

δ(actor2, provider) are also implied by the purpose

parameter.

Using these models, we can compare RNLSs by

holding select parameter values constant and querying

the remaining parameters’ values across a set of

instantiated models. Consider RNLSs #6, 7 and 8,

below:

RNLS #8: The provider may contact the

customer to (RNLS #6).

We can build a query to ask the question, “What

activity can the provider perform to market services?”

The query will constrain the parameters α(activity1,

actor1), α(activity2, action2), and α(activity2, object2)

using the values δ(actor1, provider), δ(action2, market),

and δ(object2, services), respectively. The query

parameters α(activity1, action1), and α(activity1,

object1) will then acquire the values àshare,

informationð and àcontact, customerð from both

parameterizations, respectively. These result sets are

indeed the answers to our query.

2.3. Formalization in a context-free grammar

 To ensure correctness of the semantic models

throughout the parameterization process, the models are

formally expressed in a context-free grammar called the

Knowledge Transformation Language (KTL)

pronounced ‘kettle’. Future iterations of KTL are being

developed and this discussion refers to the first iteration

of the grammar KTL–1 included in Appendix A. KTL

extends the formal notation to account for conjunctions,

disjunctions and negations, and provides capabilities for

analysis through queries. A static interpreter was

developed to validate KTL and automate queries.

In KTL, an RNLS with logical conjunctions and

disjunctions that are attributed to a single parameter

value require special treatment. For example, the

objects of an activity in an RNLS might be “employees

or contractors.” In this case, the restricted statement is

divided into two statements, one whose object is

“employees” and another whose object is “contractors”.

Such disjunctions are encountered with actions, objects

and purposes, and each is handled in the same fashion.

To limit the burden placed on the user, KTL

includes operators to describe conjunctions and

disjunctions while defining special interpretations that

are handled by the static interpreter. Conjunctions are

handled by interpreting the declarative relation δ as a

set relation with a new conjunction operator. In

contrast, disjunctions describe different interpretations

of a semantic model for each value. For example, the

interpretation of disjunctions of values v1, v2 for a

parameter p in Figure 4 includes cloning the model

instance I for each value v1, v2, … , vn in a disjunction

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

and assigning each distinct value vi to the same

corresponding parameter p in one of the cloned models

Ii. For n separate disjunctions there are 2
n
 total model

clones.

Figure 4: Interpreting a disjunction of values.

Queries are expressed in KTL as semantic models

with the addition of special query variables (written

?name for the name of the variable) that may substitute

for parameters and values. When a query matches a

model instance, the corresponding parameter or value is

stored by variable name. The variable names are used in

the tool to access the results from queries.

3. Queries in semantic analysis

Queries play an important role in analyzing

semantic models because they enable the comparison of

information across models. Queries may be designed to

ask several degrees of open-ended questions by

utilizing the structure of semantic models. Furthermore,

queries are necessary to build more advanced

applications such as the template method for

maintaining natural language correspondences between

semantic models and policy statements.

There are two types of queries: Boolean queries or

multi-variable wh-queries (i.e., who, what, when,

where, why and how); the latter are used to obtain

answers in the form of model parameters or parameter

values. All queries have an underlying semantic model,

although, the wh-queries allow special variables in

place of parameters and values in these models.

Consider RNLS #9 below:

RNLS #9: The provider may share information

with third-parties.

The Boolean query for this statement would simply ask

the question, “May the provider share information with

third-parties?” However, one possible wh-query, “With

whom may the provider share information?” applied to

RNLS #9 would yield the response “third-parties.” The

wh-queries are useful for abstracting a class of semantic

models that all share the same grammatical structure

but differ by specific parameters and values.

Queries are subsumptive, meaning they will match

models that at minimum describe the information

specified in the query. Model information beyond the

scope of the query is ignored and does not cause the

query to fail. For example, the Boolean query “May the

provider share information?” would also match the

model for RNLS #9 despite the information “with third-

parties” being represented in the model but missing

from the query. Finally, queries can be partially

ordered (by comparison) and used to iteratively refine

the detail of information in a semantic model.

3.1. Asking targeted, open-ended questions

In order to illustrate the impact of queries on the

parameterized goal subset, we present the results from

an example query that asks the open-ended question,

“What type of information is shared and with whom?”

The answer includes the goal ID for each matching

parameterized goal. In this query, we restrict the action

to “share” and the object of the main activity to types of

information. The goal ID, actor, and target parameters

are allowed to range over any possible value. In this

example, the “target” is the recipient of the action

“share.” Each row in Table 1 represents a result from

the query over the 100 most frequently occurring goals

in our set. The repetition of the goal IDs among

responses is characteristic of model cloning resulting

from disjunctions in the goal statements.

Table 1: Results from Qualitative Analysis

ID Object Target

155 transaction information subsidiary

155 experience information subsidiary

822 PII
†
 affiliate

822 PII service-provider

954 Information third-party

954 Statistics third-party

156 transaction information affiliate

156 experience information affiliate

170 PII subsidiary

The query results demonstrate the comparability of

instantiated models and corresponding RNLS(s). The

ability to formulate such queries is prerequisite to tasks

such as automated conflict identification and

requirement categorization by purpose. Queries can

play a significant role in goal refinement and

requirements specification by iteratively eliciting

statements that answer important wh-questions.

†
 Personally-Identifiable Information (PII)

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

3.2. Natural language correspondence

Semantic models may be mapped to natural

language statements using a template method based on

queries. Each template consists of two parts: a query

and an output statement. The query establishes a class

of models that match a given template. The output

statement is used to generate the natural language

statement to express the model’s meaning in human-

readable form.

Query subsumption dictates that multiple templates

may match a single semantic model. We resolve this

conflict by selecting the template whose query matches

the most information for any given model. We

determine which query elicits more information by

establishing a partial-order relation based on the

comparability of queries. For example, given two

queries q1 and q2, we determine if the class of models

M1 defined by q1 are a subset of the class M2 defined by

q2 by applying the query q1 to the model underlying q2.

If q1 matches q2 and q2 does not match q1 then q1

subsumes q2 and furthermore q2 elicits more

information than q1.

The output statements for the two types of queries

Boolean or wh-queries are recognizably different. If the

query is Boolean, then the output statement exactly

describes the meaning of the matching models and

therefore contains no variable names. In a wh-query, the

output statement may contain variable names matching

those used in the query. For example, consider the

model m and template T = { q1, s1 } in KTL:

m: activity {

 actor = provider

 action = share

 object = information

 target = affiliates

}

q1: activity {

 actor = ?actor

 action = share

 object = ?object

 target = ?target

}

s1: The ?actor may share ?object with ?target.

The parameter value “share” in q1 works like a

constraint that must match within a given model, while

variables may assume any possible value. Therefore, if

we apply q1 to m, then the variables à?actor, ?object,

?targetð would acquire the values àprovider,

information, affiliatesð, respectively. Matching q1 from

the template T would cause the variable data acquired

from m to be used to populate the variables in s1. The

final statement generated from this template would be:

“The provider may share information with affiliates.”

In addition, sub-queries may be used to generate

custom output for query responses that represent special

cases. Consider the following queries q2 and q3 and

corresponding output statements s2 and s3:

q2: ?thing { attribute = ?attribute }

q3: ?thing [property : ?owner]

s2: ?attribute1 and ?attribute2 ?thing

s3: ?owner’s ?thing

These sub-queries require special handlers to

correctly format the output statements. For example, in

query q2, it is not uncommon to have multiple attributes

describing a particular entity. The output separates the

first n – 1 adjectives by commas and the last two

adjectives by the conjunction “and.” Similarly, the

proper output for q3 must determine if the value for the

variable ?owner ends with the character ‘s’ to know

how to output the correct possessive form. Without

these special handlers, the output statement may be

vague because the presence of adjectives and/or the

possessive form are used to disambiguate information.

4. Results

For this investigation, the semantic parameterization

process was applied to the 100 most frequent goals in

the Privacy Goal Management Tool (PGMT). These

goals were restated in a two-stage process to form

proper RNLS(s). In the first pass, the semantic models

were derived from the goals only when an obvious

combination of parameters in the model notation was

identified for a complete parameterization. In the

second pass, the goals that were not previously

parameterized were re-stated using observations from

the first pass to produce a complete parameterization.

Although this process is partially subjective, the first

pass produced general models that were re-used during

the second pass to simplify more elaborate models. In

general, identifying the atomic activities and making

explicit the implied actors and objects is all that is

required to restate goals into proper RNLS(s) and build

a complete semantic model. The two-pass procedure

made it possible to consistently parameterize the entire

goal set; this required less than eight person-hours.

Applying the semantic parameterization process to

the policy goal subset produced valuable insights into

the semantic relationships within privacy policies.

These insights are exemplified via three distinct cases.

In the first case, a parameter of an activity is assigned a

value of another activity as in section 4.1. Recall, this

type of assignment was first introduced in Section 2.2

and shown in Figure 3. In the second case, a parameter

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

value is shared and thus distinguished by two different

activities as in section 4.2. In the third case, two models

may have a semantic correspondence where the

meaning of one model is equivalent to another despite

significant structural differences as in section 4.3. In

these three cases, the only formal relations mentioned

are those that characterize the point of interest.

4.1. Objects as other activities

Transitive verbs that describe how an actor may

affect another activity can be captured by a unique

semantic model. In some situations, these models may

describe how actors delegate permissions and

obligations to other parties. In other situations, these

models may describe notifications and warnings that

actors provide to other parties. In the semantic model of

Figure 5, we examine the situation where an actor

provides notification to another party. Consider goal

G102, an obligation where the main actor is the provider:

G102: NOTIFY customer of changes to privacy
policy.

We use the parameterization process to decompose

G102 into RNLS #10 and #11.

RNLS #10: The provider changes the privacy

policy.

RNLS #11: The provider will notify the

customer that (RNLS #10).

Recognizing the transitive verb “notify” in RNLS #11

we derive the parameter α(activity1, object1) and assign

it the value δ(object1, activity2) derived from RNLS

#10. We add a parameter, α(activity1, target1), to

account for the customer who is the recipient of the

notification.

Figure 5: Object value is an activity.

In general, the model in Figure 5 covers situations

where a transitive verb directly affects another activity.

In addition to “notify”, other transitive verbs identified

in the goal subset during this process include “allow,”

“deny,” “restrict,” “limit,” and “recommend.” From the

entire goal subset, this case occurred in 17 goals.

4.2. Objects shared by two activities

Entities may be described by multiple activities.

References to other activities constrain the scope of the

main activity to only those objects that have been

affected by the other activities. Consider goal G779, a

right where the actor is the provider.

G779: COLLECT information provided by
customer.

We use the parameterization process to decompose G779

into RNLS #12 and #13.

RNLS #12: The customer will provide

information.

RNLS #13: The provider will collect

information.

The relations α(activity1, object1) and δ(object1,

information) from RNLS #12 are aligned with the

relations α(activity2, object2) and δ(object2,

information) from RNLS #13 (see Figure 6).

Figure 6: Object value shared by two activities.

Twelve goals were identified that generated the

above semantic model. Most actions (verbs) referred to

by the second activity for these models (object value

shared by two activities) were in the past tense,

although, a few were in the present-continuous tense.

4.3. Reflexivity of purpose and instruments

Semantic models are reflexive when the structural

representation of information in two models is different

yet the meaning remains the same. The choice to use

one model over the other is determined by the desire to

emphasize different information. For example, a model

with the action parameter value “use” is reflexive with

a separate model whose instrument parameter value

matches the first model’s object parameter value.

Consider goals G291a and G291b, both express rights

where the main actor is the provider:

G291a: USE cookies to collect information.

G291b: COLLECT information using cookies.

We use the parameterization process to decompose

G291a into RNLS #14 and G291b into RNLS #15.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

RNLS #14: The provider may use cookies to

collect information.

RNLS #15: The provider may collect

information using cookies.

Recognizing the verb “use” in RNLS #14 combined

with the purpose “to collect information,” we can

establish the reflexivity between these two statements

by mapping the parameter values δ(object1, cookies),

δ(action2, collect) and δ(object2, information) from

RNLS #14 to δ(instrument1, cookies), δ(action1, collect)

and δ(object1, information) from RNLS #15. The

corresponding models appear in Figures 7 and 8.

Figure 7: Model with action “use” and purpose.

Figure 8: Semantic model with instrument.

It is important to recognize reflexive cases because

it is common to use different models to emphasize

different information. However, to guarantee the correct

comparability of models without ambiguity, these cases

must be formally identified and treated as equivalent. In

all, 26 goals conform to this type of reflexivity.

4.4. Range of possible models

The above examples provide a glimpse of the range

of possible models. While these examples idealize the

separation of these cases, it is not uncommon for

models to combine multiple cases. We performed

queries over the parameterized goals to identify

individual cases. Table 2 lists the queries encoded using

KTL (Expression) and the frequency (Freq.) of

responses among the entire goal subset.

Table 2: Queries to identify model differences

 ID Expression Freq.

1 goal [right] = ?x 40.63%

2 goal [obligation] = ?x 50.78%

3 goal [!responsibility] = ?x 8.59%

4

goal [?x] = activity {
 actor = ?a
 action = ?b
 object = ?c
}

92.19%

5
goal [?x] = activity {
 target = ?y
}

26.56%

6
goal [?x] = activity {
 instrument = ?y
}

20.31%

7
goal [?x] = activity {
 purpose = ?y
}

12.50%

8
goal [?x] = activity {
 object = activity
}

17.19%

9

goal [?x] = activity {
 object = object :
 activity { object = ?y }
}

11.72%

The first three queries fully partition the goal subset

since each goal only describes a right, obligation, or

disclaimer of responsibility. Until now, organizing

goals has emphasized hierarchies. Using semantic

models and queries, goals may be dynamically

categorized based on rich semantic structures such as

rights, obligations, purpose, instruments, and

relationships sharing the elements of multiple activities,

allowing requirements engineers to view goals from

different viewpoints.

5. Related Work

This section distinguishes our work from two

prominent modeling frameworks in requirements

engineering and provides an overview of two related

approaches that transform requirements artifacts such as

goals into conceptual models or semantic graphs.

The KAOS framework enables specifying system

requirements in formal goal and agent models [2].

These models include a meta-level description that

provides definitions for concepts, relationships and

attributes relevant to goals and agents. For example, the

agent model includes relations that identify agent

responsibilities as states or activities represented by

single predicates. The model semantics are influenced

by first-order, temporal logic to support formal

reasoning in conflict identification and goal

management [17]. Unlike our semantic models, KAOS

does not enable semantically comparing goals.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

The i* framework has been applied to security and

privacy requirements analysis to analyze vulnerabilities

[18]. The models in i* represent dependencies between

agents, goals, resources, and tasks using a high-level

system of nodes and relations. For example, a

healthcare system may depend on the activity “Perform

Insurance Transaction” that in turn depends on the

agent “Insurance Agent”. Transforming the agent into

an attacker, the dependency between agent and activity

becomes a vulnerability. In contrast to i*, our semantic

models express general dependencies as specific

references to the objects, instruments, and purposes

expressed in natural language requirements. We further

use these references in automated queries to identify

privacy vulnerabilities across multiple activities with a

high degree of detail as seen in the results in Table 1.

Delugach presents an algorithm for converting

requirements specifications encoded in Entity-

Relationships (ER), data flow, or state transition

diagrams into Conceptual Graphs (CGs) with temporal

extensions [19]. Our parameterization process begins

with natural language goals, not structured

specifications. Furthermore, Delugach does not impose

strict modeling guidelines on CGs to ensure separate

graphs are comparable. For example, two nodes in a

CG labeled “withPurpose” and “hasPurpose” may be

synonymous to the reader; however the relationship

between “has” and “with” in this case is lost in the node

labeling strategy. Alternatively, the relationships “with”

and “has” could have been specified using individual

arcs. Unlike general CGs, our semantic models enforce

specific guidelines that ensure parameter values are

limited to single parts of speech that represent atomic

concepts. Relationships like “with” and “has” are

consistently subsumed by the same parameters,

ensuring relevant information remains comparable.

Koch et al. describe a framework that combines

semantic graphs with goal-oriented policies [20]. The

goal-oriented policies are derived from requirements

specifications and defined using templates with the

attributes subject, action, target object, and modality

that determine authorization or obligation policies. The

templates are populated using natural language

requirements that describe discrete activities. Our

semantic models are more expressive than the goal

templates given their ability to represent purpose (see

Figure 3) and actors and objects distinguished by

separate activities (see Figure 6). Unlike Koch et al.,

our approach has been validated using an extensive

repository of privacy goals.

6. Discussion and future work

In requirements engineering, the goals for a system

are the customer’s stated or inferred goals; and in

organizational policies, the goals are those of the

organization. In many situations, however, the reality

and determinative role of goals has been questioned

[21]. We believe that while rights, permissions and

obligations are not traditionally distinguished in the

goal-based framework they can be incorporated simply

by admitting multiple sets of goals and indexing each

set with the stakeholder that wishes to achieve them.

We leave it to the politics of the situation to determine

which goal set (or stakeholder) will ultimately prevail.

To this end, this paper presents a generalizable

process for developing semantic models from goals that

supports analysis through queries and natural language

correspondences using a template method. Furthermore,

these models and queries aid in the identification of

conflicts, redundancies, and responsibilities of actors.

We foresee semantic models playing a role in

requirements engineering, but we must still address the

limitations of our approach. For example, using the

semantic parameterization process, we were able to

completely parameterize 88 of the 100 privacy goals.

The remaining 12 goals were not completely

parameterized due to limitations in the context-free

grammar for temporal relations.

Temporal relations were required to completely

parameterize goals. In many model instances with

shared objects, the action value of the second activity

was a past-tense verb unlike the action value of the first

activity. For example, “information provided by the

customer” uses the past-tense verb “provided.” In

addition, different activities were related using temporal

conditions. These conditions include the conjunction

“unless” or the preposition “upon” (preconditions). For

example, a customer right may be withheld “unless the

customer initiates the transaction” or a provider

obligation must be fulfilled “upon customer

notification.” Each of these examples relates the main

activity conditionally with the completion of a separate

activity. Temporal relations were also identified from

the adverbs “annually,” “monthly,” “periodically,” and

“repeatedly.” We treat such adverbs as attributes to

actions in much the same way adjectives are handled

for actors and objects.

We recognize that the RNLS restatement process,

whether applied to goals or directly to policy

statements, may change the meaning from what was

intended in the original policy documents. For this

reason, we foresee the RNLS(s) and semantic models

playing a direct role in the authorship process; when

policy authors need to specify policy semantics.

Goal semantics can help requirements engineers and

policy makers bring policies and system requirements

into better alignment. The semantic models allow

analysts to compare goals and policy statements using

queries to search policy or requirements documents and

determine if systems comply with specific stakeholder

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

needs. The template method for generating natural

language policy statements and ultimately requirements

provides non-technical analysts the ability to validate

the correctness of semantic models.

Acknowledgements

This work was supported by NSF Cyber Trust Grant

#0430166. The authors thank Carolyn Brodie, Calvin

Powers and NCSU ThePrivacyPlace.org reading group

for their generous and helpful comments.

References

[1] Antón, A. I., Earp, J. B., Potts, C., Alspaugh, T. 5th IEEE
Int’l Sym. On Requirements Engineering (RE’01), Aug.
2001, pp. 138–145.

[2] Dardenne, A., van Lamsweerde, A., Fickas, S. F., “Goal-
Directed Requirements Acquisition”, Science of
Computer Programming, vol. 20, 1993, pp. 3 – 50.

[3] Rolland, C. Souveyet, C. and Achour, C.B.. Guiding Goal
Modeling Using Scenarios, IEEE Transactions on
Software Engineering, 24(12), pp. 1055-1071, December
1998.

[4] van Lamsweerde, A., Darimont, R. and Massonet, P..
Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt, 2nd Int’l Symp.
on Req’ts Eng. (RE’95), York, UK, pp. 194-203, March
1995.

[5] Antón, A.I. and Earp, J.B. Strategies for Developing
Policies and Requirements for Secure Electronic
Commerce Systems. In Recent Advances in Secure and
Private E-Commerce, Kluwer Academic Publishers,
2001.

[6] Antón, A., I. Goal Identification and Refinement in the
Specification of Software-based Information Systems,
PhD Thesis, Georgia Tech, Atlant, Georgia, June 1997.

[7] Antón, A.I. and Potts, C. The Use of Goals to Surface

Requirements for Evolving Systems, Int’l Con’f. on

Software Eng. (ICSE ‘98), Kyoto, Japan, pp. 157-166,

19-25 April 1998.

[8] Antón, A.I. Goal-Based Requirements Analysis,

International Conference on Requirements Engineering

(ICRE `96), Colorado Springs, Colorado, USA, pp. 136-

144, April 1996.

[9] Antón, A. I., Earp, J. B., Bolchini, D., He, Q., Jensen, C.,
and Stufflebeam, W. “The Lack of Clarity in Financial
Privacy Policies and the Need for Standardization,” IEEE
Security & Privacy, 2(2), pp. 36-45, 2004.

[10] Antón, A. I., Earp, J. B., “A Requirements Taxonomy for
Reducing Website Privacy Vulnerabilities.” Requirements
Engineering Journal, 9(3), pp.169 – 185, 2004.

[11] Bandara, A. K., Lupu, E. C., Moffett, J., Russo, A., “A
Goal-based Approach to Policy Refinement.” 5th IEEE
Workshop on Policies for Distributed Systems and
Networks (POLICY’04), London, June 2004, pp. 229–
239.

[12] Antón, A. I. Bertino, E., Li, N., Yu, T.. “A Roadmap for

Comprehensive Online Privacy Policy Management,”
Purdue University CERIAS Technical Report #TR 2004-

47, 2004.

[13] Antón, A. I., Potts, C. “Encoding Rights, Permissions

and Obligations: Privacy Policy Specification and
Compliance” NSF ITR-0325269, Sept. 2003.

[14] Minksy, M. “A Framework for Representing

Knowledge.” In P. Winston (ed.) The Psychology of

Computer Vision, McGraw-Hill, 1975, pp. 211 – 277.

[15] Schank, R. C., Abelson, R. P. Scripts, Plans, Goals and

Understanding: An Inquiry into Human Knowledge

Structures. Lawrence Erlbaum Assoc., Hillsdale, New

Jersey, 1977.

[16] Glaser, B. G., Strauss, A. L. The Discovery of Grounded

Theory. Aldine de Gruyter, Hawthorne, New York,

1967.

[17] van Lamsweerde, A., Darimont, R., Letier, E.

“Managing Conflicts in Goal-driven Requirements

Engineering.” IEEE Transactions on Software

Engineering (TSE), 24(11) pp. 908 – 926, 1998.

[18] Liu, L., Yu, E., Mylopoulos, J. “Security and Privacy
Requirements Analysis in a Social Setting.” 11th IEEE
Int’l Conf. on Req’ts Eng. (RE’03), pp. 151 – 161, Sept.
2003.

[19] Delugach, H. S., “Specifying Multiple-Viewed Software
Requirements with Conceptual Graphs.” Journal of
Systems and Software, vol. 19, pp. 207 – 224, 1992.

[20] Koch, T., Krell, C., Kraemer, B., “Policy Definition
Language for Automated Management of Distributed
Systems.” 2nd IEEE Int’l Workshop on Sys. Mgmt.
(SMW’96), p. 55, June 1996.

[21] G. Morgan, Images of Organization: Sage Publications,
1986.

[22] Parr, T. J. “ANTLR: a predicated-LL(k) parser
generator.” Journal of Software Practice and Experience,
25(7), pp. 789 – 810, July 1995,

Appendix A

Following is the context-free grammar KTL–1

represented using EBNF notation modeled on the

original syntax for the ANTLR parser generator toolset

developed by Terence Parr [22].

<start> ::= (<term>)+

<term> ::= (IDENT|VAR) <dblock>? <ablock>?

<ablock>::= LCURL (<stmt>)+ RCURL

<dblock>::= LBRKT (<set>)+ RBRKT

<ref> ::= <num>? NEGATE? <abs>

<abs> ::= <term> (ABS <abs>)?

<item> ::= <set> ((OR | AND) <item>)?

<set> ::= LPAR <item> RPAR | <ref>

<stmt> ::= (IDENT|VAR) EQ <set>

<num> ::= NUMBER ((GT | LT) NUMBER)? HASH

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

