
Accepted to the 3rd ACM Workshop on Information Sharing and Collaborative Security. Updated 4 November 2016. 

Privacy Risk in Cybersecurity Data Sharing   
Jaspreet Bhatia1, Travis D. Breaux1, Liora Friedberg2, Hanan Hibshi1, 3, Daniel Smullen1  

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States1 
University of Pennsylvania, Philadelphia, Pennsylvania, United States2 

College of Computing, King Abdul-Aziz University, Jeddah, Saudi Arabia3 

{jbhatia, breaux}@cs.cmu.edu, lioraf@sas.upenn.edu, {hhibshi, dsmullen}@cs.cmu.edu 

 
ABSTRACT 
As information systems become increasingly interdependent, 
there is an increased need to share cybersecurity data across 
government agencies and companies, and within and across 
industrial sectors. This sharing includes threat, vulnerability and 
incident reporting data, among other data. For cyberattacks that 
include socio-technical vectors, such as phishing or watering hole 
attacks, this increased sharing could expose customer and 
employee personal data to increased privacy risk. In the US, 
privacy risk arises when the government voluntarily receives data 
from companies without meaningful consent from individuals, or 
without a lawful procedure that protects an individual’s right to 
due process. In this paper, we describe a study to examine the 
trade-off between the need for potentially sensitive data, which we 
call incident data usage, and the perceived privacy risk of sharing 
that data with the government. The study is comprised of two 
parts: a data usage estimate built from a survey of 76 security 
professionals with mean eight years’ experience; and a privacy 
risk estimate that measures privacy risk using an ordinal 
likelihood scale and nominal data types in factorial vignettes. The 
privacy risk estimate also factors in data purposes with different 
levels of societal benefit, including terrorism, imminent threat of 
death, economic harm, and loss of intellectual property. The 
results show which data types are high-usage, low-risk versus 
those that are low-usage, high-risk. We discuss the implications of 
these results and recommend future work to improve privacy 
when data must be shared despite the increased risk to privacy. 
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• Software and it’s engineering➝Software design trade-offs 
• Security and privacy➝Privacy protections • Social and 
professional topics➝Government surveillance. 
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1. INTRODUCTION 
Economic development, growth and stability over the last several 
decades has been driven by information technology (IT): while 
only 30% of US GDP between 1995 and 2005 is attributed to IT 
companies, 50% of economic growth during that time can be 
attributed to IT [1]. Modern IT systems are used to operate critical 
infrastructure in banking, energy, and transportation, and to create 
proprietary designs for these sectors in support of this growth. For 

these reasons, IT systems have become targets for cyberattacks by 
criminal organizations, nation states and individual hackers. The 
US Federal Bureau of Investigation reports over $1 billion in 
reported losses due to criminal cyberattacks [2] and, during the 
last year alone, attackers have used over 431 million variants of 
malware to conduct attacks [3]. IT and critical infrastructure are 
more frequently built from distributed services and multiple 
vendors, further obfuscating the ability to respond to attacks. In 
this distributed ecosystem, service providers and vendors can be 
unaware of the need to share sensitive vulnerability data with 
partners and competitors [4]. To address this challenge, the US 
White House introduced Presidential Decision Directive 63 
(PDD-63) in 1998 that asks each critical infrastructure sector to 
establish sector-specific information sharing and analysis centers 
(ISACs). Today, there are ISACs for a wide range of sectors, 
including automotive, aviation, financial, health, retail, and water, 
among others.  

In 2015, the White House introduced Executive Order (EO) 
13691, which requires the US National Cybersecurity and 
Communications Integration Center (NCCIC) to coordinate data 
sharing with ISACs in a public-private partnership. The NCCIC 
allows companies to automatically receive cybersecurity threat 
indicators, as well as to voluntarily share their own indicators with 
other agencies and companies. As of July 2015, the NCCIC has 
established 125 partnerships with an additional 156 partnerships 
in negotiation, and they have shared over 28,000 indicators [5]. In 
2016, the US legislature passed the Cybersecurity Sharing Act 
(CISA), which codifies portions of the EO 13691 into law, further 
supporting the sharing of private-sector incident data with the US 
government. Despite this support, however, companies report 
concerns about violating customer and employee privacy by 
sharing cybersecurity intelligence with others, including the 
government [6]. 
In this paper, we report results from a study to measure the trade-
off between incident data usage estimates and perceived privacy 
risk while sharing incident data with the government. The study 
design consists of two parts: (1) an incident data usage estimate 
based on an incident reporting survey (see Appendix A) that was 
conducted with 76 security professionals with a mean of 8 years’ 
experience; and (2) a privacy risk estimate that measures privacy 
risk based on an ordinal likelihood scale and nominal data type, 
which is based on a factorial vignette survey design that was 
conducted with 80 Internet users. The results include evidence as 
to which data types are high-usage, low-risk versus those that are 
low-usage, high-risk. 

The paper is organized as follows: in Section 2, we present 
background and related work; in Section 3, we present the 
method, including the survey designs and formula for computing 
estimates; in Section 4, we present the survey results and trade-off 
analysis; in Section 5, we present threats to validity; and in 
Section 6, we discuss the results and future work. 
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2. BACKGROUND AND RELATED WORK 
We now discuss background and related work as follows: Section 
2.1 discusses work in risk perception across disciplines; 2.2 
discusses data sharing techniques. Lastly, Section 2.3 discusses 
work in data utility in contrast to our work in data usage. 

2.1 Risk Perception  
Risk is a multidisciplinary topic which spans marketing, 
psychology, and economics. In marketing, risk is defined as a 
choice among multiple options, which are values based on the 
likelihood and desirability of the consequences of the choice [7]. 
Starr first proposed that risk preferences could be revealed from 
economic data, in which both effect likelihood and magnitude was 
previously measured (e.g., the acceptable risk of death in motor 
vehicle accidents) [8]. In psychology, Fischhoff et al. note that so-
called revealed preferences assume that past behavior is a 
predictor of present-day preferences, which cannot be applied to 
situations where technological risk or personal attitudes are 
changing [9]. To address these limitations, the psychometric 
paradigm of perceived risk emerged in which surveys are 
designed to measure personal attitudes about risks and benefits 
[10]. We define privacy risk perception as the act of identifying a 
choice or action that may have an impact on privacy. However, 
Knightian economists argue that subjective estimates based on 
partial knowledge, which includes perceived risk, are measures of 
uncertainty, and not measures of risk [11]. Two insights that 
emerged from this paradigm and inform our approach are: (a) 
people better accept technological risks when presented with 
enumerable benefits, and: (b) perceived risk can account for 
benefits that are not measurable in dollars, such as lifestyle 
improvements [10]. In other words, people who see technological 
benefits are more inclined to see lower risks than those who do 
not see benefits. Moreover, privacy is closely associated with a 
kind of lifestyle improvement, e.g., private communications with 
friends and family, or the ability to avoid stigmatization.  

2.2 Data Sharing Techniques 
Research in cybersecurity data sharing includes techniques for 
privacy-preserving protocols [12], [13]. Freudiger et al. proposed 
data quality metrics and a privacy-preserving protocol based on 
additive homomorphic encryption to enable sharing privacy-
sensitive data [12]. The metrics are based on integrity constraints, 
which can measure whether data conforms to various tests of 
equality, comparison and interval membership, and dependency 
constraints that determine whether data pairs are consistent with 
each other. For example, whether a state and ZIP code are 
logically consistent. The goal is to test whether private, encrypted 
data conforms to these metrics without revealing the content of 
the data as it moves between client and server. Similarly, Khader 
proposed an approach to search encrypted data based on attributes 
[13]. 

2.3 Data Utility and Usage 
Xu et al. define utility as the quantity and quality of the data [14]. 
This work illustrates the trade-off between anonymizing data to 
protect the seller, and the utility that the collector gains by 
aggregating and using the data. Their definition of utility has 
relevance to any interests who may need to use the data, because 
it introduces the notion that utility may vary when certain data or 
data quality are unavailable. Insufficient utility may prove 
inadequate to allow a business arrangement to be met. Utility, by 
this definition, is like an economic transaction; data is a good, and 
is traded for some form of other compensation. Under different 
contract specifications, compensation and utility differ. In Chen et 

al.’s study, privacy is modeled as a variable based on individual 
preferences, but no method is proposed to quantify it. With no 
means to concretely measure privacy in any regard, Chen et al. 
further provide no underlying theory to justify their representation 
of privacy as a variable. In our work, we evaluate privacy as an 
estimate of willingness to share data. Our estimate is derived 
numerically from survey answers, and we calculate estimates for 
how willingness to share changes for different data types, among 
other factors (see Section 3). We contrast this estimate with data 
usage, which is the frequency with which analysts use the data. 

3. METHOD AND APPROACH 
In this section, we present our study design for computing the 
trade-off between incident data usage and perceived privacy risk. 
This includes the survey designs used to collect data, and the 
method for computing the estimates in the trade-off analysis. 

3.1 Estimating Incident Data Usage 
Incident reports are prepared for evidentiary and training 
purposes, and include threat indicators derived from incidents 
[15]. Example indicators include the hostname or IP address from 
which an attack originates. For incidents where the attack vector 
is not easily generalized into a non-private indicator, 
organizations may wish to share more sensitive, detailed technical 
data with third-party analysts. To do so, they must balance the 
privacy and security risks of sharing too much data [15]. Thus, we 
designed a method for estimating incident data usage from the 
data types that are available for sharing. We assume that, in 
extreme situations, an organization may wish to share any type of 
forensic data compiled as evidence of the incident, although, in 
most cases less data will be shared as a matter of routine. 

The incident data usage estimates are computed from the incident 
reporting survey results. In the survey (see Appendix A), 
participants describe the data type usage as a frequency interval of 
incident cases for which each data type is used: 100-50% of cases, 
50-25%, <25%, and Never. We propose to estimate incident data 
usage using two methods: the simulation method, and the relative, 
ranked usage method, which we now discuss. 

3.1.1 Estimating Usage by Simulation 
The simulation method aims to simulate the incident cases that a 
security analyst estimates what percent of cases each data type is 
used in. The method assumes that, when an analyst estimates the 
percent of cases in which the data type is used, they are using the 
same number of cases to describe each estimate. The simulation 
universe consists of the set of data types D, and the set of incident 
reports r Î R, where r Í D and R can be partitioned into disjoint 
subsets, one subset for each analyst. We first generate 100 reports 
per analyst. For each analyst’s data type estimate, we randomly 
select a percentage within the reported interval wherein all 
percentages in the interval are equally likely (e.g., 64% is in 100-
50%, and 64% is equally likely as 72% to be the analyst’s true 
estimate). Next, we randomly select a corresponding subset of the 
100 reports to match this percentage, and assign that data type to 
those reports. With this dataset, we can estimate the number of 
reports affected by removing a set of data types DR from all 
reports by computing the size of the set of affected reports {r | "r 
Î R, $d Î DR and d Î r}. Estimate results appear in Section 4.2. 

3.1.2 Estimating Usage by Relative, Ranked Usage 
In the relative, ranked usage method, we identify which data types 
are used more frequently than other data types in a relative, 
ranked order. To do this, we first compute a confusion matrix 
[16]. For each survey respondent, we perform pairwise 
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comparisons on their reported data type frequency intervals; this 
yields n 26x26 tables for the 26 data types and n survey 
respondents. When comparing two frequencies for a given 
respondent, we proceeded as follows. Given a pair of data types i 
and j, if frequency(i) < frequency(j), we enter 0 in celli,j, else if 
frequency(i) > frequency(j) we enter 1 in this cell, else if 
frequency(i) = frequency(j), we enter 0.5 in this cell. Next, we 
compute the average per data type across the table rows, yielding 
a number between 0 and 1 per respondent per data type. This 
number is higher for data types that are more frequently used than 
other data types. Finally, for each data type, we compute the 
average across all n respondents’ individual averages for the type, 
yielding a final estimate for each data type between 0 and 1. 

For both estimation methods, we treat all data types as 
semantically independent, despite the fact that some data type 
interpretations interact through subsumption (e.g. network 
information includes IP address). Without independence, there is a 
risk of overestimation, if a data subset is counted twice, (e.g. if the 
IP address estimate is included in the network information 
estimate). In addition, there is a risk of underestimation by 
excluding the IP address estimate from the network information 
estimate. This issue is addressed further in Section 5, Threats to 
Validity. 

The estimation results are presented in Section 4.2. 

3.2 Measuring Privacy Risk Perception 
Factorial vignettes provide a method to measure the extent to 
which discrete factors contribute to human judgment [17]. The 
factorial vignette method employs a detailed scenario with 
multiple factors and their corresponding levels. Our factorial 
vignette survey extends the survey design of Bhatia et al. [18] to 
measure the interactions between five independent variables, the 
computer type ($CT) where the cyber incident occurs, the data 
type ($DT) shared with the US Federal government, the data 
purpose ($DP) for which data is shared, the risk likelihood ($RL) 
of a privacy violation, the privacy harm ($PH), and their 
combined effect on a dependent variable, the employee’s 
willingness to share ($WtS) their data with the US Federal 
government. 

For this study, we chose to control several factors that affect 
willingness to share. For example, Nissenbaum argues that 
privacy and data sharing are contextual, meaning that the factors, 
data type, data recipient, and data purpose affect willingness to 
share [19]. We control these factors in a single context—sharing 
cybersecurity incident data with the government—while varying 
the computer type affected, the data type and the data purpose.  

Vignette Survey Design. The factorial vignettes are presented 
using a template in which factors correspond to independent 
variables and each factor takes on a level of interest. Figure 1 
shows the vignette template: for each participant, each factor is 
replaced by one level (see Table 1 for the levels for each factor 
variable, which begin with $). The independent variables $CT and 
$RL are between-subject factors, so participants only see one 
level of these two factors, and the variables $DT, $DP, and $PH 
are within-subject factors, so participants see all combinations of 
these factors. The $DT factor levels, with the exception of age 
range, match the data types in the incident reporting survey 
design. In the vignette survey design, the $DT levels were evenly 
divided into three groups 1 to 3, thus, each participant sees and 
responds to 3x4x1=12 vignette combinations. The allocation of 
$DT levels to groups was made to ensure that types that were 
technically related are shown together. These Age range was 

included in each group as a non-sensitive data type aimed at 
balancing the $WtS scale utilization. 

 
Figure 1. Template used for vignette generation (fields with $ 

sign are replaced with values selected from Table 1) 

A key component in risk estimation is the likelihood of an adverse 
consequence. Guidance suggests that lay people can map ratios to 
physical people affected much better than they can map 
probabilities to people affected [9]. In prior work, Bhatia et al. 
found that lay people cannot distinguish among ratios to represent 
the probability of a privacy harm [18]. Alternatively, construal-
level theory in psychology claims that people correlate larger 
spatial, temporal, social and hypothetical distances with decreased 
likelihood than they do with shorter psychological distances along 
these four dimensions [20]. We used Bhatia et al.’s empirically 
validated risk likelihood scale [18] that combines spatial and 
social distance as a correlate measure of likelihood (see $RL in 
Table 1): a privacy harm affecting only one person in your family 
is deemed a psychologically closer and more likely factor level 
than one person in your city or one person in your country, which 
are more distal and perceived less likely. 

When participants see the vignette, they rate their willingness to 
share their data with the government on an eight-point, bipolar 
semantic scale, labeled: Extremely Willing, Very Willing, Willing, 
Somewhat Willing, Somewhat Unwilling, Unwilling, Very 
Unwilling and Extremely Unwilling. This scale omits a midpoint, 
such as indifferent or unsure, which produces scale attenuation 
when responses cluster, and these midpoints are often more 
indicative of vague or ambiguous contexts than they are of 
respondents’ attitudes [21].  Thus, we chose to force respondents 
to be either willing, or unwilling to share. 

The 12 vignette combinations are presented in group-order: first 
participants see four vignettes for each group 1-3 in succession, 
where only the $DP level changes across each group. Prior to 
responding to each group of four vignettes, participants watch an 
approximately 60 second video that illustrates the meaning of 
each data type, because some data types are technical terms that 
lay people may not be familiar with, such as running processes or 
registry information. The $DT levels were assigned to each group 
to fit these narratives, thus the grouped data types had to be 
related in a technical manner. In addition, the videos offer a break 
between each group of four vignettes, so respondents can rest. 

Pre-Test Design. Before the vignettes, we present a pre-test that 
asks participants to rank order and score $DP based on their 
benefit to society. Fischhoff et al. argue that individuals should be 
presented with enumerable benefits before judging risk [9]. We 
ask participants to rank the risk likelihood levels from nearest to 
farthest proximity as an attention test. Next, we asked participants 
whether they store personal data on their workplace computer. 
These three questions aim to sensitize participants to the factorial 

Please rate your willingness to share your information below with the 
Federal government for the purpose of $DP, given the following risk.

Risk: In the last 6 months, while using this website, only $RL experienced a 
privacy violation due to $PH.

When choosing your rating for the information types below, consider the 
$CT, purpose and the risk, above.

Extremely
Willing

Very	
Willing Willing Somewhat	

Willing
Somewhat
Unwilling …

$DT
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vignette levels in Table 1, especially the between-subject factors, 
prior to asking participants to report their willingness to share. 

Post-Test Design. After the vignettes, participants are presented a 
post-test to elicit their demographic characteristics (gender, age 
range, race, education level, income range).  

Analysis Method. Multilevel modeling is a statistical regression 
model with parameters that account for multiple levels in datasets, 
and limits the biased covariance estimates by assigning a random 
intercept for each subject [22]. Multilevel modeling has been used 
to study security [23] and privacy requirements [18]. In our study, 
the main dependent variable of interest is willingness to share, 
labeled $WtS. As can be seen in Table 1, the fixed independent 
variables, which are within-subject factors, are $DT (with 28 
levels), $DP (with 4 levels), and $PH (with one level, which is 
called a blank dimension). For the within-subject design, subject-
to-subject variability is accounted for by using a random effect 
variable $PID, which is unique to each participant.  

Table 1. Vignette Factors and Their Levels 

Recruitment. We recruited English-speaking participants from 
Amazon Mechanical Turk, located in the US, with a ≥97% 
approval rating, and ≥5000 HITs completed. The mean time to 
complete in a pilot was ~20 minutes, thus we allowed 45 minutes 
for recruited participants to complete the survey. We paid $6 per 
participant, and we ran the survey using SurveyGizmo.  

4. RESEARCH RESULTS 
We now report the results of our incident response survey. What 
follows is the results of computing the incident data usage and 
privacy risk estimates, as well as the trade-off analysis. 

For the incident response survey, we recruited a total 76 
participants from the SANS Threat Hunting and Incident 
Response Summit in New Orleans during April 2016. The sample 
population consists of: 3.9% academic, 75% industry, and 22.4% 
government; 5.3% are female, and 94.7% are male; 39.5% were 
aged 25-34, and 31.6% were aged 35-44, and 22.4% were aged 
45-60; 98.7% reported having at least some college level 
education; and they had a mean 8.29 years of experience as a 
security analyst in some capacity from entry-level to director. 
Table 2 shows standards and tools used by security analysts. Most 
respondents reported using Indicators of Compromise (71.4%), 
followed by Host Based Security System (60.0%). 

Table 2. Frequencies of Standards and Tools  
Used in Incident Investigations 

Standards and Tools Reporting 
Host Based Security System 60.0% 
Structured Threat Information Expression 35.7% 
Assured Compliance Accreditation Solution 11.4% 
Indicators of Compromise 71.4% 
Cyber Federated Model 2.9% 

Participants more often reported encountering desktop (81.6%) 
and laptop computers (88.2%), than USB drives (43.4%), smart 
phones (35.5%), and least commonly tablet computers (19.7%) 
during their work as incident responders. 

Table 3 presents the total proportions of responses for the reported 
percent of cases in which data types were used in incident 
analysis. Network information (84.2%), including IP addresses 
and domain names (86.9%), and OS information (73.7%) were the 
most frequently encountered data types in 100-50% of cases. 
Personal data types, such as e-mails (40.8%), browser history 
(40.8%), passwords (25.0%), chat history (18.4%), and 
keylogging data (7.9%), were less commonly encountered, yet 
still present in 100-50% of cases. 

Table 3. Intervals of Reported Use per Data Type (n=76) 

Data Type 100-50%  
of cases 

50-25% 
of cases 

<25% 
of cases Never 

Network information 63 8 0 0 
IP addresses and domain names 66 9 1 0 
Packet data 33 16 24 2 
OS information 56 12 7 1 
OS type and version 56 12 6 1 
Usernames 50 20 5 1 
Passwords 19 10 33 12 
Running processing information 41 26 8 1 
Registry information 34 23 15 4 
Temporary files 30 26 15 5 
Device information 44 21 10 1 
Device identifiers 36 22 11 6 
MAC address 35 17 20 3 
UDID / IMEI 9 16 25 23 
Memory data 17 28 23 7 
Sensor data 29 18 20 8 
Application information 32 28 13 2 
Browser history 31 24 16 4 
Keyword searches 20 25 19 10 
Websites visited 34 24 13 4 
Chat history 14 11 31 19 
Application session data 16 21 28 10 
E-mails 31 23 18 3 
Contact information 26 17 25 7 
Keylogging data 6 17 24 28 
Video or image files 15 15 28 16 

Factors Factor Levels 
Computer 

Type ($CT) 
personal smart phone  
workplace computer 

Data Purpose 
($DP) 

investigating intellectual property and trade secrets 
investigating economic harm, fraud or identity theft 
investigating imminent threat of death or harm to an 
individual, including children 
investigating terrorism 

Risk 
Likelihood 

($RL) 

only one person in your family 
only one person in your workplace 
only one person in your city 
only one person in your state 
only one person in your country 

Privacy Harm 
($PH) a privacy violation due to government surveillance 

Data 
Type  
($DT) 

Group 1 
age range 
usernames & 

passwords 
device information 
device ID 
UDID / IMEI 

sensor data 
network information 
IP address & domain 

names 
packet data 
MAC address 

Group 2 
age range 
OS information 
OS type & version 
memory data 
temporary files 

registry information 
running processes 
application information 
application session data 

Group 3 
age range 
emails 
chat history 
browser history 
websites visited 

contact information 
keyword searches 
keylogging data 
video & image files 
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Table 4 presents the frequencies of work tasks that applied to 
participants’ current job positions (e.g., security analyst, cyber 
warfare operation, lead intrusion analyst, etc.) As expected with 
security analysts engaged in incident reporting, few participants 
performed preventative tasks, such as vulnerability assessment 
(41.3%) and patching software and firmware (20.0%). Most 
participants performed network monitoring (73.3%), forensic 
investigation (72.0%) and incident report preparation (69.3%). 

Table 4. Frequencies of Work Tasks that Apply to 
Participants’ Current Position  

Work Tasks Reporting 
Vulnerability assessment 41.3% 
Patch software and firmware 20.0% 
Network monitoring 73.3% 
Forensic investigation 72.0% 
Threat indicator development 65.3% 
Malware analysis 60.0% 
Prepare incident reports 69.3% 
Security policy compliance 34.7% 

 

4.1 Privacy Risk Survey Results 
We now discuss our results from the privacy risk surveys. 

4.1.1 Descriptive Statistics 
We received 80 responses to our risk perception survey: 48.8% 
reported as female, 51.3% male; 80.0% reported white as their 
ethnicity; 85.0% reported having at least some college level 
education; and 82.4% reported having annual household income 
less than $75,000. Less than 5% report their age as 18-24 years, 
with 43.8% aged 25-34 and 23.5% aged 35-44, and 28.8% report 
being over 45 years old. With 80 responses, we achieved 97% 
actual power, calculated using G*Power [24]. 

Participants were asked to rank order the data purposes by their 
benefit to society. Overall, the majority ranked the data purposes 
as follows: investigating imminent threat of death (68.8%) was 
most beneficial, followed by terrorism (60.0%), followed by 
economic harm (63.8%), and ending with intellectual property 
(68.8%) as least beneficial. 

Asked whether participants stored personal data on their 
workplace computer, 42.3% reported Yes, and 58.7% reported 
No. 

4.1.2 Multilevel Model for Privacy Risk 
Equation 1 below is our main additive regression model with a 
random intercept grouped by participant’s unique ID, the 
independent between-subject measures $CT, which is the 
computer type, and $RL, which is the likelihood of a privacy 
violation, and the independent within-subject measure $DP, which 
is the data purpose from one of the four categories and $DT, 
which is the data type (see Table 1 in Section 3.2). The additive 
model is a formula that defines the dependent variable $WtS, 
willingness to share, in terms of the intercept α and a series of 
components, which are the independent variables. Each 
component is multiplied by a coefficient (β) that represents the 
weight of that variable in the formula. The formula in Eq. 1 is 
simplified as it excludes the dummy (0/1) variable coding for the 
reader’s convenience. 

$𝑊𝑡𝑆	 = 	𝛼	 + 	𝛽*$𝐶𝑇	 + 	𝛽-$𝑅𝐿	 + 	𝛽0$𝐷𝑃 +	𝛽3$𝐷𝑇 + 	𝜖 (1) 

To compare dependent variable $WtS across vignettes, we 
establish the baseline level for the factor $CT to be workplace 

computer, $RL to be “only one person in your family” who 
experiences the privacy violation, $DP to be investigating 
intellectual property and we set the factor $DT to “age range”. 
The intercept (α) is the value of the dependent variable, $WtS, 
when the independent variables, $CT, $RL, $DP and $DT take 
their baseline values. 

We found a significant contribution of the four independent 
factors for predicting the $WtS (𝜒6(32)=2415.1, p<0.000) over 
the null model, which did not have any of the independent 
variables. In our model, we did not observe any effect of the 
independent variable $CT, (𝜒6(1)=2.2319, p=0.1352), which 
means Computer Type did not affect the willingness to share. We 
also did not observe a statistically significant effect of the 
independent variable $RL, (𝜒6(4)=1.5181, p=0.8234), which 
means the Risk Level may not affect the willingness to share.  In 
Table 5, we present the model Term, the corresponding model-
estimated Coefficient (along with the p-value, which tells us the 
statistical significance of the term over the corresponding baseline 
level), and the coefficient’s Standard Error. In our survey, the 
semantic scale option Extremely Unwilling has a value of 1, and 
Extremely Willing has a value of 8. A positive coefficient in the 
model signifies an increase in willingness to share and a negative 
coefficient signifies a decrease in willingness to share. 

The results in Table 5 show that $WtS is significantly different 
and increasing for increasing levels of $DP, as compared to the 
baseline level, investigating intellectual property and trade 
secrets, except for investigating economic harm, fraud, or identity 
theft. For the $DP level investigating imminent threat of death or 
harm to an individual, including children, the $WtS increases by 
1.153 over the baseline level, which denotes a statistically 
significant increase in willingness to share. However, for the $RL 
level only 1 person in your country, the $WtS decreases by 0.461 
over the baseline level, only 1 person in your family, which 
denotes a very slight decrease in willingness to share, but the 
change is not statistically significant. 

Table 5. Multilevel Modeling Results 

Term Coefficient Std. Error 
Intercept  
(family + workplace PC + intellectual) 6.340*** 0.421 

Risk Level – 1 person in your workplace -0.611 0.533 
Risk Level – 1 person in your city -0.519      0.533 
Risk Level – 1 person in your state -0.355 0.533 
Risk Level – 1 person in your country -0.461 0.533 
Data Purpose – economic harm 0.136** 0.044 
Data Purpose – terrorism 0.795*** 0.044 
Data Purpose – imminent death 1.153*** 0.044 
Computer Type – personal smart phone -0.512 0.337 

*p ≤ 0.05   **p ≤ 0.01   ***p ≤ 0.001 

The estimated dependent variable $WtS is presented for each data 
type in Table 6. 

4.2 Trade-off Analysis Results 
The trade-off analysis compares the incident data usage estimate 
to the perceived privacy risk for each $DT. The usage is estimated 
using the simulation method described in Section 3.1.1, and the 
relative, ranked method described in Section 3.1.2 and both 
estimates appear in Table 6 under the columns “Simulated Usage” 
and “Ranked Usage,” respectively. The Pearson’s 𝑟 correlation 
co-efficient for the two estimates is 0.995, which is a high 
correlation. The perceived privacy risk is measured by the 
estimated willingness to share $WtS (intercept=intellectual 
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property+1 person in your family+ workplace computer) on a 
scale of 1 to 8, wherein 1=Extremely Unwilling and 8=Extremely 
Willing, and which estimates an average Internet user’s 
acceptance of the risk. 

In the relative, ranked usage estimate function, each variable is 
binary, taking on a 1, if the data type is present in the incident 
report, and a 0 if the data type has been removed from the report. 
The final estimated value for a report’s data types has no 
particular meaning, rather its meaning comes from its comparison 
to other estimates, as follows: the values are meaningful in units 
of distance, but not multiplicative distance. We can say that 
contact information has 0.202 more units of usage than 
keylogging data (see Table 6). However, we do not say that 
contact information has 1.84 times as much usage as keylogging 
data. 

Table 6. Estimates for Incident Data Usage using the 
Simulated and Relative, Ranked Usage methods 

# Data Type  Simulated 
Usage 

Ranked 
Usage $WtS 

1 Passwords 0.244 0.350 4.149 
2 Usernames 0.610 0.661 4.149 
3 Keylogging data 0.144 0.240 4.231 
4 E-mails 0.408 0.524 4.340 
5 Chat history 0.203 0.300 4.378 
6 Video or image files 0.225 0.320 4.603 
7 Browser history 0.422 0.526 4.649 
8 Web sites visited 0.449 0.545 4.871 
9 Contact information 0.336 0.442 4.874 
10 Keyword searches 0.319 0.421 4.921 
11 Temporary files 0.439 0.499 5.209 
12 Application session data 0.244 0.545 5.268 
13 Memory data 0.291 0.405 5.353 
14 Registry information 0.459 0.534 5.371 
15 Packet data 0.407 0.505 5.437 
16 Sensor data 0.381 0.468 5.524 
17 Application information 0.463 0.545 5.721 
18 Running process information 0.526 0.610 5.790 
19 Network information 0.667 0.715 5.862 
20 UDID / IMEI 0.177 0.258 5.928 
21 Device identifiers 0.464 0.543 6.984 
22 MAC address 0.440 0.519 6.028 
23 Device information 0.535 0.618 6.043 
24 IP addresses / Domain names 0.673 0.741 6.093 
25 Operating system information 0.600 0.670 6.603 
26 OS type and version 0.588 0.673 6.603 

 

In Figure 2, we present a scatterplot comparing the data usage and 
$WtS. The data types are arranged along the x-axis in the 
numbered order from Table 6, starting with password, usernames, 
keylogging data, and so on. Along the y-axis, we scaled the data 
usage and privacy estimate for each data type: the simulated usage 
(blue dots) appears alongside the $WtS-Normed (orange dots), 
which is $WtS values rescaled by normalizing the value by 
dividing by 8.0. For $WtS-Normed values from 0.5 to 0.0, the 
users are increasingly less willing to share their data; from 0.5 to 
1.0, the users are increasingly more willing to share their data. 
Figure 2 shows that as the privacy risk estimate decreases from 
left to right, the data usage trend appears to be increasing, overall. 

 

Figure 2. The normative disparity between incident data 
usage and privacy risk (simulated usage and $WtS-Normed) 

In Figure 3, we present a histogram to show the distribution of the 
willingness to share ratings. The x-axis, shows the willingness to 
share scale options, and the y-axis shows the number of ratings for 
each scale option. In Figure 3, we observe that participant’s scale 
use is skewed slightly toward “extremely willing,” with 65% of 
all ratings lying between “willing” and “extremely willing.”  The 
histogram consists of all 1800 ratings from all 80 participants, 
regardless of whether participants chose similar ratings across all 
questions. To investigate responses by participants who utilize the 
full scale, we calculated the standard deviation (SD) for all ratings 
by participant. We found 19 participants, or 25% of the sample, 
with a SD ≥ 2. Figure 4 presents the trade-off of data use versus 
privacy risk for these 19 participants: as shown, why participants 
are more willing to share information about who they are (e.g., IP 
address, UDID, MAC address), they are less willing to share 
information about what they do (e.g., browser history, e-mails, 
websites visited, etc.) 

 
Figure 3. Distribution of Willingness to Share Ratings 

 

Figure 4. Trade-off between incident data usage and user’s 
willingness to share their data 
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The results are further discussed in Section 6, after we present 
threats to validity.  

5. THREATS TO VALIDITY 
Construct validity addresses whether what we measure is actually 
the construct of interest [25]. The trade-off analysis includes 
vague superordinate types, such as network information, which 
can have different meanings between the sampled security 
analysts and lay people. This ambiguity is an artifact of the 
problem, in which terminology to describe data types is poorly 
defined. With respect to lay people’s perceptions, in a separate 
survey of 40 participants we observed that respondents were 
statistically more comfortable sharing “technical information” 
with law enforcement than they were sharing “IP address,” which 
is commonly considered by companies to be included in the 
category of technical information. 

Internal validity concerns whether the study procedures limit 
drawing correct inferences from the data [25]. One threat to 
internal validity is that our survey participants may not have 
understand the meaning of the different data types for which they 
needed to rate $WtS. In order to mitigate this, instructional videos 
illustrating the definition of each data type accompanied each 
group of survey questions, which included closed captions for the 
hearing impaired. Additionally, each data type presented with a 
semantic scale (as seen in Figure 1) had a definition that was 
displayed when the participant hovered their mouse over the data 
type. 

External validity refers to the extent to which we can generalize 
the results to other situations [25]. In the privacy risk survey, 
42.3% of participants reported storing personal data on their 
workplace computer. This frequency may be higher or lower 
depending on the sectorial culture and company policies 
influencing employee behavior, which can affect the level of 
perceived risk in the ideal population. People who store less 
personal data on their workplace computer may report lower 
perceived privacy risk, but we found no statistical significance to 
this effect (p = 0.1352, compared to the null model). In fact, it is 
possible that people view their workplace computer as storing as 
much personal data as their smart phone. 

6. DISCUSSION AND FUTURE WORK 
In Section 4, we presented results from estimated incident data 
usage and perceived privacy risk. The incident data usage 
estimates are based on a simulation and confusion matrix that 
were computed from surveys conducted with 76 professional 
security analysts. The privacy risk estimates were computed using 
factorial vignette surveys with 80 Internet users. We present 
results measuring the normative disparity between usage and risk 
(see Figure 2). In addition, we measured statistically significant 
differences between the privacy risk estimates based on the data 
purpose for which these types are shared with the US Federal 
government and found that users were more willing to share their 
data for purposes with higher societal benefit, e.g., terrorism and 
imminent threat of death (see Table 5).  

In addition, results show a trade-off exists between data usage and 
privacy risk, in particular, that few types have high use and high 
risk (e.g., usernames) and most types have low or high use and 
low risk (see Figure 4).  For low-risk data types, incident 
responders may feel comfortable sharing these data types using 
routine procedures for securing the data. These low-risk 
procedures likely include access control, and disk- and network-
based encryption, for example, and security analysts who have 

access to the data may also be permitted to conduct their 
investigations by exploring the data, and with access to a broader 
set of data in the low-risk categories. For moderate- and high-risk 
data categories, however, security analysts may need to use data 
minimization techniques, such as redaction, to remove these data 
types before sharing. In addition, they may need to restrict access 
to those security analysts who are investigating specific incidents 
where the data is needed, and excluding such data from 
uncontrolled, exploratory practices. Ensuring such restrictions in 
cross-agency sharing environments is difficult due to the lack of 
transparency and lack of consistent data type terminology. 

In future work, we propose to conduct additional surveys to 
improve our estimates and add new context. For example, we 
propose to investigate how Chief Security Officers and incident 
responders perceive privacy risk, and looking at how regulatory 
frameworks restrict data sharing (e.g., the IP address is considered 
identifiable data in Europe). In addition, we propose to study data 
sharing using the Eddy privacy requirements language. The Eddy 
language allows privacy policy authors to express their data 
collection, use and transfer requirements and to identify conflicts 
between permitted and prohibited data usage and sharing practices 
[26]. In addition, Eddy-based tools exist to trace data flows across 
agencies to ensure that requirements follow the data [27]. To 
support the challenge of restricting flows across agencies, the 
Eddy language should be extended to support data minimization 
techniques, such as redaction and perturbation, which includes the 
introduction of noise into a high-risk dataset.  
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Appendix A. Incident Reporting Survey Questions 
1. Check the following standards and tools that you currently 

use: 

� Host Based Security System (HBSS) 
� Structured Threat Information Expression (STIX) 
� Assured Compliance Accreditation Solution (ACAS) 
� Indicators of Compromise (IOC) 
� Cyber Federated Model (CFM) 

 
2. When investigating an incident, what device types do you 

typically encounter? 

� Desktops 
� Laptops 
� Smart phones 
� Tablets 
� USB drives 
� Other, please list: ____________________ 

 

3. When investigating an incident, which kind of information do 
you collect or use in your analysis? 

Information Type 100-50% 
of cases 

50-25% 
of cases 

<25% 
of cases Never 

Network information     
IP addresses and domain names     
Packet data     
OS information     
OS type and version     
Usernames     
Passwords     
Running processing 
information 

    

Registry information     
Temporary files     
Device information     
Device identifiers     
MAC address     
UDID / IMEA     
Memory data     
Sensor data     
Application information     
Browser history     
Keyword searches     
Websites visited     
Chat history     
Application session data     
E-mails     
Contact information     
Keylogging data     
Video or image files     

 
4. Check all the work tasks that apply to your current position: 

� Vulnerability assessments 
� Patch software and firmware 
� Network monitoring 
� Forensic investigations 
� Threat indicator development 
� Malware analysis 
� Prepare incident reports 
� Security policy compliance 




