
Reinforcing Security Requirements  
with Multifactor Quality Measurement 

Hanan Hibshi1,2, and Travis D. Breaux1 
Institute for Software Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA1 

College of Computing, King Abdul-Aziz University, Jeddah, Saudi Arabia2    
{hhibshi, breaux}@cs.cmu.edu

 
Abstract— Choosing how to write natural language scenarios 

is challenging, because stakeholders may over-generalize their 
descriptions or overlook or be unaware of alternate scenarios. In 
security, for example, this can result in weak security constraints 
that are too general, or missing constraints. Another challenge is 
that analysts are unclear on where to stop generating new 
scenarios. In this paper, we introduce the Multifactor Quality 
Method (MQM) to help requirements analysts to empirically 
collect system constraints in scenarios based on elicited expert 
preferences. The method combines quantitative statistical analysis 
to measure system quality with qualitative coding to extract new 
requirements. The method is bootstrapped with minimal analyst 
expertise in the domain affected by the quality area, and then 
guides an analyst toward selecting expert-recommended 
requirements to monotonically increase system quality. We report 
the results of applying the method to security. This include 550 
requirements elicited from 69 security experts during a 
bootstrapping stage, and subsequent evaluation of these results in 
a verification stage with 45 security experts to measure the overall 
improvement of the new requirements. Security experts in our 
studies have an average of 10 years of experience.  Our results 
show that using our method, we detect an increase in the security 
quality ratings collected in the verification stage. Finally, we 
discuss how our proposed method helps to improve security 
requirements elicitation, analysis, and measurement.  

Index Terms—user study; vignettes; scenarios; security 
requirements; requirements elicitation, qualitative analysis, context. 

I. INTRODUCTION  
Companies rely on security experts to evaluate system 

security and determine appropriate mitigations [5, 10, 11]. 
Despite the abundance of requirements that are available in 
security checklists and control sets, such as the NIST 800-53 
control set [21], security analysts continue to rely on their own 
experience and background knowledge when analyzing system 
security [10, 11]. Checklists, which apply to systems, generally, 
often lack the context needed to assess the threat. For example, 
Haley et al. assert that it is more feasible to assess security risk 
and reason about satisfaction of a security requirement in narrow 
context [8]. Claiming that a negative event is never going to 
happen is difficult without being explicit about one’s trust 
assumptions [8]. Moreover, mapping the checklist requirement 
to threat scenarios or to other requirements is usually done by 
the analyst. In addition, security requirements are not 
independent, they work together in composition with different 
priorities and dependencies [5].  

Hibshi et al. previously examined the effect of context and 
requirements composition on security requirements expert 
ratings [10]. They proposed to use factorial vignettes, wherein 

requirements and system constraints are variables in a scenario 
description. That work is limited, since the vignettes were only 
applied narrowly to website access, there was no guidance on 
how to select vignette variables , and new requirements were not 
evaluated for security impact. Also, the ratings were elicited 
from graduate students, and not security professionals [10].  

The goal of this work is to address the above challenges by 
incorporating the prior technique with the aim of monotonically 
increasing the system quality. In this paper, we introduce the 
Multifactor Quality Measurement (MQM) method with an 
application to security using scenarios across four domains: 
networking, operating systems, databases and web applications. 
Further, we show how to empirically improve the scenarios by 
selecting new requirements that experts suggested would help 
increase the quality. The MQM method consists of three steps: 
• Bootstrapping: an analyst selects an initial vignette and a 

domain as a starting point, and run user experiments with 
experts to collect quality assessments and elicit additional 
requirements to improve the quality. The experiments use the 
factorial vignettes design [28, 33], an approach that is well 
used in social sciences to elicit human judgments and that had 
been used in our prior work [10]. This method uses vignettes 
or scenarios that include discrete factors that can be 
manipulated to measure differences in judgment as factors 
change to different levels. 

• Analysis: next, the analyst consolidates elicited requirements 
into several improvements that are believed by the experts to 
increase the overall quality. 

• Verification: in this optional step, the analyst verifies whether 
elicited requirements improve overall quality, or whether 
there are gaps remaining in quality achievement. This step can 
be run later to assess whether quality has changed. 

 The paper is organized as follows: in Section II, we review 
related work, which is the quality studied in this paper; in 
Section III, we describe the MQM; In Section IV, we present our 
empirical evaluation method; in Section V we present results; in 
Section VI, we discuss threats to validity; and in Section VII, we 
discuss our findings and summarize future work.  

II. RELATED WORK  
Scenarios are used in requirements elicitation, validation and 

analysis [14, 32]. Scenario-based techniques have been argued 
to provide richer details needed in analyzing dependencies 
between system components and the environment when 
modeling human uncertainties [32], and in eliciting actual user 
needs and unforeseen requirements [25, 32].   

Scenarios can either originate from the stakeholders’ real 
practices before the system is designed [32], such as by pursuing 



the inquiry cycle model [25]; or they can originate from the 
system’s specifications and design [32], such as use cases [7, 
13], misuse cases [2] and Secure Tropos [18, 20]. Our factorial 
vignette-based approach uses scenarios to describe an 
environment that mimics reality to the security analyst to 
discover dependencies among requirements and elicit 
previously unforeseen requirements that mitigate threats. Unlike 
the inquiry cycle model that searches the requirements space in 
multiple directions by asking what, how, where, when and why 
questions [25], our approach first collect answers to some of 
these questions and then shows these answers to expert. Then, 
the quality is measured to evaluate the strength of the answer 
toward affecting the overall system behavior, and this is 
obtained by experts’ evaluations. 
 Van Lamsweerde and Willemet [15] define scenarios as a 
temporal sequence of interaction events between agents of a 
system composed of software agents, human agents, and 
hardware devices [15, 16]. We found this definition common 
among requirements researchers who use scenarios that 
originate from a system’s specification [16, 18, 20, 14]. Van 
Lamsweerde and Willemet use operational scenarios to infer 
goals and generate specifications in the KAOS goal-based 
specification language [15]. In their approach, they express 
scenarios using event trace diagrams, and they propose using a 
formal method based on inductive-learning to refine and analyze 
the goal specification by covering positive scenarios and 
eliminating negative scenarios with undesired behavior [15]. In 
addition, stakeholders are not directly involved with the 
evaluation of scenarios and their specifications [15]. Letier et al. 
later found that classifying scenarios as positive or negative is 
difficult due to the lack of domain knowledge   e and conflicting 
stakeholder viewpoints [16].  

Scenario-based analysis has been used in the Secure-Tropos 
framework to analyze security requirements in multi-agent 
systems [18, 20]. Security attack scenarios are created by 
requirements analysts, and then inspected to find violations of 
the syntax or inconsistences between the scenarios and the 
models. Finally, the requirements analyst runs test cases 
generated from the security attack scenarios to test a system’s 
vulnerability during an attack [18, 20]. A framework like 
Secure-Tropos could be extended in future research using our 
proposed MQM method to evaluate attack scenarios.  

Scenario-based research in requirements engineering, 
including the work noted above, share a common feature: the ad-
hoc starting point of scenario creation, which is generated by the 
analyst, is then re-inspected or refined. In MQM, a similar 
approach is adopted, which we call bootstrapping, wherein an 
analyst designs an initial scenario from their limited domain 
knowledge. Because the method guides the analyst toward 
increases in quality, this approach is preferable to an otherwise 
unbounded process with no clear guidance on where to stop 
generating more scenarios. Letier et al. proposed a scenario-
based technique for requirements analysis and they indicate that 
adding both positive and negative scenarios results in large 
unstructured models [16].  

Potts distinguishes abstractionism, where researchers rely 
on formal models; and contextualism, where the context of the 
system is well understood before deriving requirements [23]. 
Potts argues that abstractionist approaches use simplified 
models of a phenomena that leave out stakeholders’ needs and 

requirements. Contextualist approaches use rich details resulting 
in creating systems that reflect the context of use and satisfy the 
stakeholder needs in the short term, but can be expensive and 
time consuming to progress or scale the design over time. Potts 
suggests that to build more useful systems, researchers should 
focus on approaches that integrate the two philosophies. The 
integration should adopt a strong committed view [23, 24] in 
which, intangible phenomena are not explicit [17, 23], but rather 
they are implicit in the stakeholders’ interpretation of the 
domain [23, 24]. For example, business processes are not 
tangible, as they exist in the stakeholders’ interpretation of a 
business [23]. In our work, we acknowledge that security 
requirements in practice exist in the security analysts’ 
interpretation of a system and their judgment of the situation, 
and that organizations rely on security experts’ 
recommendations [11]. The MQM method introduces structured 
scenario design using textual templates, which is different from 
strict contextual designs such as natural inquiries [17, 24] that 
rely on rich descriptions, but could be time consuming. 

III. MULTIFACTOR QUALITY MEASUREMENT  
We now describe the Multifactor Quality Measurement 

(MQM) method for eliciting system constraints that affect 
overall quality. In prior work [10], we presented an empirical 
evaluation of using factorial vignettes for collecting security and 
found it to be effective. In this paper, we are integrating the 
technique into a framework, the MQM, that can be extended and 
reused outside of security. Figure 1 shows the different stages of 
the MQM. In addition, we address the limitations of prior work 
in the following way:  
1. We evaluate the MQM across four domains: networking, 

operating systems, databases and web applications. In prior 
work [10], only one domain was evaluated (computer user 
surfing the web).  

2. Participants are put in an expert role in the scenario (e.g. 
network administrator)  

3. We recruit security experts from industry and government.  
We now describe each phase of the MQM. 

 
Fig. 1. The Multifactor Quality Measurement (MQM) Method 

A. Stage 1: Bootstrapping 
During bootstrapping, an analyst first chooses the quality to 

evaluate, and then the analyst chooses an initial scenario that 
describes a cohesive system viewpoint [22]. The ad hoc scenario 
is selected by the analyst who might have limited knowledge, 
because the MQM will collect empirically measured 
improvements in this stage. This scenario is a text-based system 
description that includes the ways people interact with the 
system. We show an example scenario template in Figure 2.  

Figure 2 shows a template from the web applications 
security domain that consists of variables preceded by the ($) 
sign. A variable in the scenario is a security requirement 
category. The variables are replaced by different values that 

Create Ad-hoc Scenarios

Design and Run Experiments 

Dependencies

New Requirements

Goal 
Satisfied

?
End

Yes

No

Define Selection 
Criteria

Select New 
Requirements

Revise Scenarios 
Design 

Stage 1: Bootstrapping
Stage 3: Quality Analysis

Stage 4: Verification

Stage 2: Data Collection



correspond to constraints on the system. The manipulation of 
variables and their values allows the analyst to generate different 
instantiations of the template, called vignettes, which will 
increase the number of scenarios that can be evaluated at one 
time. The $WebAuth variable represents the type of 
authentication used in the web application and it can take one of 
many values. To illustrate, we consider two extremely different 
values: “basic authentication,” which is a weak form of web-
based authentication, or “form-based authentication using 
encrypted credentials stored in a database,” which is stronger.  
Similarly, the $StoredUserData variable represents how the 
user input is being collected, and could take the values: “collect 
user-supplied content from GET request,” or “require CSRF 
tokens and escape and validate user-supplied content from 
POST requests before storing;” and again, the latter value is 
stronger than the former. 

Fig. 2. Example Scenario Template from the Web Applications Domain 

 Study participants are asked to rate the adequacy of the 
overall security of the scenario on a 5-point scale where point 1 
is labeled “inadequate”, point 3 is labeled “adequate” and point 
5 is labeled “excessive.” This generates the $Overall dependent 
variable. Similarly, we ask users to provide ratings for the 
individual security requirements in the scenario, which 
generates a dependent variable for each rated requirement. For 
example, the web applications study has the $WebAuthRating, 
and the $StoredUserDataRating, which are the dependent 
variables representing experts’ ratings of the $WebAuth, and 
$StoredUserData, respectively.  

After creating the initial ad-hoc scenario, the analyst decides 
the number of factors and factor levels in the scenario:  
• Factors per domain: a domain could have its own subset of 

factors, with the possibility of having factors that are shared 
among different domains. The factors often correspond to 
categories of system constraint e.g., passwords, authentication 
type, etc.. In addition, factors may, but do not necessarily have 
to, cross multiple domains, e.g., passwords affect databases, 
networks, and systems.  

• Levels per factor: how many levels will be manipulated. The 
levels, which correspond to technically specific 
interpretations of the factor, can be chosen as high or low 
levels. The goal is to choose levels that experts can distinguish 
to measure an effect or interaction among different levels. For 
example, if password complexity has high and low levels, we 
can measure whether password complexity affects overall 
security adequacy in conjunction with other security 
constraints.  

Deciding on the number of factors depends on the quality of 
interest, the cost of running the surveys, and the estimated 
number of experts available to rate the scenarios against the 
quality of interest. An analyst would need to conduct a priori 
statistical power analysis to decide on the right number of 

factor/level combinations. Initial pilot studies and focus groups 
can also help with the design decisions in the bootstrapping 
phase as it would help eliminate unrealistic factor and level 
combinations [10].  

We are not limited to one template, in addition to the web 
application template shown in Fig. 2, we describe in Section IV 
how to generate more templates and integrate factors and levels 
for three more  security domains.  

Domain experts may suggest additional unforeseen 
requirements that would improve the measurements. An analyst 
could elicit new expert requirements from experts to improve 
the measurements. For example, security experts could provide 
more mitigation that would increase the adequacy ratings, so, we 
ask experts to list additional mitigations that they believe will 
increase security. 
B. Stage 2: Data Collection  

Once the scenarios are ready, the analyst finalizes the design 
of the overall experiment. This includes deciding which factors 
are between-subject or within-subject factors. The analyst in this 
stage decides on how to operationalize the survey: recruitment 
methods (e.g. in person, online, mailing lists), tools to be used, 
and whether expertise screening questions are needed (e.g. 
knowledge tests, demographics). Finally, the analyst deploys the 
survey and starts data collection.  
C. Stage 3: Quality Analysis 

In this stage, the analyst uses regression analysis to discover 
the weights of the factor levels (e.g., $WebAuth and the 
$StoredUserData) and to discover any interactions among the 
variables. The priorities of requirements are decided based on 
the weight of the coefficient. The type of regression (e.g. linear, 
multi-level) depends on the study design (within-subject vs. 
between-subject effect). Linear regression is used when there is 
no within-subjects effect in the data, while multi-level modeling 
is used if there is at least one within-subject factor. Next, the 
analyst classifies the experts new requirements into broader 
categories and links these to the factors/levels in the scenario.  

The collected new expert requirements mitigations are 
expressed in natural language. The problem with natural 
language statements is that different experts could describe the 
same requirement using different words and phrases. As a first 
step, requirements are coded using short phrases (concept 
labels), an open coding grounded analysis approach [10, 29]. 
Then, the analyst categorizes the requirements using a more 
abstract security concept. For example, mitigations coded as 
password salt and stronger password, are grouped under 
passwords; and input sanitization and input validation are 
categorized under SQL injection mitigations.  

After first-cycle coding and categorization, a second-cycle 
coding is conducted [29], where requirements are linked to the 
factor levels that they appear in, which would help to filter the 
requirements that we anticipated to appear vs. new unanticipated 
requirements. For example, in the network study, there are 
scenarios with insecure Dematerialized Zone (DMZ) 
configuration and a more secure split-DMZ configuration. 
Mitigations that suggest better network segmentation are linked 
to the level of the DMZ level shown in scenarios where the 
mitigation was elicited. If associated with the weaker DMZ, then 

You are a website administrator responsible for 
securing a web app against cyberattacks. Currently, 
you are evaluating the following settings: 

- The web app performs $WebAuth. 
- The web app will $StoredUserData in a database for 

display to other users. 

The Cross-Site Request Forgery attack is a serious 
security concern. Please answer the following 
questions with regards to mitigating this threat. 

 



this makes the mitigation anticipated, but if associated with the 
stronger DMZ, then that means there are further segmentation 
configurations for the network and DMZ that was not 
anticipated in the scenario.   

In addition, each requirement is assigned one of the 
following codes: refinement, if the requirement refines the 
dimension by extending its functionality; a reinforcement, if the 
requirement adds auxiliary quality not directly related to the 
dimension; and a replacement, if the requirement replaces the 
dimension.  

Upon completion of analysis, the analyst decides to either 
stop and be satisfied with the data collected, or continue to the 
next stage: verification. Verification is an expensive step that the 
analyst could pursue if the results show rich data that needs 
further verification, and stop once they reach saturation. By 
saturation, we mean no new requirements are being collected 
and the analyst continues to see the same statistical results (e.g. 
same effect, same dependencies among the variables).  
D. Stage 4: Verification 

Based on the output of stage three, the analyst defines a 
selection criteria and heuristics that will guide the requirements 
selection process. For example, to ensure monotonically 
increasing quality, an analyst may only select requirements that 
would increase the quality of interest in the next scenarios.  

In our series of security experiments, our goal is to increase 
security adequacy. Hence we define the following criteria:   
• For each domain, select two categories from second cycle 

coding with the highest number of requirements within the 
category.   

• For each category, select the requirements with highest 
frequency that appear even in vignettes where the level of the 
requirement is strong.  
In the verification stage, the requirements evaluated in the 

bootstrapping stage are assigned a fixed level, which is the 
strong security level. By fixing these levels, the effect of 
unanticipated requirements becomes the focus of measurement.   

Then, the analyst will repeat steps from stages two and three 
to verify whether the new set of requirements affects the quality 
measurements as intended. To exit the iterative process of the 
MQM, the analyst establishes an end goal to be achieved. 

IV. EXPERIMENTAL EVALUATION OF THE METHOD   
In this section, we explain the research approach that we use 

to evaluate the MQM on security-specific domains.   
A. Stage I: Bootstrapping  

For this stage, we select the initial security vignette that is 
needed to design and run a user study to collect from security 
ratings of security requirements from experts.  
 We selected four different security domains and we ran four 
user studies one for each domain. Figure 3 shows the text 
template used for all four studies. The values for the variables 
shown Fig. 3 are changed depending on the user study domain. 
Table I lists the variables used for security requirements in the 
four domains and their levels. For example, the $Domain is 
replaced with either network, systems, database, or web 
applications. The factors ($Factor1, $Factor2) are replaced 
with different sets of security requirements factors for each 

domain (factor column in Table 1). Within a domain, the factors 
are manipulated with different values (levels) to generate the 
values for the user study corresponding to that domain.  

Fig. 3. Text template for the four security domains 

B. Stage II: Data Collection  
Each vignette has a different combination of variable levels 

which generated 12 unique vignettes (study conditions) for each 
of the network (2x3x2), systems(2x2x3), and databases studies 
(2 x3x2), and 8 vignettes for the web applications study(2x4). 
We decide to choose one factor in each study to have a within-
subjects effect. This approach increases power at smaller sample 
size (security experts are scarce [12]). A participant will evaluate 
4 vignettes: two domains with two vignettes in each domain. 
Within a domain, the two vignettes will vary by the within-
subjects 2-level factor. The variables shown in bold in Table I 
are within-subject variables: each participant has seen all the 
levels of that variable; the remaining variables are between-
subject variables where each participant was exposed to one 
level only of that variable. This results in a mixed-effect design. 

Upon completion of the security ratings, participants are 
asked to take a security knowledge test (14 questions); and 
answer demographics questions (e.g. gender, age, experience, 
etc. see Section V). It is recommended to place background and 
demographics questions at the end of surveys to avoid potential 
bias and to increase participants’ response rate [27].  

We targeted security experts who attended the SANSFIRE 
2016 conference at Washington, DC.  The SANS is a security 
research and education company that offers security training and 
certification to government and industry security analysts [31].  
We compensated each participant with a $25 Amazon gift card. 
C. Stage III: Analysis  

We will explain below the method of analysis for the 
quantitative and the qualitative data collected in stage 2.  

1) Analysis for Dependencies  
We analyze the quantitative data using multilevel modeling. 

Multilevel regression models can better handle the mixed effect 
in the study design (between-subject and within-subject effects) 
[6].  Each dependent variable generated from user ratings (see 
Section IV.A) is analyzed using multi-level regression.  

For the security knowledge test, we use a $Score variable, 
which is an independent exploratory variable assigned an integer 
value equal to the percentage of correctly answered security 
questions. 
We use: R [26] with the lme4 [1] and SJPlot [19] statistical 
packages, and the G*Power tool [3] for the power analysis. 

A popular online retailer offers a wide variety 
of products for purchase.  User information in the 
company’s databases includes consumers' credit card 
information for purchasing products in the future. 
You are a $Domain administrator for the retailer 
who is responsible for securing the $Domain 
against cyberattacks. Currently, you are 
evaluating the following settings: 
- $Factor1  
- $Factor2 … 
The $Threat attack is a serious security concern. 
Please answer the following questions with regards 
to mitigating this threat. 

 



TABLE I.  USER STUDY SECURITY DOMAINS AND THEIR CORRESPONDING REQUIREMENT VARIABLES  

Domain Threat Factor  Level Code Level description 

N
et

w
or

k 

M
an

-in
-th

e-
m

id
dl
e
 

$NetworkAccess onsite Onsite access using Ethernet 
 offsite Offsite external access through a secure VPN 
$NetworkAuth simp6 A standard 6-digit password 

comp16 16-char password that must include an uppercase letter, lowercase letter, a symbol, and 
a number 

multi8 An 8-character alphanumerical password and a one-time password sent to a mobile 
phone 

$DMZ allnosplit DMZ contains the webserver, app server and the database server.  
split DMZ contains the front-end webserver and the app server. The DB server is behind the 

firewall on the internal network. The app server communicates with the DB over a VPN.   

Sy
st

em
s 

m
al

w
ar

e 

$SocialMedia permit Workstations permit access to social media sites 
prohibit Workstations prohibit access to social media sites 

$AdminPriviledges   noauth Prior to installing new software, employees who are local system administrators, are not 
required to re-authenticate 

auth Prior to installing new software, employees are required to re-authenticate 
$VirusScanner files Workstations has programs to scan files against known malware signatures 

filesmem Workstations has programs to scan memory and files against known malware signatures 
filesmempro Workstations has programs to scan memory, files and processes against known malware 

signatures 

D
at

ab
as

e 

Pr
iv

ila
ge

 e
sc

al
at

io
n 

$DBAccess  extserver User accounts and access control are handled by SQL table authentication 
 sqlauth User accounts and access control are handled by Windows Active Directory 
$DBMonitor available Database activities are logged 
 needed Database activities are logged, and inspected as needed (e.g., to examine a certain 

incident) 
 month Database activities are logged, and inspected each month by a trained auditor 
$Error User Errors are handled by notifying users who can then report the error message, as needed 
 nouser Errors are handled by logging the error message with no external notification to users 

W
eb

 
ap

pl
ic

at
io

ns
 

C
ro

ss
-s

ite
-r

eq
ue

st
 

fo
rg

er
y 

$WebAuth basic Basic authentication  
 form Form-based authentication using encrypted credentials stored in a database 
$StoredUserData get store user-supplied content from GET requests 
 post store user-supplied content from POST requests 
 cpost require CSRF tokens for user-supplied content from POST requests before storing 
 cescpost require CSRF tokens, escape and validate user-supplied content from POST requests 

before storing 

TABLE II.  USER STUDY SECURITY DOMAINS AND THEIR CORRESPONDING ADDED REQUIREMENT VARIABLES 

Domain Threat Factor  Level Code Level description 

N
et

w
or

k 

M
an

-in
-

th
e-

m
id

dl
e
 

$MFA enabled There is a one-time password sent to a mobile phone 

 disabled There is no further tokens or one-time passwords sent to mobile-phones 
$DBSegment empseg The DB Server is placed on a special admin segment separate from the employee network 

sepseg The DB Server is placed on the same segment with the employee network 

Sy
st

em
 

m
al

w
ar

e 

$SWInstallation notest Admins are specific IT professionals who can install any new SW with no further testing 
test New software must be tested and approved prior to installation  

$MalwareTools   enabled Heuristic-based and behavioral-based malware-detection tools are enabled 
disabled Heuristic-based and behavioral-based malware-detection tools are disabled 

D
at

ab
as

e 

Pr
iv

ila
ge

 
es

ca
la

tio
n 

$SIEM   siem A trained IT auditor inspects logs with a specialized SIEM (Security information and event 
management) tool that the company installed for log analysis and management. 

 nosiem A trained IT auditor inspects logs without the assistant of costly SIEM tool 
$Notification enabled Admins are automatically notified when errors occur 
 disabled No notification sent to admins 

W
eb

 
A

pp
s 

C
ro

ss
-s

ite
-

re
qu

es
t 

fo
rg

er
y 

$InputValidation client on the client-side 
 server on the client-side, followed by input sanitization on the server-side 
$SOP verify In addition to the CSRF token, HTTP standard headers are examined for same origin 
 noverify The CSRF tokens are robust. No need to verify Same Origin on the server side 



D.  Stage IV: Verification  
Based on the selection criteria defined in Section III, we 

select two new requirements from the reinforcement category 
for each security domain. The new generated scenarios will keep 
the bootstrapping requirements, and include new variables for 
the new reinforcement requirements. Since the goal is to 
increase security ratings, we fix the levels for the bootstrapping 
requirements at the strongest level. For the new requirements, 
we use a weak and a stronger level to test their effect in 
improving security ratings. Hence, each new study domain had 
a 2x2 factorial design (2 new variables with 2 new levels each). 
Table II lists all the added requirements and their levels. After 
deciding on the new requirements and the redesign on the new 
vignettes, we ran the user experiments using the same protocol 
from the bootstrapping stage, but with the following changes:   
• Recruitment: we re-invited security analysts that we 

previously recruited for the bootstrapping stage and for other 
security-related studies by using the emails they provided to 
opt-in for future studies. We sent each participant a unique 
one-time code to be used to access the online survey.  

• Experiment set-up: we set up the user experiment such that 
each participant sees one vignette from each domain, so the 
experiment has a between-subject design (no-mixed effects).   

• Statistical analysis: since the new design is between-subject 
with no mixed-effect, we use linear regression for analysis 

V. RESULTS   
 We report our sample demographics, and statistical results 

from the bootstrapping and verification stages. 
A. Descriptive Statistics from the Bootstrapping Stage  

The bootstrapping stage aims to collect ratings and new 
requirements for an ad hoc vignette. In this stage, we recruited 
69 security participants. Table III summarizes our sample 
demographics, and the participants’ performance on the security 
knowledge test. Participants have an average of 10 years of 
experience. The number of responses for each domain is: 39, 30, 
49, and 21 for networking, operating systems, databases, and 
web applications, respectively (each participant was randomly 
assigned to two vignettes from two domains, see Section IV). 
B. Dependency Analysis from the Bootstrapping Stage  

The $OverallRating represents the experts’ security rating 
of the scenario based on the composition of the requirements. 
We show an example of the regression equation for the web 
applications domain. Equation 1 is our additive regression 
model with a random intercept (ϵ) grouped by participant ID.  

$OverallRatingwebapp = α + βw$WebAuth+ 
βs$StoredUserData + ϵ (1) 

The additive model is a formula that defines the 
$OverallRating in terms of the intercept (α) and a series of 
components. Each component is multiplied by a coefficient (β) 
that represents the weight of that variable in the formula. The 
formula in Eq. 1 is simplified as it excludes the dummy (0/1) 
variable coding for the reader’s convenience. We use the same 
formula for each domain, but we replace the independent 
variables corresponding to the factors in that domain. We follow 

                                                             
1  Full dataset and regression results are available online: 

http://gaius.isri.cmu.edu/dataset/mqm17/  

a similar model for the individual requirements ratings. For 
example, Equation 2 below is the additive regression model for 
$WebAuthRatings variable.  

 $WebAuthRatingwebapp = α + βw$WebAuth+ 
βs$StoredUserData + ϵ (2) 

TABLE III.  BOOTSTRAPPING STUDY: DEMOGRAPHICS  

Description Participants 
Number Percentage 

Gender* Male 59 86% 
 Female 7 10% 
Years of 
Experience* 
(Mean=10) 

Less than 2 9 13% 
2 – 5 years 15 22 % 
6 – 10 years 15 22 % 
11 – 15 years 9 13% 
16 – 20 years 13 19% 
more than 20 years 5 7% 

Job Sector* Industry: non-research 24 35% 
Government: non-research 22 32% 
Industry: research 5 7% 
Academia 5 7% 
other 9 13% 

Took academic classes in security 39 57% 
Took job training in security 54 78% 
Self-taught security knowledge  54 78% 
Job roles Security analyst 46 67% 
 Other – IT security related 6 9% 
 Other – IT related 13 19% 
 Other – Non IT 4 6% 
Highest 
Degree 
Completed 

Bachelor's degree 31 45% 
Masters graduate degree 17 25% 
High school or equivalent 8 12% 
Some college, no degree 7 10% 
Associate degree 5 7% 
PhD degree 1 <1% 

Security 
Knowledge 
Score  

Scored above 60% 18 26% 
Scored between 40% and 60% 40 58% 
Scored below 40% 11 16% 

*A few participants did not answer this question 
We report the significant results of our bootstrapping stage 

data in Table IV1. We use the variable and level codes shown in 
Table I. For each security domain, we establish a baseline level 
for factors in that domain. The intercept (α) is the value of the 
dependent variable when the independent variables are at their 
baseline values. The baseline levels for each domain are shown 
in Table IV. Table IV also shows the coefficient estimates 
(Coeff. Est.), which show by how much the security requirement 
level increased or decreased the mean rating of adequacy. 

For the networking domain study, we found a significant 
contribution of the three network factors ($NetworkAccess, 
$NetworkAuth, and $DMZ) for predicting the 
$OverllRatingNetwork (χ2 (7) =11.3, p=0.022), over the null 
model (without the factors). Table IV shows a significant effect 
from multifactor authentication for the network authentication 
requirement (coded multi8, see Table I), increasing the ratings 
over the intercept (1.83) by approximately one point (0.96) on 
the adequacy scale (almost adequate). Among all networking 



scenario requirements, only $NetworkAuthRating shows a 
significant effect (χ2 (4) =18.3, p=0.001) (see Table IV). 
TABLE IV.  SIGNIFICANT MULTILEVEL REGRESSION RESULTS FOR 

THE BOOSTRAPPING DATA 
Dependent 
Variable (DV) 

Independent Variable (IV) - 
level 

Coeff. 
Est. 

Std. 
Error 

Networking             IVs: $NetworkAccess+$NetworkAuth+$DMZ 
baseline offsite+ comp16 + allnosplit   

OverallRating Intercept (baseline) 1.83*** 0.28 
NetworkAuth -  (multi8) 0.96** 0.34 

Network 
Auth-Rating 

Intercept (baseline) 2.28*** 0.30 
NetworkAuth -  (multi8) 0.75* 0.36 
NetworkAuth -  (stand6) -0.72* 0.36 

Operating Systems   IVs: $SocialMedia+$AdminPriviliges+$VirusScan 
baseline permit+ auth + files   

OverallRating Intercept (baseline) 2.2*** 0.39 
AdminPrivileges- noauth -0.95* 0.37 

SocialMedia 
Rating 

Intercept (baseline) 2.06*** 0.40 
SocialMedia- prohibit 1.13*** 0.19 

AdminPriviliges
-Rating 

Intercept (baseline) 2.31*** 0.43 
AdminPrivileges- noauth -1.33*** 0.41 

VirusScan-
Rating 

Intercept (baseline) 2.61*** 0.35 
VirusScan - filesmemoryprocesses 0.89* 0.37 

Database               IVs: $DBAccess+$DBMonitor+$Error 
baseline extserver + available + nouser   

OverallRating Intercept (baseline) 2.89* 0.33 
interaction terms Error - user -1.35** 0.45 
 DBAccess - sqlauth  

* DBMonitor - month  
-0.60** 0.29 

 DBAccess - sqlauth 
* DBMonitor - needed  

-0.57* 0.28 

 DBMonitor - month * Error - user 1.33** 0.60 
ErrorRating Intercept (baseline) 2.8*** 0.28 
 Erroruser -0.98*** 0.27 

Web Applications    IVs: $WebAuth+$StoredUserData 
baseline basic + cescpost   

OverallRating Intercept (baseline) 2.36*** 0.21 
 StoredUserData - get -0.73*** 0.25 
 StoredUserData - post -1.32*** 0.29 
 StoredUserData - cpost -0.70*** 0.29 
WebAuthRating Intercept (baseline) 2.04*** 0.26 
 WebAuthform 0.76*** 0.21 

(*p≤.05 **p≤.01 ***p≤.001) In the database domain, we see an 
effect for the interaction terms of the regression model for the 
overall security rating (χ2 (9) =20.7, p=0.01). Reporting errors 
to users (Error – user) decreased the security rating by more 
than a point, but when the reporting errors to users are combined 
with a more frequent logging mechanism (DBMonitor - month) 
the rating increases over the baseline.    
C. New Requirements from the Bootstrapping Stage  

After text cleanup and preparation, participants provided a 
total 550 mitigations that we classified into 55 categories and 
187 sub-categories. Table V shows the top five categories for 
each domain based on number of occurrences (Freq.). The table 
shows how some categories appear in multiple domains (e.g. 
accounts/access control), while other categories were unique to 
a security domain (e.g. SQL injection mitigations). 
D. Descriptive Statistics from the Verification Stage 

The verification stage aims to evaluate to what extent the 
new requirements increase security. We sent 100 email 
invitations, and received 45 expert responses (45% response 

rate). Survey Gizmo, a large online surveying platform reports 
that internal employee surveys receive a 30-40% response rate 
on average and external surveys receive an average of 10-15% 
[4]. Compared to the bootstrapping stage, respondents to the 
verification stage scored higher on the security knowledge test 
(MeanBootsrapping = 52%, MeanVerification = 60%). 

TABLE V.  TOP FIVE MITIGATIONS CATEGORIES  
Networking Operating Systems 

Category Freq. Category Freq. 
Passwords 29 Accounts/Access Control 59 
Segmentation 20 Software Installation 21 
Authentication 17 Social Media 17 
Firewalls 6 Malware Detection 13 
Certificates 6 White/Blacklisting 12 

Databases Web Applications 
Category Freq. Category Freq. 
Logs 74 Authentication 14 
Accounts/Access Control 68 SQL Injection Mitigations 9 
Error Handling 31 Web App Protections 9 
Monitoring 10 Accounts/Access Control 4 
Authentication 8 Testing 4 

TABLE VI.  VERIFICATION STUDY: DEMOGRAPHICS 

Description Participants 
Number Percentage 

Gender* Male 43 96% 
Female 1 2% 

Years of 
Experience* 
(Mean=9) 

Less than 2 1 2% 
2 – 5 years 14 31 % 
6 – 10 years 16 36 % 
11 – 15 years 8 18% 
16 – 20 years 4 9% 
more than 20 years 2 4% 

Job Sector* Industry: non-research 14 31% 
Government: non-research 12 27% 
Industry: research 2 4% 
Government: research 6 13% 
Academia 3 7% 
other 7 16% 

Took academic classes in security 34 76% 
Took job training in security 40 89% 
Self-taught security knowledge  37 82% 
Job roles Security analyst 30 67% 
 Other – IT security related 4 9% 
 Other – IT related 4 9% 
 Other – Non IT 4 9% 
Highest 
Degree 
Completed 

Bachelor's degree 12 27% 
Masters graduate degree 24 53% 
High school or equivalent 2 4% 
Some college, no degree 4 9% 
Associate degree 1 2% 
PhD degree 1 2% 

Security 
Knowledge 
Score  

Scored above 60% 20 44% 
Scored between 40% and 60% 21 47% 
Scored below 40% 4 9% 

*A few participants did not answer this question 
E. Statistical Analysis from the Verification Stage 

We now review the linear regression results from the 
verification stage, before comparing the security ratings 
obtained from bootstrapping and verification.   

1) Regression Analysis of Verification Study Data  



Recall from Section III, the MQM uses linear regression to 
analyze the results of the vignette surveys responses. The 
independent variables in the regression formula are the 
requirements variables shown in Table II to verify the effect of 
the new requirements on the security ratings. We now report the 
regression results for each security domain.  

a) Networking: the regression model shows that different 
levels of the new requirements variables $MFA, and 
$DBSegment do not significantly predict the $Overall 
security rating, because the regression model of $Overall 
ratings as a function of the $MFA, and $DBSegment did not 
show any significance over the intercept-only model (F(2,39) = 
1.595, p=0.2). Hence, the $Overall mean, which is the 
intercept-only model is a better predictor of the overall security 
ratings for the networking study. The result is similar for the 
regression models constructed for the $NetworkAccessRating, 
$NetworkAuthRating, $DMZRating with: (F(2,42)=1.2, p=0.3), 
(F(2,42)=0.04, p=0.9) and (F(2,42)=0.5, p=0.6), respectively. 
The $MFA variable that represent multifactor authentication is 
shown to be a good predictor of the experts $MFARating 
(F(2,42)=5.3, p<0.01). Scenarios that include multifactor 
authentication show an increase of 0.85±0.27 (standard error) 
on the $MFARating scale (p<0.001).  Similarly, scenarios where 
the database is in a separate segment ($DBSegment) shows a 
significant increase (p<0.001) in the $DBSegemtnRating by 
1.4±0.30 (F(2,41)=11.4, p<0.001). Operating System: The 
regression for $Overall ratings as a function of 
$SWInstallation, and $MalwareTools show significance 
(F(2,41)=4.57, p=0.02) over the intercept-only model. When 
inspecting the coefficients, only the intercept and 
$MalwareTools show significant effects. Enabling heuristic-
based and behavioral-based malware-detection tools show a 
significant increase (p=0.02) in the $Overall ratings by 
0.53±0.22 and also show a significant increase (p<0.001) in the 
$MalwareRating by 1.68±0.16; thus, $MalwareTools is a good 
predictor of the $MalwareRating (F(2,42)=61.26, p<0.001). 
$SWInstallation is found to be good predictor of the 
$SWInstallationRating (F(2,42)=35.25, p<0.001).   
Scenarios that include testing new software prior to installation 
($SWInstallation) show a significant increase of 1.5±0.18 of 
the $SWInstallationRating. We found no significant effect 
for the regression models constructed for the 
$SocialMediaRating, $AdminPriviligesRating, 
$VirusScanRating with: (F(2,42)=1.33, p=0.3),  
(F(2,42)=1.63, p=0.2) and (F(2,42)=1.45, p=0.2), respectively. 
We also found no significant effect for the interaction terms.   

b) Databases: The regression model of $Overall ratings 
as a function of $SIEM, and $Notification show no 
significance (F(2,38)=1.06, p=0.35) over the intercept-only 
model. Except for $DBMonitorRating and 
$NotificationRating, no significant effects are found for the 
requirements ratings in the database scenarios. Database 
scenarios that include using a specialized SIEM (security 
information and event management) tool, show a significant 
(p=0.009) increase of 0.54 ±0.20 on the $DBMonitorRating. 
The $SIEM shows significance in predicting the 

$DBMonitorRating (F(2,42)=3.8, p=0.03).  Similarly, 
$Notification is a good predictor of the 
$NotificationRating (F(2,42)=24.29, p<0.001). Scenarios 
that include notifying admins about errors show a significant 
(p<0.001) increase of 1.48±0.22 on the $DBMonitorRating. 

c) Web Applications: Except for the regression model 
constructed for $SOPRating, which rates the same origin policy, 
no significant effects are found for the $Overall rating nor for 
all other requirements in this scenario. For the $SOPRating, it 
was not the $SOP variable that significantly affected this rating, 
but the $InputValidation. Scenarios that include validating 
the client’s input on the server-side, show a significant 
(p=0.007) increase of 0.9±0.32 on the $SOPRating. The 
$InputValidation show significance in predicting the 
$SOPRating (F(2,39)=4.03, p=0.03).   

The major takeaway is that the intercept-only model is 
sufficient to explain the outcome dependent variable. The 
significance of the intercept-only model means that we can rely 
on using the means of the dependent variables to explain the 
observations in the data. For the security analyst, this means that 
varying levels of new factors did not show significance, but we 
cannot remove the factors from the model. We will explain this 
further as we show the mean values in the next section.  

2) Comparing the Security Ratings  
In Table VII, the mean ratings in the verification stage are 

higher than the bootstrapping stage, except for the overall rating 
for database, which has a slightly lower average than the 
bootstrapping stage. Table VII also shows that some variables 
increased more than others, for example, the $OverallRating 
for Networking only increased by 0.20, while the 
$NetworkAuthRating increased 4.5 times by 0.90. Despite the 
ratings increase, the values in Table VII also indicates that all 
averages are close to adequate (3.0 on the 5-point scale). The 
standard deviation of all the ratings £1. 

TABLE VII.   COMPARISON OF EXPERTS’ SECURITY RATINGS 

Rating Variable Name Bootstrapping Stage Verification Stage 
Mean Rating Mean Rating 

Networking    
OverallRating 2.37 2.57 

NetworkAccessRating 2.70 3.09 
NetworkAuthRating 2.32 3.22 

DMZRating 2.53 2.82 
Operating Systems   

OverallRating 2.10 2.70 
SocialMediaRating 2.60 3.13 

AdminPriviligesRating 1.74 3.07 
VirusScanRating 2.73 2.80 

Databases   
OverallRating 2.51 2.34 

DBAccessRating 2.62 2.71 
DBMonitorRating 2.56 3.00 

ErrorRating 2.25 2.60 
Web applications   

OverallRating 1.80 2.62 
WebAuthRating 2.05 2.69 

StoredUserDataRating 1.86 3.07 

VI. THREATS TO VALIDITY 
External validity concerns how well results generalize to the 

population [30]. Our target population is security experts and we 
recruit security professionals who attend security conferences. 



To assess security expertise, we measured years of experience 
(mean=10.0 years) and we conducted a security knowledge test 
that included technical questions about how to configure file 
permissions, network firewalls, etc. 

Internal validity is the degree to which a causal relationship 
can be inferred between the independent and dependent 
variables [30]. We randomize the assignment of participants to 
conditions, and we randomize the presentation order of 
scenarios. Based on our pilot results, we limited the number of 
vignettes shown to four vignettes per participant to reduce 
fatigue. We ran the verification study seven months after the 
bootstrapping stage to reduce learning effects. 

Construct validity is the degree to which a measurement 
corresponds to the construct of interest [30]. In each scenario, 
we present one-sentence definitions for the security level terms 
inadequate, adequate, and excessive, to encourage participants 
to interpret the label levels, similarly. The label name choice was 
evaluated in separate prior studies by Hibshi and Breaux [9, 12].  

Increasing power in user experiments reduces Type II errors 
(false negatives). We increase our power in the bootstrapping 
stage by using repeated measures within-subject effect, and 
analyzing the data with multi-level modeling, which assigns a 
random intercept for each subject and hence, limits the biased 
covariance estimates [6]. For a power of 80% or above, we 
estimate a sample size of 30 participants for the networking, 
operating systems, and database scenarios and 24 participants 
for the web applications scenario. We achieved higher sample 
sizes than these minimum estimates. For the verification phase, 
we estimate 30 participants per domain to achieve at least 80% 
power, and our actual sample size is 45 participants per domain.  

VII. DISCUSSION AND FUTURE WORK  
In this paper, we introduce the MQM method that provides 

means to empirically elicit and score security requirements from 
security experts. We now discuss our findings and their impact 
on the field of security requirements engineering. 
 Our results show that the mean overall security ratings 
increased in the verification stage over the bootstrapping stage. 
This means that experts view the refined scenarios in the 
verification stage to have higher security adequacy than the 
original scenarios used in the bootstrapping stage. The results in 
Table VII also indicate that the average ratings are 
approximately 3 ±1 (STD) (adequate=3, see Section III). One 
possible explanation could be that security experts are more 
conservative when rating security and cannot envision excessive 
security. Hibshi et al. found that security experts do prefer more 
conservative security ratings [12].  

The regression analysis of the verification stage also shows 
that the new requirements matters to the analysis, but the 
individual levels do not vary significantly. While in the 
verification stage experts report a ratings increase over the 
bootstrapping stage, the increase cannot be attributed to the new 
requirements levels. This finding yields two key insights: 
security saturation, wherein it is sufficient to accept new, 
elicited requirements and a verification stage may not be 
necessary; and label bias, in which the excessive label is 
unreachable and thus reduces the ability to measure significant 
differences.  We now further discuss these two insights.  

Reaching saturation is an important point in empirical 
research, where analysts receive little new information and thus 
they can stop iterating through a process. Saturation is also 

important in practice, because security analysts would prefer a 
wish-list of all possible security mitigations, but it is the 
financial cost that forces analysts to revise and only choose what 
is necessary. Our results from the verification stage indicate that 
increasing the requirements from the bootstrapping stage to a 
stronger level is what is necessary to reach security adequacy. 
When we increased the requirements to a stronger level, the 
overall security increased to a point that the two new added 
requirements with their levels did not necessarily standout in the 
regression model. This is an effect caused by the combination of  
strong security requirements in the scenarios tested.   

In the bootstrapping stage, we paid $1,725 in gift cards 
($6.25 per scenario) to collect evaluations of 44 scenarios from 
69 experts, in addition to a $600 overhead which is the cost to 
send the researcher to Washington D.C. We chose the gift card 
value based on a $50-hourly rate, which is the average rate for 
experts shown in our expert-salary data. We find this cost-
effective, since we can collect data in one day by flying to one 
conference venue and with little effort to convince experts to 
participate. The data analysis took one month, and the surveys 
for the verification stage were completed in two weeks ($1,425 
in gift cards). In contrast, our prior research [11], consisted of 11 
expert interviews over a 6-month period, wherein the analysis of 
the interview transcripts required another 6 months. For an 
organization to hire security experts to evaluate scenarios or to 
perform risk-based security analysis, the cost will be more than 
paying the average hourly rate, due to the added overhead of 
experts’ recruitment and accommodations.  

For future research, we may consider combining new 
requirements and bootstrapping requirements to examine 
dependencies and investigate combinations with replacement. 
For example, a scenario that replaces a bootstrapping 
requirement passwords with one-time passwords. In addition to 
replacements, contrasting weak and strong requirements could 
add more insights about requirements tradeoffs. Recall from 
Section V.B, reporting errors to users (Error – user) decreased 
the overall ratings of the database scenario, but the overall 
ratings improve when the database scenario changes to include 
a stronger level of monitoring and log inspection. We did not 
examine such combinations, which may highlight priorities and 
weights among requirements. For practitioners, such 
combinations could lead to important questions: e.g., are our 
data assets worth investing in a costly logging analysis tool, or 
is it adequate to fix the error reporting mechanism to users? 

The security ratings that do not rise above adequate raise a 
question about the adequacy scale. The adequacy scale was 
evaluated in a prior study to select the appropriate language 
labels that explain adequacy [9, 12]. The evaluation examined 
synonyms for inadequate, adequate and excessive in four 
scenarios where adequacy perception is skewed by the object 
being evaluated [9, 12]. Haley et al. proposed a framework to 
“determine adequate security requirements for a system” [8]. 
What has not been discovered, yet, is whether security experts 
view any security requirements as excessive, or whether the 
nature of security unknowns inhibits experts from reaching this 
conclusion. 

The MQM employs vignette surveys to link requirements as 
factors to a system quality, and to elicit expert judgements about 
quality levels achieved by those requirements. This is different 
from prior work in scenario-based requirements elicitation that 



employs interviews [14, 25, 32]. Although interviews provide 
detailed scenario descriptions, our approach allows analysts to 
attribute a quality level to specific requirements and their 
interactions. The MQM does not measure coverage, but it does 
increase coverage as the analyst explores more scenarios and 
collects new requirements to increase quality. In this paper, we 
evaluate the MQM as applied to security scenarios. 

The inquiry cycle model uses scenarios while interviewing 
stakeholders [25], and the operational scenarios used by van 
Lamsweerde and Willemet are derived from interview excerpts 
and requirements documentation [15]. In MQM, we choose to 
use online surveys on security experts and generate scenarios 
using the factorial vignettes approach. By using factorial 
vignettes, we can define requirements of interest as factors, give 
each factor multiple descriptions which we call levels of the 
factor, and generate different combinations of levels that results 
in many different vignettes. The MQM offers increased 
coverage of scenarios as it allows the manipulation of 
descriptions, and the measurement effects of certain 
requirements on the outcome as well as the dependencies 
between the requirements. In addition, surveys make it more 
convenient to recruit more stakeholders, which increases the 
number of viewpoints of the scenario, and multiple viewpoints 
improve inter-personal uncertainty; which means, one expert 
might point out something that other experts missed while other 
experts find something different. This uncertainty among 
experts, which impacts security assessments [10, 11, 12], is due 
to differences in background or human memory limitations [11]. 

ACKNOWLEDGMENT  
We thank our study participants and the SANS organizers. 

This research was supported by NSA Award #141333, and ONR 
Awards:  #N00244-16-1-0006 and #NOO244-17-0012. 

REFERENCES 
[1] D. Bates, M. Maechler, B. Bolker, S. Walker, R. H. B. 

Christensen, H. Singmann, and B. Dai, lme4: Linear mixed-
effects models using Eigen and S4. 2014.  

[2] J. McDermott and C. Fox, “Using abuse case models for security 
requirements analysis,” Comp. Security App.  Conf., 1999. 

[3] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G* Power 3: 
A flexible statistical power analysis program for the social, 
behavioral, and biomedical sciences,” Behav. Res. Methods, vol. 
39, no. 2, pp. 175–191, 2007. 

[4] A. Fryrear, “What’s a Good Survey Response Rate?,” 
SurveyGizmo, 27-Jul-2015. [Online]. Available: 
https://www.surveygizmo.com/survey-blog/survey-response-
rates/. [Accessed: 16-Feb-2017]. 

[5] S. Garfinkel, “Design principles and patterns for computer 
systems that are simultaneously secure and usable,” 
Massachusetts Institute of Technology, 2005. 

[6] A. Gelman and J. Hill, Data analysis using regression and 
multilevel/hierarchical models. Cambridge Univ. Press, 2006. 

[7] I. Graham, “Task scripts, use cases and scenarios in object 
oriented analysis,” Obj. Oriented Syst., vol. 3, no. 3, pp. 123–142, 
1996. 

[8] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Security 
requirements engineering: A framework for representation and 
analysis,” IEEE Trans on Softw. Eng., vol. 34, no. 1, pp. 133–153, 
2008. 

[9] H. Hibshi, and T. D. Breaux, “Evaluation of Linguistic Labels 
Used in Applications,” Carnegie Mellon University, 2016. 

[10] H. Hibshi, T. Breaux, and S. B. Broomell, “Assessment of Risk 
Perception in Security Requirements Composition,” 2015 IEEE 
23rd Int. Requir. Eng. Conf. RE, pp. 146–155, Aug. 2015. 

[11] H. Hibshi, T. D. Breaux, M. Riaz, and L. Williams, “A Grounded 
Analysis of Experts’ Decision-Making during Security 
Assessments,” J. Cybersecurity, 2016. 

[12]  H. Hibshi, T. D. Breaux, and C. Wagner, “Improving security 
requirements adequacy: an interval type 2 fuzzy logic security 
assessment system,” IEEE Symp. on Comp’l Intelligence, 2016. 

[13] I. Jacobson, Object-oriented software engineering: a use case 
driven approach. Pearson Education India, 1993. 

[14] A. Van Lamsweerde, “Requirements engineering in the year 00: 
a research perspective,” 22nd Int. Conf. on Soft. Eng., 2000, pp. 
5–19. 

[15] A. van Lamsweerde and L. Willemet, “Inferring declarative 
requirements specifications from operational scenarios,” IEEE 
Trans. Softw. Eng., vol. 24, no. 12, pp. 1089–1114, Dec. 1998. 

[16] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Monitoring and 
control in scenario-based requirements analysis,” 28th Int. Conf. 
on Softw. Eng., 2005, pp. 382–391. 

[17] Y. S. Lincoln and E. G. Guba, Naturalistic inquiry, vol. 75. Sage, 
1985. 

[18] L. Liu, E. Yu, and J. Mylopoulos, “Analyzing security 
requirements as relationships among strategic actors,” Symp. on 
Requir. Eng. for Info. S, 2002. 

[19] D. Lüdecke, “sjPlot: data visualization for statistics in social 
science,” R Package Version, vol. 1, no. 4, 2015. 

[20] H. Mouratidis and P. Giorgini, “Enhancing Secure Tropos to 
effectively deal with security requirements in the development of 
multiagent systems,” Safety and Security in Multiagent Sys., 
Springer, 2009, pp. 8–26. 

[21] “NIST/ITL Special Publication (800),” 02-Jan-2015. [Online]. 
Available: http://www.itl.nist.gov/lab/specpubs/sp800.htm. 
[Accessed: 02-Jan-2015]. 

[22] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for 
expressing the relationships between multiple views in 
requirements specification,” IEEE Trans. Softw. Eng., vol. 20, 
no. 10, pp. 760–773, Oct. 1994. 

[23] C. Potts, “Requirements models in context,” IEEE 3rd Int. Symp. 
on Requir. Eng., 1997, 1997, pp. 102–104. 

[24] C. Potts and W. C. Newstetter, “Naturalistic inquiry and 
requirements engineering: reconciling their theoretical 
foundations,” IEEE 3rd Int. Symp. on Requir. Eng., 1997, pp. 
118–128. 

[25] C. Potts, K. Takahashi, and A. I. Anton, “Inquiry-based 
requirements analysis,” IEEE Softw., vol. 11, no. 2, pp. 21–32, 
1994. 

[26] R Core Team, R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, 2013 

[27] M. T. Roberson and E. Sundstrom, “Questionnaire design, return 
rates, and response favorableness in an employee attitude 
questionnaire.,” J. Appl. Psychol., vol. 75, no. 3, p. 354, 1990. 

[28] P. H. Rossi and S. L. Nock, Measuring Social Judgments: The 
Factorial Survey Approach. SAGE Publications, 1982.  

[29] J. Saldaña, The coding manual for qualitative researchers. Sage, 
2012. 

[30] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental 
and quasi-experimental designs for generalized causal inference. 
Houghton, Mifflin and Company, 2002. 

[31] “SANS Institute: About.” [Online]. Available: 
https://www.sans.org/about/. [Accessed: 04-Feb-2017]. 

[32] A. Sutcliffe, “Scenario-based requirements analysis,” Requir. 
Eng., vol. 3, no. 1, pp. 48–65, 1998. 

[33] L. Wallander, “25 years of factorial surveys in sociology: A 
review,” Soc. Sci. Res., vol. 38, no. 3, pp. 505–520, Sep. 2009. 


