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Abstract—Security requirements analysis depends on how 
well-trained analysts perceive security risk, understand the 
impact of various vulnerabilities, and mitigate threats. When 
systems are composed of multiple machines, configurations, and 
software components that interact with each other, risk 
perception must account for the composition of security 
requirements. In this paper, we report on how changes to 
security requirements affect analysts risk perceptions and their 
decisions about how to modify the requirements to reach 
adequate security levels. We conducted two user surveys of 174 
participants wherein participants assess security levels across 64 
factorial vignettes. We analyzed the survey results using multi-
level modeling to test for the effect of security requirements 
composition on participants’ overall security adequacy ratings 
and on their ratings of individual requirements. We accompanied 
this analysis with grounded analysis of elicited requirements 
aimed at lowering the security risk. Our results suggest that 
requirements composition affects experts’ adequacy ratings on 
security requirements. In addition, we identified three categories 
of requirements modifications, called refinements, replacements 
and reinforcements, and we measured how these categories 
compare with overall perceived security risk. Finally, we discuss 
the future impact of our work in security requirements 
assessment practice. 

Index Terms —user study; vignettes; factor surveys; security 
requirements; requirements elicitation. 

I. INTRODUCTION  
Despite the abundance of well-documented security best 

practices, we continue to see security breaches that affect 
different organizations and industries. The 2013 OWASP Top 
10 Application Security Risks report shows that attacks are 
occurring due to the exploitation of common, well-documented 
vulnerabilities, such as injection and cross-site scripting attacks 
[20]. In addition, security standards and best practices have 
long been available to help organizations improve security. For 
example, the U.S. National Institute of Standards and 
Technology (NIST) Special Publication (SP) 800 series 
describes best practice security requirements [19], and the 
Common Criteria describes a method to evaluate system 
security. In particular, the NIST SP 800-53 lists 256 security 
controls, which security analysts can apply in a checklist by 
deciding whether the control applies to their system. To make 

this decision, the analyst must reason over potentially millions 
of scenarios that account for various permutations of network 
type, services offered, threat type, etc. When requirements 
change by adding new components and features, these risk 
calculations must be updated. What is not known is how 
changes in threats and requirements affect the analyst’s ability 
to perceive changes in risk and their ability to identify new, and 
reprioritize existing, security requirements.  

In this paper, we report the results of two user surveys to 
study how changing threats and requirements affect the 
analysts’ ability to perceive security risk and make 
corresponding decisions to prioritize security requirements. In 
designing these studies, we identified several properties of the 
problem of prioritizing security requirements: 
• Requirements Composition: Security is a property of the 

composition of security requirements, i.e., it increases and 
decreases based on the addition and subtraction of specific 
requirements, while other requirements may have less effect. 
This is consistent with modern views of “defense in depth” 
[12] and layered security models, e.g. attack surfaces [17]. 

• Requirements Ambiguity: Abstract terms conceal multiple, 
possibly conflicting interpretations that can lead analysts to 
different decisions based on which interpretation they choose 
(e.g., “encrypted wireless network” includes both the 
insecure interpretation of WEP, and the presently secure 
interpretation of WPA2).  

• Requirements Completeness: Because new threats and 
vulnerabilities continue to emerge, it is difficult to decide 
that the security requirements for a particular system are 
complete. Changes that affect completeness include new 
interpretations for existing security abstractions (e.g., WEP 
was viewed as an adequate security mitigation before the 
vulnerabilities were discovered), and the introduction of new 
system features through requirements composition. 

• Distributed Knowledge: Knowledge of systems and their 
vulnerabilities is deep and distributed across multiple people 
(e.g., operating systems, networks, databases), which limit 
the ability of any one person to conclusively decide the 
priority of a system’s security requirements. This distribution 
of knowledge further affects completeness, as one person is 
unlikely to be capable of evaluating the systems entire risk 
profile. 
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Our survey design is intended to address these properties by 
eliciting risk perceptions from multiple analysts and targeting 
the mitigating effects of specific requirements to the threats 
they address. This approach allows us to isolate the effect of 
composition on security risk, and to address the limitations of 
differing levels of security expertise. In addition, our design 
asks analysts to report missing requirements. This step is aimed 
at improving completeness and reducing ambiguity. 

The remaining paper is organized as follows: in Section II 
we review related work; in Section III, we present our survey 
design; in Section IV we present our multi-level modeling 
results; in Section V, we present our grounded analysis results; 
in Section VI, we present our threats to validity; in Section VII 
we present discussion, and we conclude in Section VIII.  

II. APPROACH 
We now introduce security vignettes, before describing the 

experimental design. 

A. Vignettes Design 
Our study is based on, factorial vignettes, which are 

scenarios comprised of discrete factors that contribute to 
human judgment. Researchers systematically manipulate the 
factors to understand their composite and individual effects on 
a decision [22, 26]. This reliable method is used by social and 
decision scientists and applied across psychology, sociology, 
and marketing, to name a few [2, 26]. Factorial vignettes are 
proven more effective to understanding decision making than 
direct questioning or single statement ratings that obscure the 
underlying contributions of different factors to the overall 
decision [1, 22, 26]. Factorial vignettes are presented in 
surveys using a basic template that contains multiple 
dimensions of the construct of interest. In our case, each 
dimension is a security requirement that influences the 
perceived level of security risk: some requirements increase 
risk, while others decrease risk. Figure 1 shows the template 
that we used in our study to create the vignettes: a vignette is a 
standard scenario generated by the template, wherein each 
variable name (starting with a $) is replaced by a level in the 
corresponding dimension.  

 

Fig. 1. The template used for vignette generation (fields with $ sign are 
replaced with values selected from Table 1) 

In our study, each level corresponds to a requirement or 
system constraint variant, which is either a quality requirement 
(e.g., a “weak” vs. “strong” password) or more concrete 
interpretation of an otherwise ambiguous requirement (e.g., 
“unencrypted” vs. “encrypted” Wi-Fi). In Table I, we present 
the dimensions and levels to Fig. 1. Each level has a code (in 
parentheses) that we used to analyze and report our results. The 

Man-in-the-Middle $Threat occurs when an attacker intercepts 
the encrypted communication between two parties by 
decrypting the encryption. The Packet Sniffing $Threat is 
passive: the attacker eavesdrops on network packets to steal 
information without interacting with any parties, directly.  

The choice of dimensions and levels in factorial vignettes is 
determined by the researcher’s judgment based on the research 
questions. Our interest is evaluating the effect of changes in 
requirements composition and in threats where the composition 
spans a range of security knowledge, including network and 
application security, perceived sensitivity of information, and 
general “best practice” vs. threat-targeted mitigations. The 
dimensions that we chose are not the only dimensions that can 
be evaluated. In addition, the number of levels for each 
dimension is not the only number that exists.  

In factorial vignette design, the space of all possible 
dimensions and levels is called the factorial object universe 
[22] and the factorial object sample is a sample across the 
universe used to instantiate the vignette template [22]. 
Sampling is random or systematic and the choice is based on 
prior theory, research, and reasoning [18]. Factorial sampling is 
used to eliminate unrealistic combinations of levels and to 
exclude scenarios that are likely to produce a predictable 
outcome [26]. Sampling from vignettes is more efficient than 
classic factorial designs, wherein all possible combinations of 
factors are tested [22].  

We chose our initial scenario about logging into a remote e-
mail service, because it crosses between novice and expert 
security knowledge, and this would allow us to measure the 
effect of security expertise on risk perception. We reviewed the 
universe and selected dimensions that had a sufficient number 
of levels to provide a rich space from which to sample; this 
includes network types and password complexity. Based on 
Table I, we have 32 (4×2×1×2×2) conditions per $Threat type.  

TABLE I.  VIGNETTE DIMENSIONS AND THEIR LEVELS 

Dimension Level(s) 

$NetworkType 
 

(EmpNetwork) Your employer’s network at 
your office 
(PublicWIFI) Public unencrypted Wi-Fi at a 
public area (restaurant, airport)  
(VPNUnencrypted)Your employer’s VPN 
that you connected to through public unencrypted 
Wi-Fi 
(VPNEncrypted) Your employer’s VPN that 
you connected to through public encrypted Wi-Fi 

$Transaction 
 

(E) Accessing	
  your email account and replying 
to confidential emails 
(F) Performing a financial transaction using 
your credit card 

$Connection SSL 

$Password 

(Weak) A password that is at least 8 characters 
long 
(Strong) A password that is at least 16 
characters and must include an uppercase and a 
lowercase letter, a symbol, and a number digit 

$Timer 

(Yes) Automatically log you off the session 
after 15 minutes of inactivity 
(No) Never time-out  

$Threat 
Man-in-the-Middle 

Packet-Sniffing 
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Our vignette selection is based on removing unrealistic and 
idiosyncratic scenarios. For example, the $connection 
dimension consists of one level, only, which is called a blank 
dimension. While we can evaluate unencrypted HTTP sessions 
in a scenario, the prevalence of knowledge about the high risk 
of unencrypted sessions suggests this level would predictably 
lead respondents to rate this requirement as inadequate to 
protect against the chosen threats. Blank dimensions are 
included in the vignettes, but not as statistical variables in the 
analysis, because they have no statistical effect to be measured. 
That said, blank dimensions are not to be eliminated, because 
their presence and absence affect how participants make 
decisions. In our case, removing SSL introduces an ambiguity: 
some participants may assume it exists, while others may 
assume it is absent. To control for this variability, we made this 
requirement explicit. 

B. Survey Design and Research Questions 
We designed our survey to answer three research questions: 

RQ1. Does requirements composition affect risk perception in 
a security scenario to cause varied ratings of the security 
adequacy level, or can requirements be treated 
independently in a checklist style?   

RQ2. Which security requirements in a security scenario 
contribute more weight to experts’ security adequacy 
judgment?   

RQ3. Would experts be able to detect ambiguities in a security 
scenario and provide modifications to improve the 
security adequacy ratings?   

To answer these questions, we designed our survey 
instrument with three parts: the security vignettes, a security 
knowledge test, and a demographics test. In addition, each 
participant receives a consent form noting that participation is 
voluntary. We presented participants with the Man-in-the-
Middle threat, where they answer all three parts of the survey. 
A week after taking the survey, participants are invited back 
for the Packet-Sniffing threat, where they do not repeat the 
security knowledge test or the demographic questions.  

1) The Security Vignettes. In our study, each participant 
rates four vignettes to observe all the four network levels (see 
Table I). Since we have a total of 32 vignettes per threat, we 
have 8 possible combinations of the dimensions and, thus, 
each participant is randomly assigned to one of eight 
conditions, where they rate four vignettes (8×4 = 32 
vignettes). Each condition randomly assigns the participant to 
a single level of the $Transaction, $Password, and 
$Timer dimensions (between-subjects effect), which are the 
same across all the four vignettes that the participant rates. 
The four vignettes differ by the $NetworkType dimension 
(within-subjects effect) and are presented in a randomized 
order.  

For all four vignettes, a participant is asked to first rate the 
overall security level of the scenario within the context of the 
given threat. The rating levels are displayed in a random order 
from the following list:  
• Excessive security measures that exceed the requirements to 

mitigate the threat 

• Inadequate security measures that are not enough to 
mitigate the threat 

• Adequate security measures that are enough to mitigate the 
threat 

 Next, we ask participants to rate the dimension levels based 
on the security requirement’s ability to mitigate the given 
threat. This mitigation rating is applied to the $NetworkType, 
$Connection, $Password and $Timer, only, because they 
represent a mitigation that can be modified to improve security. 
Participants provide their rating on a 5-point Likert-scale, 
where point 1 is labeled “inadequate mitigation”, point 3 is 
labeled “adequate mitigation” and point 5 is labeled “excessive 
mitigation.” For each such dimension, we list the selected level 
for the vignette from Table I. These ratings are used to test 
which requirements (or factors) affect the overall security. 

Participants are also given the opportunity to list additional 
security requirements that they believe contribute to increasing 
the security level to adequate. These are open-ended responses 
that we later analyzed by coding [23]. 

2) The Security Knowledge Test. Following the vignettes, 
participants are required to answer ten security knowledge 
questions. We selected these questions to cover user-level to 
administrator security knowledge, including cryptography, 
firewall rules, encryption, hashing, file permissions, and 
network security. The questions cover security concepts, and 
are intentionally inconvenient to search for on the Internet to 
reduce cheating. The responses are used to calculate a score 
that serves as a proxy experience metric.  

3) Demographic Survey. Finally, participants answer 
questions about job experience and security training. 

C. Pilot Study 
The study was first piloted in three informal focus groups 

at Carnegie Mellon University. Attendees completed the 
survey; then critiqued the question prompts, response options, 
and vignette levels to eliminate unrealistic and idiosyncratic 
scenarios. The pilot stage was important to evaluate the 
security knowledge test questions, which were further refined, 
as our initial set of questions were lengthy and esoteric.  

The survey was then piloted using the Amazon Mechanical 
Turk 1  (Mturk) crowdsourcing platform. We compensated 
participants with a $5 Amazon credit. Participants received one 
vignette from the 64-vignette sample. The pilot yielded 
feedback on response complexity and timing and led to the 
mixed-methods design, wherein we change the $NetworkType 
dimension for each subject 4 times. This design choice is 
effective in increasing the statistical power of the results [9]. In 
addition, the Mturk data shows a low mean for the security 
knowledge test (Mean = 4, Std. Dev.=1.87), and the responses 
to the open-ended questions were poor. 

D. Deployment and Subject Recruitment   
We recruited security experts using e-mail invitations to 

participate in our Man-in-the-Middle study (16 vignettes, 
where each participant sees 4 vignettes). The invitation was 
sent to security class mailing lists at Carnegie Mellon 

                                                             
1 https://www.mturk.com/ 
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University and North Carolina State University. We also sent 
invitations to security-research mailing lists at Carnegie Mellon 
University. We compensated participants a $10 Amazon gift 
card for participation. A week after taking this study, those 
participants were invited back to the Packet-Sniffing study 
(another 16 vignettes, where each participant sees 4 vignettes), 
and compensated with a second $10 Amazon gift card. 

E. Analysis Approach 
We now discuss our multi-level modeling and grounded 

analysis approach. 
1) Analysis of Multi-level Models. Multi-level models are 

statistical regression models with parameters that account for 
multiple levels in datasets [9]. Our study design described in 
Section III.B supports both within and between subjects 
effects (mixed-effects). Thus, we treated the data as two 
studies based on the two levels of the $Threat dimension, 
which we assume the participant responses to the two threats 
are independent due to the week delay between surveys. 

The quantitative dataset consists of one major outcome 
dependent variable: the $OverallRating, which is the security 
experts’ judgment rating of the overall security level. This 
variable has three possible values -1, 0, or 1 that correspond to 
inadequate, adequate or excessive security, respectively. The 
fixed effects independent variables are the vignette dimensions: 
$NetworkType, $Transaction, $Password, $Timer, which we 
will refer to as requirements-mitigation variables. The random 
effect, independent variable is grouped by participant’s $ID, 
because we have repeated measures for each subject who sees 
four levels of $NetworkType. We have four dependent 
mitigation-rating variables: $NetworkRating, $Connection-
Rating, $PasswordRating, and $TimerRating that correspond 
to individual ratings of the $NetworkType, $Connection, 
$Password, and $Timer dimensions, respectively. Mitigation-
rating variables are assigned an integer from 1-5.  

We quantify experience using a $Score variable, which is 
an independent exploratory variable assigned an integer from 
0-10 equal to the number of correct answers provided by the 
participant to the 10 security screening questions.  

We analyze our data using multi-level modeling [9] to 
account for our mixed effect experiment design. We used R 
[21] and lme4 [3] as our tools to conduct the analysis. As 
described earlier, each participant rated all four levels of the 
$NetworkType dimension, while only rating one level of the 
remaining dimensions. Hence, our analysis simultaneously 
accounts for dependencies in the repeated measures, calculates 
the coefficients (weights) for each explanatory independent 
variable, and tests for interactions. We test the multi-level 
models’ significance using the standard likelihood ratio test: 
we fit the regression model of interest; we fit a null model that 
excludes the independent variables used in the first model; we 
compute the likelihood ratio; and then, we report the chi-
square, p-value, and degrees of freedom [9]. For fitted models 
that show statistical significance, we report the coefficient 
values from the regression model, which represents the 
dimension weight for predicting the dependent variable.  

To determine sample size, we conducted a priori power 
analysis with G*Power [7] to test for the required sample size 
of repeated measures ANOVA. We estimated a sample size 

>96 per threat scenario for the recommended power level of 
0.8 and a medium-sized effect [4].  

2) The Grounded Analysis. We analyzed the mitigation 
requirements by first excluding non-mitigation responses. We 
then apply open coding [11] to code responses with short 
phrases (concept labels) and then group the phrases into six 
emergent categories: server, if the requirement is the 
responsibility of a web server, client, if the requirement is the 
responsibility of an application on the user’s computer (e.g., a 
browser); encryption, if the requirement primarily concerns 
encrypting data or communications; private network, if the 
requirement suggests switching to a non-public network; 
attack detection and prevention, if the requirements is aimed at 
preventing and/or addressing certain attacks; and identity and 
authentication, if the requirement concerns verifying the 
identity of the user or their device.  

After first cycle coding and categorization, we conducted a 
second-cycle coding [23], wherein we linked the categories to 
vignette dimensions and a direction as follows: a refinement, if 
the requirement refines the dimension by extending it’s 
functionality; a reinforcement, if the requirement adds 
auxiliary security not directly related to the dimension; a 
generalization, if the requirement is more general than the 
dimension, but includes the dimension’s mitigation; and a 
replacement, if the requirement replaces the dimension. For 
example, two requirements, multi-factor authentication and 
password expiry policy, are coded by the password dimension, 
yet the former is a replacement, because it replaces passwords 
with new functionality, and the latter is a refinement, because it 
extends passwords with expiration.  

III. MULTI-LEVEL MODELING RESULTS 
In this section we present the results of the multi-level 

modeling analysis.   

A. Descriptive Statistics 
A total 174 participants responded to the Man-in-the-

Middle threat survey, of which, 116 returned to respond to the 
Packet-Sniffing survey. These sample sizes exceed what we 
estimated prior to conducting the study. The sample consists of 
26% females and 73% males (1% unreported gender). The age 
groups sorted by dominance in the sample are 18-24 (63%), 
25-34 (33%), and 35+ (3%). Within the sample there are 101 
graduate students, 42 undergraduate students and 2 university 
professors. 

TABLE II.  DESCRIPTIVE STATISTICS OF THE RATING VARIABLES 

 

Man-in-the-Middle Packet-Sniffing 
Percentage* Percentage* 

Adequacy Scale Adequacy Scale 
1 0 -1 1 0 -1 

$OverallRating 0 53 42 0 92 1 
 

Item Rating Adequacy Scale Adequacy Scale 
5 4 3 2 1 5 4 3 2 1 

$NetworkRating 1 9 37 21 32 2 7 36 22 33 
$ConnectionRating 2 12 68 17 1 0 11 71 15 3 
$PasswordRating 7 17 43 21 12 8 13 39 26 14 
$TimeRating 2 11 29 17 41 4 12 27 21 36 

*Percentages are calculated with respect to each threat study sample;  
adequacy scale 5=Excessive, 3=Adequate, 1=Inadequate 
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The average number of participants per vignette is: 22 for 
the Man-In the-Middle threat, and 15 for the Packet-
Sniffing threat; the number of participants is close but not 
equal across vignettes due to randomization. Table II presents 
descriptive statistics of participant ratings. 

B. The Overall Rating 
The $OverallRating variable is the major outcome 

dependent variable of interest, because this variable represents 
the experts’ security rating of the scenario based on the 
composition of the requirements. Equation 1 is our main 
additive regression model with a random intercept grouped by 
participant ID.  The additive model is a formula that defines 
the $OverallRating in terms of the intercept (α) and a series of 
components. Each component is multiplied by a coefficient (β) 
that represents the weight of that variable in the formula. This 
formula in Eq. 1 is simplified as it excludes the dummy (0/1) 
variable coding for the reader’s convenience.    
$OverallRating = α + βN$NetworkType + βTran$Transaction + 

βP$Password + βTime$Timer + ϵ  (1) 

We will refer to the predictor explanatory variables: 
$NetworkType, $Transaction, $Password, and $Timer in this 
model as the four predictors.  The β parameters in Eq. 1 
represent the weight of each dimension in explaining the data. 
We tested the significance of the main effects in the additive 
model (Eq. 1); and then the interaction terms, which are the 
added terms generated by multiplication of the explanatory 
variables terms in the additive model.  The indicator variables 
are dummy coded (0/1) to represent the dimension levels (see 
Table I). To compare the $OverallRating across vignettes we 
establish a base level for each variable that fixes the variables. 
The intercept (α) is the sample’s mean outcome in the base 
case, which includes the following base levels:  

• Employer network for the $NetworkType,  
• Email for $Transaction, 
• Strong password for $Password and, 
• No timer for $Timer.  

  For the Man-in-the-Middle threat, we found a significant 
contribution of the four predictors for predicting the 
$OverallRating (χ2 (6)= 142.2, p < 0.001) but failed to find a 
significant contribution from the interaction terms (χ2 (11)= 
4.8, p = 0.94). For the Packet-Sniffing threat, the 
$OverallRating is also affected by the same four predictor 
variables with a significant value over the null model (χ2 (6)= 
20.4, p=0.002). We also did not see any significance for the 
interaction model (χ2 (11)= 6.6, p = 0.83). These results 
suggest that the four dimensions $NetworkType, $Transaction, 
$Password, and $Timer are good predictors that explain change 
in the expert’s overall rating. However, it is important to note 
here that the dataset from the Packet-Sniffing threat is less 
predictive in explaining the $OverallRating variable due to 
the violation of the normality assumptions. This is due to the 
unforeseen effect of no participant choosing the excessive 
rating in vignettes with this threat type (see Table II), which 
reduced the response levels from three to two. 

Table III shows the assigned coefficient weights (labeled 
by β in the table) along with standard errors and significance 
levels for the two threat datasets. These weights represent the 
amount of change in rating caused by the corresponding 

change in predictor variable level. From the table, we 
conjecture that the Man-in-the-Middle threat has a significant 
intercept of –0.24, which indicates that at the base case 
(employer’s network, email transaction, strong password, and 
no timer), the mean of the $OverallRating is lower than 
adequate (Recall from Section III, adequate= 0). Since, 
NetworkType is the only dimension showing significance in the 
table, we further interpret the intercept to indicate the mean 
adequacy level in the case of the employer’s network. 
Interestingly, the public Wi-Fi network and the VPN over 
unencrypted network significantly decreased the overall rating 
from the base level employers network. Another interesting 
observation in Table III is that the VPN over encrypted 
network significantly increase the overall rating in the Packet-
Sniffing threat scenario, while this has no effect in the Man-
in-the-Middle threat. This result is expected from security 
experts who understand the difference among the two threats: 
encryption is a reasonable protection against Packet-Sniffing 
as attackers would not benefit from sniffing encrypted packets, 
but encryption alone is not enough to mitigate Man-in-the-
Middle wherein attackers intercept and decrypt encrypted 
communication. 

The significance levels in Table III indicate $NetworkType 
is the only dimension that had an effect on experts’ 
$OverallRating of the security scenario. This does not mean 
the other dimensions had no effect on expert judgment. These 
estimates imply that the network type had the most influence 
(weight) on judgments of overall rating and the importance of 
each network type depends on the type of $threat.  

TABLE III.  RESULTS OF REGRESSION FOR THE $OVERALLRATING 
VARIABLE 

Variable-level 
Man-in-the-Middle Packet Sniffing 

β (Std. Error) β (Std. Error) 

Intercept –0.24 (0.07)*** 0.10(0.06) 
Network-PublicWIFI –0.50(0.05)*** –0.03(0.05) 
Network-VPNEncrypted 0.03(0.05) 0.10(0.03)** 
Network-VPNUnencrypted –0.24(0.05)*** –0.04(0.04) 
Transaction-F –0.03 (0.06) –0.02(0.04) 
Password-weak 0.06(0.07) –0.05(0.05) 
Timer-Yes 0.14(0.08) 0.03(0.06) 

 *p≤.05 **p≤.01 ***p≤.001, with standard errors in parentheses 

C. The Security Requirements Effect 
In this section, we further examine the effect of each 

requirement in the security scenario by analyzing participants’ 
5-point Likert-scale ratings of the specific mitigations. To do 
this analysis, we use the same regression formula in Eq. 1, but 
replace the $OverallRating outcome variable with 
$NetworkRating, $ConnectionRating, $PasswordRating, or 
$TimerRating. We now discuss the requirements effects. 

1) The Network Effect. The $NetworkRating is a measure 
of the participants adequacy rating of the network in the 
scenario in order to get more insight into how they formed 
their $OverallRating of the scenario. We found a significant 
contribution of the four predictors for predicting the 
$NetworkRating. This significant result applies to both threat 
scenarios:  Man-in-the-Middle (χ2 (6)= 322.1, p<0.001), and 
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Packet-Sniffing (χ2 (6)= 209, p<0.001). As with 
$OverallRating, we did not find any added significance from 
the interaction terms for both threats: Man-in-the-Middle (χ2 
(11)= 6.4, p=0.84), and Packet-Sniffing (χ2 (11)= 6.3, 
p=0.85).  

TABLE IV.  RESULTS OF REGRESSION FOR THE $NETWORKRATING 
VARIABLE 

Variable-level 
Man-in-the-Middle Packet Sniffing 

β (Std. Error) β (Std. Error) 

Intercept 2.70(0.10)*** 2.43 (0.14)*** 
Network-PublicWIFI –1.28(0.08)*** –1.13(0.10)*** 
Network-VPNEncrypted 0.35(0.08)*** 0.47(0.10)*** 
Network-VPNUnencrypted –0.35(0.08)*** –0.18(0.10) 
Transaction-F –0.14(0.08) –0.08(0.10)  
Password-weak 0.07(0.09) 0.06(0.13) 
Timer-Yes –0.06(0.11) 0.05(0.14) 

*p≤.05 **p≤.01 ***p≤.001, with standard errors in parentheses 

Table IV shows the detailed results of the regression model 
for the  $NetworkRating outcome variable. From the intercept 
value, we conjecture that participants’ rated the base case 
(employer’s network, email transaction, strong password, and 
no timer) slightly lower than adequate (recall from Section III, 
adequate = 3). The table also shows how the network type has 
a significant effect on the $NetworkRating variable. In both 
threat scenarios, changing from the employer’s network to the 
public Wi-Fi network decreased the rating by more than one 
point. On the other hand, the VPN over encrypted Wi-Fi 
significantly increased the $NetworkRating adequacy level 
over the employer’s network. For the Packet-Sniffing threat, 
the VPN over unencrypted network did not have an effect on 
the network rating for that threat. This means that participants 
view the VPN over unencrypted Wi-Fi and the employer’s 
network to be at the same security adequacy level.  
 Another observation from the table is the absence of effect 
for the other requirements on the $NetworkRating adequacy.  
There are two possible explanations for this result: 1) when 
participants are rating the network, they isolate it from all other 
requirements and they only focus on looking at the network 
type, and/or 2) participants are assigning a higher priority to 
the $NetworkType so it acts as the deciding factor and it 
supersedes other requirements in the scenario.  

2) The SSL Connection Effect. We found slight 
statistically significant contribution of the four predictors 
predicting the $ConnectionRating adequacy level for the 
Man-in-the-Middle threat (χ2 (6)= 15.1, p=0.02), but no 
significant contribution in the Packet-Sniffing dataset (χ2 
(6)= 5.8, p=0.5). When we further examined the regression 
model of the Man-in-the-Middle dataset, we found 
significance only for the intercept (α=2.9, SE=0.10, p<0.001) 
and the public Wi-Fi network (β = –0.10, SE=0.05, p=0.03). 
This means that the mean for the $ConnectionRating in the 
base case is around adequate, while it slightly drops when the 
network changes from employer’s network to a public Wi-Fi. 
One possible interpretation of these results could be that the 
presence of SSL in the scenario is crucial and that’s why the 
mean is around adequate, but the adequacy rating does not 

significantly change with the change of other requirements 
except if the change is to an extremely low level of security 
such as Public Wi-Fi.  

3) The Password Strength Effect. The $PasswordRating is 
a measure of the participants adequacy rating of the password 
strength in the scenario.  

The four-predictor model significantly increases model fit 
of $PasswordRating over the null model. This is present in 
both threat scenarios: Man-in-the-Middle (χ2 (6)= 37.6, 
p<0.001), and Packet-Sniffing (χ2 (6)= 38.6, p<0.001). 
Similar to the above outcome rating variables, the interaction 
terms do not significantly increase the model fit for the Man-
in-the-Middle threat (χ2 (11)=11.7, p=0.38).  Although the 
Packet-Sniffing threat showed a significant effect (χ2 (11)= 
22.5, p=0.02), the coefficients did not show significant p-
values for the interaction terms, which may indicate that the 
added significance was distributed across the terms.   

Table V shows the details of the regression model for the 
$PasswordRating variable. In both scenarios, the intercept at 
the base case where the password is strong shows significant 
adequate ratings, that drops significantly when the network 
changes from employer’s network (base case) to public Wi-Fi.  
Changing the password strength from strong to weak also 
drops the password adequacy rating in both threat scenarios. 

TABLE V.  RESULTS OF REGRESSION FOR THE $PASSWORDRATING 
VARIABLE 

Variable-level 
Man-in-the-Middle Packet Sniffing 

β (Std. Error) β (Std. Error) 

Intercept 3.33(0.16)*** 3.16(0.22)*** 
Network-PublicWIFI –0.15(0.05)*** –0.18(0.05)*** 
Network-VPNEncrypted –0.01(0.05) 0.06(0.05) 
Network-VPNUnencrypted –0.05(0.04) –0.06(0.05) 
Transaction-F –0.05(0.14) –0.14(0.19) 
Password-weak –0.76(0.17)*** –0.68(0.23)** 
Timer-Yes –0.10(0.20) 0.15(0.26) 

*p≤.05 **p≤.01 ***p≤.001, with standard errors in parentheses 

4) The Auto-logoff Timer Effect. The $TimerRating is a 
measure of the participants adequacy rating of the auto-logoff 
timer in the scenario.  

The four-predictor model significantly increases model fit 
of $TimerRating over the null model. This is present in both 
threat scenarios: Man-in-the-Middle (χ2 (6)= 54.9, p<0.001), 
and Packet-Sniffing (χ2 (6)= 49.2, p<0.001). Similar to the 
above outcome rating variables, the interaction terms do not 
significantly increase the model fit for the Man-in-the-Middle 
threat (χ2 (11)=17.4, p=0.09), or the Packet-Sniffing threat 
(χ2 (11)=12.9, p=0.30).  

Table VI shows the details of the regression model for the 
$TimerRating variable. Note that the intercept shows a low 
mean that is close to inadequate (recall from Section III: 
inadequate = 1) which is expected since the base level has no 
auto log-off timer. In the presence of the Man-in-the-Middle 
threat, the $NetworkType, $Password, and $Timer dimensions 
have a significant impact on participants’ $TimerRating. The 
public Wi-Fi, VPN over unencrypted Wi-Fi, decreased the 
adequacy level of the $TimerRating variable, while turning the 
auto logoff timer on had significantly increased the adequacy 
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level of the $TimerRating. In the case of the Packet-Sniffing 
threat, the network type did not have a significant impact on 
predicting the $TimerRating, but the presence of the timer in 
the scenario shows a significant increase in the $TimerRating 
compared to the base case where no timer is involved.  

TABLE VI.  RESULTS OF REGRESSION FOR THE $TIMERRATING 
VARIABLE 

Variable-level 
Man-in-the-Middle Packet Sniffing 

β (Std. Error) β (Std. Error) 

Intercept 1.79(0.17)*** 1.51(0.22)*** 
Network-PublicWIFI –0.18(0.05)*** –0.08(0.05) 
Network-VPNEncrypted 0.0(0.05) 0.06(0.05) 
Network-VPNUnencrypted –0.12(0.05)** 0.07(0.05) 
Transaction-F –0.25(0.15) –0.22(0.18) 
Password-weak 0.60(0.18)*** 0.82(0.22)*** 
Timer-Yes 1.18(0.21)*** 1.60(0.25)*** 

*p≤.05 **p≤.01 ***p≤.001, with standard errors in parentheses 

It is strange and unexpected that the weak password is 
showing a significant increase in the timer adequacy rating in 
both scenarios. It is possible that this is a Type I error (i.e., the 
password didn’t actually play a role in the decision and this 
effect is only random) or is due to an interaction effect between 
password and the other predictor variables. When we examined 
the coefficients of the interaction model, we observed that the 
weak password significantly interacts with other variables such 
as public Wi-Fi and VPN over unencrypted Wi-Fi, which 
makes us lean more towards the interaction explanation 
although the data does not show evidence of interaction.  

D. The Experience Effect  
The $Score variable is our indicator variable for 

experience, as it represents participants score (out of 10) on the 
security test.  Scored responses to our knowledge test presented 
a minimum score of 1 and a maximum of 10, with a mean 5.2 
and a median of 5. 

We added the experience predictor variable ($Score) to 
Eq. 1 and compared the new model to the four-predictor model 
in Eq. 1. for both threat types. The new model with the 
experience indicator ($Score) did not significantly improve 
the prediction of the overall variable compared to the original 
model with the four predictors alone. We repeated the same 
comparison for all the four mitigation-rating variables: 
$NetworkRating, $ConnectionRating, $PasswordRating, and 
$TimerRating. Except for the $PasswordRating and the 
$TimerRating in the Man-in-the-Middle threat, the ($Score) 
variable did not significantly improve the prediction of the 
ratings variables.  
In the presence of the Man-in-the-Middle threat, adding the 
experience indicator ($Score) to the four predictor model 
improved the prediction of the $PasswordRating (χ2 (1)=1.8, 
p<0.001). The coefficient weight in the model shows that the  
$PasswordRating significantly decrease by –0.15 as the 
experience indicator ($Score) increases. Similarly, adding 
($Score) to the four predictors model improved the prediction 
of the $TimerRating (χ2 (1)=8.2, p=0.004). The coefficient 
weight in the model shows that the  $TimerRating significantly 
decrease by –0.11 as the experience indicator ($Score) 
increases.  In other words, more knowledgeable participants 
(with higher $Score) tend to act more conservative when rating 
the adequacy level of the password and timer mitigations.   

 

 

Fig. 2. The elicited requirements and their categories (numbers in parentheses correspond to number of statements) 
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IV. GROUNDED ANALYSIS OF ELICITED REQUIREMENTS  
We elicited 905 mitigations from 108 participants: 540 for 

Man-in-the-Middle (104 participants) and 365 for Packet-
Sniffing (64 participants). We organized the mitigations into 
6 categories (see Section III). Figure 2 shows all 6 categories 
with mitigation concepts under each category. We analyzed 
elicited mitigations in response to the network effect, because 
our statistical results suggest that the $NetworkType has the 
most influence on participants’ judgments. Table VII shows for 
each $NetworkType, the number of mitigations provided by 
participants (Mits.), the number of respondents providing these 
mitigations (Resp.), and total mitigations. Table VIII shows the 
number of refinements (Refine.), which are elaborations on an 
existing security requirement in the vignette (e.g., SSL, VPN); 
reinforcements (Reinf.), which describe auxiliary or new 
security functionality intended to complement existing 
requirements; replacements (Repl.), which describe a 
requirement to supplant an existing requirement (e.g., WPA2 
supplants WEP); and generalizations (Gen.), which describe 
more abstract requirements (e.g., secure network v. VPN). 

TABLE VII.  NUMBER OF MITIGATION REQUIRMENTS BY THREAT AND 
NETWORK TYPE 

$NetworkType 
Man-in-the-

Middle 
Packet 

Sniffing Total 

Mits. Resp. Mits. Resp. Mits. 

Employer’s Network  129 73 100 51 229 
Public Wi-Fi 162 82 110 57 272 
VPN over Unencrypted Wi-Fi 135 73 79 47 214 
VPN over Encrypted Wi-Fi 114 73 76 42 190 

 

TABLE VIII.  REFINEMENTS, REINFORCEMENTS, REPLACEMENTS, 
AND GENERALIZATIONS REQUIREMENTS BY NETWORK TYPE 

$NetworkType Refine. Reinf. Repl. Gen. Total 

Employer’s Network  107 41 63 18 229 

Public Wi-Fi 88 33 122 29 272 
VPN over Unencrypted 
Wi-Fi 91 23 78 22 214 

VPN over Encrypted Wi-
Fi 101 23 57 9 190 

Total 387 120 320 78 905 
  

In Table VII, the weakest network type Public Wi-Fi has 
the highest number of mitigations for both threat types. 
Notably, Table VIII includes 155 auto-log off timer mitigations 
suggested by participants who observed no auto logoff timer in 
the vignette, and 107 complex-password mitigations suggested 
by participants who observed a weak password in the vignette. 
After removing such refinements that we expected to see in the 
lower security dimension levels, we found 125 refinements 
remaining. We now highlight some of the findings. 
 Several refinements served to remove ambiguity. For 
example, we found 51 mitigations that refine SSL, such as 
requiring updates or patching the heart bleed vulnerability 
[25]. One participant suggested using WPA2 encrypted Wi-Fi, 
because the Wi-Fi encryption was unspecified. Two 
participants stressed that VPN over encrypted network should 
use a reliably strong encryption. 

Among reinforcements, we found 25 mitigations proposing 
attack detection / prevention techniques (see Fig.2), 24 
mitigations adding email encryption under the email 
transaction condition, and 8 requirements to add browser 
security and pre-installed SSL certificates, among others. Some 
reinforcements were inspired by the vignette: four mitigations 
against man-in-the-middle attacks, four against packet sniffing, 
and two against email phishing attacks. 

Replacement mitigations aim to replace a less secure 
requirement or constraint with a more secure alternative. We 
found 95 mitigations to replace the password with multifactor 
authentication. We also found 21 mitigations to replace SSL 
with TLS or HSTS, which is a recent security proposal 
receiving more attention [6, 16]. 

V. THREATS TO VALIDITY 
Internal validity is the degree to which a causal relationship 

can be inferred between the independent predictor variables 
and the outcome dependent variables [24]. In our study, we 
randomized the assignment to conditions and the order of the 
four vignettes shown to each participant. We also randomize 
the order of the 3 adequacy ratings in the overall security-rating 
question, and we mask the numerical values for these ratings 
from participants. To address the threats of learning and fatigue 
effects, we estimate a 20 minutes average time for each threat 
survey, and we maintain a time space of a week minimum 
between threat conditions. We did not randomize the threat 
scenario order, but we mitigated the effect of this decision by 
treating the two threats as separate datasets during analysis. 

External validity concerns how well our results generalize 
to the population and situations outside the sample used in the 
study [24]. Our target population is security experts and we 
targeted participants by recruiting from senior and graduate 
level security classes. Furthermore, we conducted a security 
knowledge test to measure their expertise. One possible sample 
bias is that our sample was drawn from two U.S. Universities.  

Construct validity concerns how well the measurements we 
take correspond to the construct of interest [24]. To ensure that 
participants have a shared understanding of the ratings, we 
provided one-sentence definitions for each rating level. Prior to 
choosing the three levels’ labels, we tested 15 terms in an 
online survey of over 300 participants to find those terms that 
predictably associate with increased and decreased security.  
For the experience indicator ($Score) variable, it is important 
to note that this is the first time such test is used, and we would 
need more future studies to test its validity.  

Reducing sources of variation in a study helps to increase 
power. We used different ways to improve power. For 
example, we instrumented a mixed-models design that 
combines within-subjects and between-subjects effects. We 
also analyze our data with multi-level regression modeling 
which limits the biased covariance estimates by assigning a 
random intercept for each subject [9]. In Section III, we discuss 
how we estimated the sample size needed for our study, and 
our final sample size is 81% higher than the estimated size. 

VI. DISCUSSION AND FUTURE WORK 
Our multilevel modeling results and grounded analysis 

suggest that risk perception varies with how requirements are 
composed, which addresses RQ1. These results also address 

153



RQ2, because the dimensions/levels indicate the weighted 
contributions to the security adequacy ratings, which we now 
discuss.  

We observed composition across the participants’  
$PasswordRating, $TimerRating, and $ConnectionRating 
and from the grounded analysis results. When participants 
rated the password level adequacy, the $PasswordRating was 
lowered by the Public Wi-Fi network level, even when the 
password level was strong. Similarly, the $TimerRating was 
lowered by the use of Public Wi-Fi or VPN over unencrypted 
Wi-Fi. When the $NetworkType changes to Public Wi-Fi, 
respondents rate the strong password and auto-logoff timer as 
less than adequate, because participants likely view these two 
requirements as reinforcements that raise the general level of 
security, but do not mitigate the threat. In our grounded 
analysis, we further saw participants focusing their attention on 
providing requirements to replace the weak network. One 
participant stated that the timer, password, and SSL are no 
longer effective, if the communication is happening over a 
vulnerable network like Public Wi-Fi. Another participant 
explained how, despite the use of employer’s VPN, a public 
unencrypted Wi-Fi could still be vulnerable. In addition, our 
multi-level modeling results for the $ConnectionRating show 
that for the Man-in-the-Middle threat, participants generally 
rated SSL near adequate, but the ratings dropped in the 
presence of Public Wi-Fi. Moreover, we saw participants 
providing requirements refinements for SSL regardless of 
change in dimensions’ levels. For example, five participants 
suggested to update the SSL version, and five participants 
suggested to verify SSL certificates and they replicated these 
modifications for all four-network types. Since the 
$Connection dimension in our vignette design is a blank 
dimension with one SSL level, we cannot derive conclusions 
on how raising the SSL security level would affect the other 
composite requirements in the scenario. However, we do plan 
on modifying our vignette design to account for these and other 
elicited mitigations to test their interaction with other levels.   

The suggested refinements for SSL levels indicate that our 
proposed vignettes are incomplete, and that we should broaden 
the scope of our composition to include new dimensions/levels 
than what we proposed. Our grounded analysis also confirms 
that there are more dimensions to consider, such as browser 
security configurations. Secure communication relies on the 
browser’s configuration, as we found 17 browser security 
reinforcements that 11 participants proposed as mitigations to 
increase the overall security level. Among these, seven browser 
security reinforcements were suggested in the presence of the 
employer’s network and/or VPN over Encrypted Wi-Fi.  After 
examining all the mitigations provided by these participants, 
we found that when $NetworkType is weak, participants focus 
their attention on replacing it because it significantly increases 
the security risk. When the risk is lowered by using a more 
secure $NetworkType, participants began looking at other 
dimensions to increase the overall security level. 

In Section V, we discussed how experts identified 
ambiguous requirements proposed to reinforce, replace, and/or 
refine these requirements. The vignette dimensions were 
observed to affect participants’ risk perception leading them to 
list mitigations based on the dimensions and their levels. For 
example, participants focus attention on replacing weaker 

requirements with stronger levels (e.g. replacing Public Wi-Fi), 
and that explains the high number of replacement mitigations 
provided for public Wi-Fi (see Table VIII). In addition, out of 
the total 907 mitigations, only 78 (9%) were not directly 
related to our dimensions in the study as they include 
categories such as browser security and device identifiers (see 
Fig. 2 for categories). Regarding ambiguity, in Section V we 
note that participants might assume that the public Wi-Fi is 
unencrypted, because vignette description omits mention of 
encryption. Similarly, the vignette does not provide details 
about the SSL dimension and participants made their own 
assumptions that made them list mitigations of refinements 
(e.g. version update), reinforcement, (e.g. certificate 
verification), and even replacement (e.g. TLS). This 
observation suggests two things with regards to ambiguity 
resolution: 1) when participants make assumptions to resolve 
ambiguity, they might lean towards assuming lower security 
(e.g. unencrypted Wi-Fi, insecure SSL versions); and 2) adding 
and removing requirements in a composition can have 
interactions by increasing or decreasing levels linked to the 
refined requirement. The method we introduce in this paper 
allowed us to assess such composition, however, additional 
work is needed to evaluate the effect of these elicted 
mitigations on the overall and dimension-specific risk 
perceptions.  

VII. RELATED WORK 
We now review related work in requirement engineering 

relating to security and risk. Haley et al. introduced trust 
assumptions, which concern the extent to which security 
analysts trust domain properties [15]. Domain properties are 
those properties that engineers typically assume are true; thus, 
if they appear untrue the system will often fail. Because 
domain knowledge is often distributed across experts, there is a 
need to model consensus understanding of how and when trust 
assumptions can fail. Moreover, trust assumptions may 
interact; in which case, weaknesses in one assumption can 
impact the risk perception of another assumption. 

Gandhi and Lee use multi-dimensional correlations to 
determine the criticality of a class of security constraints on the 
overall secure system behavior, thus examining the issue of 
interactions [10]. The method involves goal-driven scenario 
identification, keyword search and manual filtering and 
categorization of security requirements to curate an analysis 
pool and create a correlation model using formal concept 
analysis (FCA). The approach requires analysts to express the 
correlations as logical formula a priori to realizing how 
requirements compose. One limitation of this approach is effort 
required to curate the analysis pool and the lack of consensus 
across experts to inform the claims of compositionality. 

A complementary approach is Franqueira et al.’s risk-based 
argumentation framework based on Haley et al. [15] that 
guides analysts to construct arguments from grounds, warrants, 
claims and rebuttals [8]. The approach yields prioritized risks 
that compose mitigations under the argument structure based 
on the analysts’ reasoned prediction of risks and their 
mitigations. In contrast, Zarghami et al. describe a risk-
identification process that helps analysts explicate assumptions 
underlying service providers to better understand the risk of 
their composite application [27]. When these assumptions fail, 

154



the composition can break due to loss or degradation of 
service. This approach supplements the approaches by Haley et 
al. and Franqueira et al., because it treats services as opaque 
boundaries. 

Cailliau and van Lamsweerde introduce a framework for 
goal-oriented risk analysis that assigns probability estimates to 
goal satisfaction in view of obstructions [5]. They compute 
obstacle combinations based on independent severity levels to 
select the most appropriate mitigations; however, this approach 
does not account for analyst perceptions of risk, or for how 
requirements compose to reduce risk. 

Hibshi et al. studied security analysts to understand how 
they make decisions based on Endsley’s Situation Awareness 
model  [13, 14]. In this work, the role of context in directing 
the analyst’s attention and mitigations surfaced as critical 
challenge: the variability of perceivable contexts and threats 
led analysts to draw dramatically different conclusions. In this 
paper, we fix the threat and context to target more precisely the 
expert’s ability to perceive risk and attribute security adequacy 
to components and their interactions.   

VIII. CONCLUSIONS 
 In this paper we introduce a method to study how changes 
in security requirements composition affects experts’ risk 
perception. We show results of running 64 factorial vignettes 
on 174 participants and two threat scenarios.  With our 
approach, we were able to use security expert’s judgment to 
evaluate joint requirements interactions in a security scenario 
by measuring the security adequacy ratings of the overall 
scenario and for the individual requirements composed in the 
scenario.  Our method also allows for extracting weights for 
the individual requirements in order to understand their 
assigned priorities in the scenario.  In addition, we show how 
our method is effective in eliciting three categories of security 
requirements modification: refinements, replacements and 
reinforcements. In the future, we plan to adapt our method to 
analyze scenarios that have a more complex attack surface to 
better understand how composition changes.  
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