Benedikt Boecking

I am a PhD student at Carnegie Mellon University, where I am a member of the Auton Lab advised by Artur Dubrawski. I am interested in the technical and theoretical aspects of how we engage domain experts in building and training machine learning models. In my current research projects I develop methods for data exploration (semi-supervised clustering) and label acquisition (active learning, interactive learning). In the past, I have also worked on algorithms, tools, and data analysis to help fight sex trafficking using deep web and dark web data.

You can contact me at: boecking at -nospam-


Uber Presidential Fellowship, Carnegie Mellon University, 2018.

Best Paper Award at IPP 2014, Oxford Internet Institute, University of Oxford.


Google Scholar Profile

Boecking, B. and Dubrawski, A. (2019). Pairwise Feedback for Data Programming. NeurIPS Workshop on Learning with Rich Experience (LIRE).

De-Arteaga, M.* and Boecking, B.* (2019). Killings of social leaders in the Colombian post-conflict: Data analysis for investigative journalism. arXiv:1906.08206.(*Indicates equal contribution)

Boecking, B., Miller, K., Kennedy, E., & Dubrawski, A. (2019). Quantifying the Relationship between Large Public Events and Escort Advertising Behavior. Journal of Human Trafficking, 5(3):220–237.

Hundman, K., Gowda, T., Kejriwal, K., Boecking, B (2018). Always Lurking: Understanding and Mitigating Bias in Online Human Trafficking Detection. In Proceedings of AAAI/ACM Conference on AI, Ethics, and Society 2018.

Nagpal, C., Miller, K., Boecking, B., & Dubrawski, A. (2017). An Entity Resolution approach to isolate instances of Human Trafficking online. Paper presented at the 3rd Workshop on Noisy User-generated Text (W-NUT) at EMNLP 2017, Copenhagen.

Boecking, B., Hall, M., & Schneider, J. (2015). Event prediction with learning algorithms—A study of events surrounding the egyptian revolution of 2011 on the basis of micro blog data. Policy & Internet, 7(2), 159-184.

Dubrawski, A., Miller, K., Barnes, M., Boecking, B., & Kennedy, E. (2015). Leveraging publicly available data to discern patterns of human-trafficking activity. Journal of Human Trafficking, 1(1), 65-85.

Boecking, B., Hall, M., & Schneider, J. (2014). Predicting Events Surrounding the Egyptian Revolution of 2011 Using Learning Algorithms on Micro Blog Data. Paper presented at Internet, Politics, and Policy 2014: Crowdsourcing for Politics and Policy, University of Oxford (2014). Best Paper Award

Boecking, B., Chalup, S. K., Seese, D., & Wong, A. S. (2014). Support vector clustering of time series data with alignment kernels. Pattern Recognition Letters, 45, 129-135.

Other Projects

Líderes en vía de extinción. A data-driven journalistic investigation into killings of social leaders in Colombia, together with Maria De-Arteaga and CONNECTAS, published in El País in Colombia. Read the article here. This article won 2nd place at Premio ¡Investiga! 2019, an award for investigative journalism in Colombia.