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ABSTRACT

LOCALIZATION, mapping and moving object tracking serve as the basis for scene un-
derstanding, which is a key prerequisite for making a robot truly autonomous.
Simultaneous localization, mapping and moving object tracking (SLAMMOT) in-

volves not only simultaneous localization and mapping (SLAM) in dynamic environments
but also detecting and tracking these dynamic objects. It is believed by many that a solution
to the SLAM problem would open up a vast range of potential applications for autonomous
robots. Accordingly, a solution to the SLAMMOT problem would expand robotic applica-
tions in proximity to human beings where robots work not only for people but also with
people.

This thesis establishes a new discipline at the intersection of SLAM and moving object
tracking. Its contributions are two-fold: theoretical and practical.

From a theoretical perspective, we establish a mathematical framework to integrate
SLAM and moving object tracking, which provides a solid basis for understanding and
solving the whole problem. We describe two solutions: SLAM with generic objects (GO),
and SLAM with detection and tracking of moving objects (DATMO). SLAM with GO cal-
culates a joint posterior over all generic objects and the robot. Such an approach is similar
to existing SLAM algorithms, but with additional structure to allow for motion modelling
of the generic objects. Unfortunately, it is computationally demanding and infeasible. Con-
sequently, we provide the second solution, SLAM with DATMO, in which the estimation
problem is decomposed into two separate estimators. By maintaining separate posteriors
for the stationary objects and the moving objects, the resulting estimation problems are
much lower dimensional than SLAM with GO.

From a practical perspective, we develop algorithms for dealing with the implemen-
tation issues on perception modelling, motion modelling and data association. Regarding
perception modelling, a hierarchical object based representation is presented to integrate
existing feature-based, grid-based and direct methods. The sampling- and correlation-
based range image matching algorithm is developed to tackle the problems arising from
uncertain, sparse and featureless measurements. With regard to motion modelling, we
describe a move-stop hypothesis tracking algorithm to tackle the difficulties of tracking
ground moving objects. Kinematic information from motion modelling as well as geomet-
ric information from perception modelling is used to aid data association at different levels.
By following the theoretical guidelines and implementing the described algorithms, we are
able to demonstrate the feasibility of SLAMMOT using data collected from the Navlab8
and Navlab11 vehicles at high speeds in crowded urban environments.
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CHAPTER 1

Introduction

One, a robot may not injure a human being, or through inaction, allow a human
being to come to harm;
Two, a robot must obey the orders given by human beings except where such
orders would conflict with the First Law;
Three, a robot must protect its own existence as long as such protection does
not conflict with the First or Second Laws.

– Isaac Asimov (1920 - 1992)
”I, Robot”

SCENE UNDERSTANDING is a key prerequisite for making a robot truly autonomous.

The scene around the robot consists of stationary and/or moving objects. In ap-

plications such as planetary exploration and automated mining, the world around

the robot consists of stationary objects, and only the robot can change its and the world’s

states. In applications such as elder care, office automation, security and safe driving, the

world is dynamic, consisting of both stationary and moving entities.

Establishing the spatial and temporal relationships among the robot, stationary objects

and moving objects in the scene serves as the basis for scene understanding. Localization

is the process of establishing the spatial relationships between the robot and stationary

objects, mapping is the process of establishing the spatial relationships among stationary

objects, and moving object tracking is the process of establishing the spatial and temporal

relationships between moving objects and the robot or between moving objects and sta-

tionary objects.

Localization, mapping and moving object tracking are difficult because of uncertainty

and unobservable states in the real world. For instance, perception sensors such as cam-

eras, radar and laser range finders, and motion sensors such as odometry and inertial mea-

surement units are noisy. For moving object tracking, the intentions, or control inputs, of
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the moving objects are unobservable without using extra sensors mounted on the moving

objects.

This dissertation is concerned with the problem of how a robot can accomplish local-

ization, mapping and moving object tracking in the real world. We will provide a theo-

retical framework that integrates all these problems and explain why all these problems

should be solved together. We will find algorithms for efficiently and robustly solving

this whole problem of simultaneous localization, mapping and moving object tracking

(SLAMMOT). We will demonstrate these algorithms with ample experimental results from

a ground vehicle at high speeds in crowded urban areas.

It is believed by many that a solution to the simultaneous localization and mapping

(SLAM) problem will open up a vast range of potential applications for autonomous robots

(Thorpe and Durrant-Whyte, 2001; Christensen, 2002). We believe that a solution to the

simultaneous localization, mapping and moving object tracking problem will expand the

potential for robotic applications in proximity to human beings. Robots will be able to work

not only for people but also with people. In the next section, we will illustrate the whole

problem with an example application, safe driving. See Figure 1.1 for an illustration.

Figure 1.1. Robotics for safe driving. Localization, mapping, and moving object
tracking are critical to driving assistance and autonomous driving.

2



1.1 SAFE DRIVING

1.1. Safe Driving

To improve driving safety and prevent traffic injuries caused by human factors such

as speeding and distraction, techniques to understand the surroundings of the vehicle are

critical. We believe that being able to detect and track every stationary object and every

moving object, to reason about the dynamic traffic scene, to detect and predict every critical

situation, and to warn and assist drivers in advance, is essential to prevent these kinds of

accidents.

Localization

In order to detect and track moving objects by using sensors mounted on a moving

ground vehicle at high speeds, a precise localization system is essential. It is known that

GPS and DGPS often fail in urban areas because of urban canyon effects, and good inertial

measurement systems (IMS) are very expensive.

If we can have a stationary object map in advance, the map-based localization tech-

niques such as those proposed by (Olson, 2000), (Fox et al., 1999), and (Dellaert et al., 1999)

can be used to increase the accuracy of the pose estimate. Unfortunately, it is difficult

to build a usable stationary object map because of temporary stationary objects such as

parked cars. Stationary object maps of the same scene built at different times could still be

different, which means that we still have to do online map building to update the current

stationary object map.

Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) allows robots to operate in an un-

known environment and then incrementally build a map of this environment and concur-

rently use this map to localize robots themselves. Over the last decade, the SLAM problem

has attracted immense attention in the mobile robotics literature (Christensen, 2002), and

SLAM techniques are at the core of many successful robot systems (Thrun, 2002). How-

ever, (Wang and Thorpe, 2002) have shown that SLAM can perform badly in crowded

urban environments because of the static environment assumption. Moving objects have

to be detected and filtered out.

Detection and Tracking of Moving Objects

The detection and tracking of moving objects (DATMO) problem has been extensively

studied for several decades (Bar-Shalom and Li, 1988, 1995; Blackman and Popoli, 1999).

3
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Even with precise localization, it is not easy to solve the DATMO problem in crowded

urban environments because of a wide variety of targets (Wang et al., 2003a).

When cameras are used to detect moving objects, appearance-based approaches are

widely used and moving objects can be detected no matter whether they are moving or not.

If laser scanners are used, feature-based approaches are usually the preferred solutions.

Both appearance-based and feature-based methods rely on prior knowledge of the targets.

In urban areas, there are many kinds of moving objects such as pedestrians, animals,

wheelchairs, bicycles, motorcycles, cars, buses, trucks and trailers. Velocities range from

under 5 mph (such as a pedestrian’s movement) to 50 mph. Figure 1.2 shows a traffic scene

on a highway and Figure 1.3 shows a traffic scene in an urban area. When using laser

scanners, the features of moving objects can change significantly from scan to scan. As

a result, it is very difficult to define features or appearances for detecting specific objects

using laser scanners.

Figure 1.2. A traffic scene on a highway. Figure 1.3. A traffic scene in an
urban area.

SLAM vs. DATMO

Figure 1.4. SLAM vs. DATMO.

Both SLAM and DATMO have been studied in isolation. However, when driving in

crowded urban environments composed of stationary and moving objects, neither of them

4
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is sufficient. The simultaneous localization, mapping and moving object tracking prob-

lem aims to tackle the SLAM problem and the DATMO problem at once. Because SLAM

provides more accurate pose estimates and a surrounding map, a wide variety of moving

objects are detected using the surrounding map without using any predefined features or

appearances, and tracking is performed reliably with accurate robot pose estimates. SLAM

can be more accurate because moving objects are filtered out of the SLAM process thanks

to the moving object location prediction from DATMO. SLAM and DATMO are mutually

beneficial. Integrating SLAM with DATMO would satisfy both the safety and navigation

demands of safe driving. It would provide a better estimate of the robot’s location and

information of the dynamic environments, which are critical to driving assistance and au-

tonomous driving.

Although performing SLAM and DATMO at the same time is superior to doing just

one or the other, the integrated approach inherits the difficulties and issues from both the

SLAM problem and the DATMO problem. Therefore, besides deriving a mathematical

formulation to seamlessly integrate SLAM and DATMO, we need to answer the following

questions:

• Assuming that the environment is static, can we solve the simultaneous localiza-

tion and mapping problem from a ground vehicle at high speeds in very large

urban environments?

• Assuming that the robot pose estimate is accurate and moving objects are cor-

rectly detected, can we solve the moving object tracking problem in crowded

urban environments?

• Assuming that the SLAM problem and the DATMO problem can be solved in

urban areas, is it feasible to solve the simultaneous localization, mapping and

moving object tracking problem? What problems will occur when the SLAM

problem and the DATMO problem are solved together?

In the following sections, we will discuss these problems from both theoretical and

practical points of view.

1.2. City-Sized Simultaneous Localization and Mapping

Since Smith, Self and Cheeseman first introduced the simultaneous localization and

mapping (SLAM) problem (Smith and Cheeseman, 1986; Smith et al., 1990), the SLAM

problem has attracted immense attention in the mobile robotics literature. SLAM involves

simultaneously estimating locations of newly perceived landmarks and the location of the

robot itself while incrementally building a map. The web site of the 2002 SLAM summer

5
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school1 provides a comprehensive coverage of the key topics and state of the art in SLAM.

In this section, we address three key issues to accomplish city-sized SLAM: computational

complexity, representation, and data association in the large.

Figure 1.5. City-sized SLAM. Top shows the 3D (2.5D) map of several street blocks
using the algorithm addressed in (Wang et al., 2003b). Is it possible to accomplish
online SLAM in a city?

Computational Complexity

In the SLAM literature, it is known that a key bottleneck of the Kalman filter solution

is its computational complexity. Because it explicitly represents correlations of all pairs

among the robot and stationary objects, both the computation time and memory require-

ment scale quadratically with the number of stationary objects in the map. This computa-

tional burden restricts applications to those in which the map can have no more than a few

hundred stationary objects.

Recently, this problem has been subject to intense research. Approaches using ap-

proximate inference, using exact inference on tractable approximations of the true model,

and using approximate inference on an approximate model have been proposed. In this

1http://www.cas.kth.se/SLAM/
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dissertation, we will take advantage of these promising approaches and focus on the rep-

resentation and data association issues. More details about the computational complexity

issue will be addressed in Section 2.2.

Representation

Even with an advanced algorithm to deal with computational complexity, most SLAM

applications are still limited to indoor environments (Thrun, 2002) or specific environments

and conditions (Guivant et al., 2000) because of significant issues in defining environment

representation and identifying an appropriate methodology for fusing data in this repre-

sentation (Durrant-Whyte, 2001). For instance, feature-based approaches have an elegant

solution by using a Kalman filter or an information filter, but it is difficult to extract fea-

tures robustly and correctly in outdoor environments. Grid-based approaches do not need

to extract features, but they do not provide any direct means to estimate and propagate

uncertainty and they do not scale well in very large environments.

In Chapter 3, we will address the representation related issues in detail and describe

a hierarchical object based representation for overcoming the difficulties of the city-sized

SLAM problem.

Data Association in the Large

Given correct data association in the large, or loop detection, SLAM can build a glob-

ally consistent map regardless of the size of the map. In order to obtain correct data as-

sociation in the large, most large scale mapping systems using moving platforms (Zhao

and Shibasaki, 2001; Früh and Zakhor, 2003) are equipped with expensive state estimation

systems to assure the accuracy of the state estimation. In addition, independent position

information from GPS or aerial photos is used to provide global constraints.

Without these aids, the accumulated error of the pose estimate and unmodelled uncer-

tainty in the real world increase the difficulty of loop detection. For dealing with this issue

without access to independent position information, our algorithm based on covariance

increasing, information exploiting and ambiguity modelling will be presented in Chapter

5.

In this work, we will demonstrate that it is feasible to accomplish city-sized SLAM.

7
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1.3. Moving Object Tracking in Crowded Urban Environments

In order to accomplish moving object tracking in crowded urban areas, three key is-

sues have to be solved: detection, data association in the cluttered, and moving object

motion modelling.

Detection

Recall that detection of ground moving objects using feature- or appearance-based

approaches is infeasible because of the wide variety of targets in urban areas. In Chap-

ter 6, the consistency-based detection and the moving object map based detection will be

described for robustly detecting moving objects using laser scanners.

Cluttered Environments

Urban areas are often cluttered, as illustrated in Figure 1.3. In the tracking literature,

there are a number of techniques for solving data association in the cluttered such as multi-

ple hypothesis tracking (MHT) approaches (Reid, 1979; Cox and Hingorani, 1996) and joint

probabilistic data association (JPDA) approaches (Fortmann et al., 1983; Schulz et al., 2001).

In addition to the MHT approach, we use geometric information of moving objects to

aid data association in the cluttered because of the rich geometric information contained in

laser scanner measurements, which will be discussed in Chapter 3 and Chapter 5.

Motion Modelling

In SLAM, we can use odometry and the identified robot motion model to predict the

future location of the robot, so that the SLAM problem is an inference problem. However,

in DATMO neither a priori knowledge of moving objects’ motion models nor odometry

measurements about moving objects is available. In practice, motion modes of moving

objects are often partially unknown and time-varying. Therefore, the motion modes of the

moving object tracking have to be learned online. In other words, moving object tracking

is a learning problem.

In the tracking literature, multiple model based approaches have been proposed to

solve the motion modelling problem. The related approaches will be reviewed in Section

2.3.

Compared to air and marine target tracking, ground moving object tracking (Chong

et al., 2000; Shea et al., 2000) is more complex because of more degrees of freedom (e.g.,

move-stop-move maneuvers). In Chapter 4, we will present a stationary motion model

and a move-stop hypothesis tracking algorithm to tackle this issue.

8
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Figure 1.6. Tracking difficulty vs. degrees of freedom. More degrees-of-freedom of
a moving object more difficult tracking.

1.4. Simultaneous Localization, Mapping and Moving Object Tracking

After establishing capabilities to solve the SLAM problem and the DATMO problem

in urban areas, it is feasible to solve the simultaneous localization, mapping and moving

object tracking problem. Because simultaneous localization, mapping and moving object

tracking is a more general process based on the integration of SLAM and moving object

tracking, it inherits the complexity, data association, representation (perception modelling)

and motion modelling issues from the SLAM problem and the DATMO problem. It is clear

that the simultaneous localization, mapping and moving object tracking problem is not

only an inference problem but also a learning problem.

In Chapter 2, we will present two approaches and derive the corresponding Bayesian

formulas for solving the simultaneous localization, mapping and moving object tracking

problem: one is SLAM with Generic Objects, or SLAM with GO, and the other is SLAM

with DATMO.

1.5. Experimental Setup

Range sensing is essential in robotics for scene understanding. Range information can

be from active range sensors or passive range sensors. (Hebert, 2000) presented a broad

review of range sensing technologies for robotic applications. In spite of the different char-

acteristics of these range sensing technologies, the theory presented in Chapter 2 does not

limit the usage of specific sensors as long as sensor characteristics are properly modelled.

When using more accurate sensors, inference and learning are more practical and

tractable. In order to accomplish simultaneous localization, mapping and moving object

tracking from a ground vehicle at high speeds, we mainly focus on issues of using active

9
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ranging sensors. SICK scanners2 are being used and studied in this work. Data sets col-

lected from the Navlab8 testbed (see Figure 1.7) and the Navlab11 testbed (see Figure 1.8)

are used to verify the derived formulas and the developed algorithms. Visual images from

the omni-directional camera and the tri-camera system are only for visualization. Figure

1.9 shows a raw data set collected from the Navlab11 testbed. For the purpose of compari-

son, the result from our algorithms is shown in Figure 1.10 where measurements associated

with moving objects are filtered out.

Figure 1.7. Left: the Navlab8 testbed. Right: the SICK PLS100 and the omni-
directional camera.

Figure 1.8. Right: the Navlab11 testbed. Left: SICK LMS221, SICK LMS291 and the
tri-camera system.

1.6. Thesis Statement

Performing localization, mapping and moving object tracking concurrently is superior

to doing just one or the other. We will establish a mathematical framework that integrates

all, and demonstrate that it is indeed feasible to accomplish simultaneous localization,

2http://www.sickoptic.com/
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Figure 1.9. Raw data from the Navlab11 testbed. This data set contains ∼36,500
scans and the travel distance is ∼5 km.

Figure 1.10. Result of SLAM with DATMO. A globally consistent map is generated
and measurements associated with moving objects are filtered out.

mapping and moving object tracking from a ground vehicle at high speeds in crowded

urban areas.

11
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1.7. Document Outline

The organization of this dissertation is summarized in Figure 1.11. We will describe

the foundations for solving the SLAMMOT problem in Chapter 2 and the practical issues

about perception modelling, motion modelling and data association in the rest of the chap-

ters.

Figure 1.11. Thesis overview.

We begin Chapter 2 with a review of the formulations of the SLAM problem and the

moving object tracking problem. We establish a mathematical framework to integrate lo-

calization, mapping and moving object tracking, which provides a solid basis for under-

standing and solving the whole problem. We describe two solutions: SLAM with GO,

and SLAM with DATMO. SLAM with GO calculates a joint posterior over all objects (robot

pose, stationary objects and moving objects). Such an approach is similar to existing SLAM

algorithms, but with additional structure to allow for motion modelling of the moving ob-

jects. Unfortunately, it is computationally demanding and infeasible. Consequently, we

describe SLAM with DATMO, which is feasible given reliable moving object detection.

In Chapter 3, we address perception modelling issues. We provide a comparison of

the main paradigms for perception modelling in terms of uncertainty management, sensor

characteristics, environment representability, data compression and loop-closing mecha-

nism. To overcome the limitations of these representation methods and accomplish both

SLAM and moving object tracking, we present the hierarchical object-based approach to

integrate direct methods, grid-based methods and feature-based methods. When data is

uncertain and sparse, the pose estimate from the direct methods such as the iterated closed

point (ICP) algorithm may not be correct and the distribution of the pose estimate may not

12



1.7 DOCUMENT OUTLINE

be described properly. We describe a sampling and correlation based range image match-

ing (SCRIM) algorithm to tackle these issues.

Theoretically, motion modelling is as important as perception modelling in Bayesian

approaches. Practically, the performance of tracking strongly relates to motion modelling.

In Chapter 4, we address model selection and model complexity issues in moving object

motion modelling. A stationary motion model is added to the model set and the move-stop

hypothesis tracking algorithm is applied to tackle the move-stop-move or very slow target

tracking problem.

In Chapter 5, three data association problems are addressed: data association in the

small, data association in the cluttered and data association in the large. We derive for-

mulas to use rich geometric information from perception modelling as well as kinematics

from motion modelling for solving data association. Data association in the large, or the

revisiting problem, is very difficult because of accumulated pose estimate errors, unmod-

elled uncertainty, occlusion, and temporary stationary objects. We will demonstrate that

following three principles - covariance increasing, information exploiting and ambiguity

modelling - is sufficient for robustly detecting loops in very large scale environments.

In Chapter 6, we address the implementation issues for linking foundations, percep-

tion modelling, motion modelling and data association together. We provide two practical

and reliable algorithms for detecting moving objects using laser scanners. For verifying

the theoretical framework and the described algorithms, we show ample results carried

out with Navlab8 and Navlab11 at high speeds in crowded urban and suburban areas. We

also point out the limitations of our system due to the 2-D environment assumption and

sensor failures.

Finally, we conclude with a summary of this work and suggest future extensions in

Chapter 7.

13





CHAPTER 2

Foundations

The essence of the Bayesian approach is to provide a mathematical rule explain-
ing how you should change your existing beliefs in the light of new evidence.

– In praise of Bayes, the Economist (9/30/00)

BAYESIAN THOERY has been a solid basis for formalizing and solving many statis-

tics, control, machine learning and computer vision problems. The simultaneous

localization, mapping and moving object tracking problem involves not only accom-

plishing SLAM in dynamic environments but also detecting and tracking these dynamic

objects. Bayesian theory also provides a useful guidance for understanding and solving

this problem.

SLAM and moving object tracking can both be treated as processes. SLAM assumes

that the surrounding environment is static, containing only stationary objects. The inputs

of the SLAM process are measurements from perception sensors such as laser scanners and

cameras, and measurements from motion sensors such as odometry and inertial measure-

ment units. The outputs of the SLAM process are robot pose and a stationary object map

(see Figure 2.1.a). Given that the sensor platform is stationary or that a precise pose esti-

mate is available, the inputs of the moving object tracking problem are perception measure-

ments and the outputs are locations of moving objects and their motion modes (see Figure

2.1.b). The simultaneous localization, mapping and moving object tracking problem can

also be treated as a process without the static environment assumption. The inputs of this

process are the same as for the SLAM process, but the outputs are not only the robot pose

and the map but also the locations and motion modes of the moving objects (see Figure

2.1.c).

Without considering the perception modelling and data association issues in practice,

a key issue of the SLAM problem is complexity, and a key issue of the moving object tracking

problem is motion modelling. Because SLAMMOT inherits the complexity issue from the
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(a) the simultaneous localization and mapping (SLAM) process

(b) the moving object tracking (MOT) process

(c) the simultaneous localization, mapping and moving object tracking (SLAMMOT)
process

Figure 2.1. The SLAM process, the MOT process and the SLAMMOT process. Z
denotes the perception measurements, U denotes the motion measurements, x is
the true robot state, M denotes the locations of the stationary objects, O denotes
the states of the moving objects and S denotes the motion modes of the moving
objects.

SLAM problem and the motion modelling issue from the moving object tracking problem,

the SLAMMOT problem is not only an inference problem but also a learning problem.

In this chapter, we first review uncertain spatial relationships which are essential to

the SLAM problem, the MOT problem, and the SLAMMOT problem. We will briefly re-

view the Bayesian formulas of the SLAM problem and the moving object tracking problem.

In addition, Dynamic Bayesian Networks (DBNs)1 are used to show the dependencies be-

tween the variables of these problems and explain how to compute these formulas. We

will present two approaches for solving the simultaneous localization, mapping and mov-

ing object tracking problem: SLAM with GO and SLAM with DATMO. For the sake of

simplicity, we assume that perception modelling and data association problems are solved

and both stationary objects and moving objects can be represented by point-features. The

details for dealing these issues will be addressed in the following chapters.

1For complicated probabilistic problems, computing the Bayesian formula is often computationally in-
tractable. Graphical models (Jordan, 2003) provide a natural tool to visualize the dependencies between the vari-
ables of the complex problems, and help simplify the Bayesian formula computations by combining simpler parts
and ensuring that the system as a whole is still consistent. Dynamic Bayesian Networks (DBNs) (Murphy, 2002) are
directed graphical models of stochastic processes.
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2.1 UNCERTAIN SPATIAL RELATIONSHIPS

2.1. Uncertain Spatial Relationships

For solving the SLAM problem, the MOT problem or the SLAMMOT problem, manip-

ulating uncertain spatial relationships is fundamental. In this section we only intuitively re-

view the spatial relationships for the two dimensional case with three degrees-of-freedom.

See (Smith et al., 1990) for a derivation.

Compounding

In an example in which a moving object is detected by a sonar mounted on a robot, we

need to compound the uncertainty from the robot pose estimate and the uncertainty from

the sonar measurement in order to correctly represent the location of this moving object

and the corresponding distribution with respect to the world coordinate system.

Figure 2.2. Compounding of spatial relationships.

Given two spatial relationships, xij and xjk, the formula for compounding xik from

xij and xjk is:

xik
4
= ⊕(xij , xjk) =




xjk cos θij − yjk sin θij + xij

xjk sin θij + yjk cos θij + yij

θij + θjk


 (2.1)

where ⊕ is the compounding operator, and xij and xjl are defined by:

xij =




xij

yij

θij


 , xjk =




xjk

yjk

θjk




Let µ be the mean and Σ be the covariance. The first-order estimate of the mean of the

compounding operation is:

µxik
≈ ⊕(µxij , µxjk

) (2.2)

The first order estimate of the covariance is:

Σxik
≈ ∇⊕

[
Σxij Σxijxjk

Σxjkxij Σxjk

]
∇T
⊕ (2.3)
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where the Jacobian of the compounding operation, ∇⊕, is defined by:

∇⊕ 4
=

∂ ⊕ (xij , xjk)
∂(xij , xjk)

=




1 0 −(yik − yij) cos θij − sin θij 0
0 1 (xik − xij) sin θij cos θij 0
0 0 1 0 0 1


 (2.4)

In the case that the two relationships are independent, we can rewrite the first-order

estimate of the covariance as:

Σxik
≈ ∇1⊕Σxik

∇T
1⊕ +∇2⊕Σxjk

∇T
2⊕ (2.5)

where ∇1⊕ and ∇2⊕ are the left and right halves of the compounding Jacobian. The com-

pounding relationship is also called the head-to-tail relationship in (Smith et al., 1990).

The Inverse Relationship

Figure 2.3. The inverse relationship.

Figure 2.3 shows the inverse relationship. For example, given the robot pose in the

world coordinate frame, xij , the origin of the world frame with respect to the robot frame,

xji, is:

xji
4
= ª(xij) =



−xij cos θij − yij sin θij

xij sin θij − yij cos θij

−θij


 (2.6)

where ª is the inverse operator.

The first-order estimate of the mean of the inverse operation is:

µxji ≈ ª(µxij )

and the first-order covariance estimate is:

Σxji ≈ ∇ªΣxij∇T
ª

where the Jacobian for the inverse operation, ∇ª, is:

∇ª 4
=

∂xji

∂xij
=



− cos θij − sin θij yji

sin θij − cos θij −xji

0 0 −1


 (2.7)
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Figure 2.4. The tail-to-tail relationship.

The Tail-to-Tail Relationship

For local navigation or obstacle avoidance, it is more straightforward to use the lo-

cations of moving objects in the robot frame than the locations with respect to the world

coordinate system. In the example of Figure 2.4, given the locations of the robot xij and a

moving object xik in the world frame, we want to know the location of this moving object,

xjk, and its distribution, Σxjk
, in the robot frame, which can be calculated recursively by:

xjk
4
= ⊕(ª(xij), xik) = ⊕(xji, xik) (2.8)

This relationship is called the tail-to-tail relationship in (Smith et al., 1990). The first-

order estimate of the mean of this tail-to-tail operation is:

µxjk
≈ ⊕(ª(µxij ), µxik

) (2.9)

and the first-order covariance estimate can be computed in a similar way:

Σxjk
≈ ∇⊕

[
Σxji Σxjixjk

Σxjkxji Σxjk

]
∇T
⊕ ≈ ∇⊕

[ ∇ªΣxij∇T
ª Σxijxjk

∇T
ª

∇ªΣxjkxij Σxjk

]
∇T
⊕ (2.10)

Note that this tail-to-tail operation is often used in data association and moving object

tracking.

Unscented Transform

As addressed above, these spatial uncertain relationships are non-linear functions and

are approximated by their first-order Taylor expansion for estimating the means and the

covariances of their outputs. In the cases that the function is not approximately linear in

the likely region of its inputs or the Jacobian of the function is unavailable, the unscented

transform (Julier, 1999) can be used to improve the estimate accuracy. (Wan and van der

Merwe, 2000) shows an example of using the unscented transform technique.

2.2. Simultaneous Localization and Mapping

In this section, we address the formulation, calculation procedures, computational

complexity and practical issues of the SLAM problem.
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Formulation of SLAM

The general formula for the SLAM problem can be formalized in the probabilistic form

as:

p(xk,M | u1, u2, . . . uk, z0, z1, . . . zk) (2.11)

where xk is the true pose of the robot at time k, uk is the measurement from motion sensors

such as odomtrey and inertial sensors at time k, zk is the measurement from perception

sensors such as laser scanner and camera at time k, and M is stochastic stationary object

map which contains l landmarks, m1,m2, . . . ml. In addition, we define the following set

to refer data leading up to time k:

Zk
4
= {z0, z1, . . . , zk} (2.12)

Uk
4
= {u1, u2, . . . , uk} (2.13)

Therefore, equation (2.11) can be rewritten as:

p(xk,M | Uk, Zk) (2.14)

Using Bayes’ rule and assumptions that the vehicle motion model is Markov and the

environment is static, the general recursive Bayesian formula for SLAM can be derived and

expressed as: (See (Thrun, 2002; Majumder et al., 2002) for more details.)

p(xk,M | Zk, Uk)︸ ︷︷ ︸
Posterior at k

∝ p(zk | xk,M)︸ ︷︷ ︸
Update

∫
p(xk | xk−1, uk) p(xk−1, M | Zk−1, Uk−1)︸ ︷︷ ︸

Posterior at k − 1

dxk−1

︸ ︷︷ ︸
Prediction

(2.15)

where p(xk−1,M | Zk−1, Uk−1) is the posterior probability at time k−1, p(xk,M | Zk, Uk) is

the posterior probability at time k, p(xk | xk−1, uk) is the motion model, and p(zk | xk,M)

is the update stage which can be inferred as the perception model.

Calculation Procedures

Equation 2.15 only explains the computation procedures in each time step but does

not address the dependency structure of the SLAM problem. Figure 2.5 shows a Dynamic

Bayesian Network of the SLAM problem of duration three, which can be used to visualize

the dependencies between the robot and stationary objects in the SLAM problem. In this

section, we describe the Kalman filter-based solution of Equation 2.15 with visualization

aid from Dynamic Bayesian Networks (Paskin, 2003). The EKF-based framework described
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in this section is identical to that used in (Smith and Cheeseman, 1986; Smith et al., 1990;

Leonard and Durrant-Whyte, 1991).

Figure 2.5. A Dynamic Bayesian Network (DBN) of the SLAM problem of duration
three. It shows the dependencies among the motion measurements, the robot, the
perception measurements and the stationary objects. In this example, there are
two stationary objects, m1 and m2. Clear circles denote hidden continuous nodes
and shaded circles denote observed continuous nodes. The edges from stationary
objects to measurements are determined by data association. We will walk through
this in the next pages.

Stage 1: Initialization. Figure 2.6 shows the initialization stage, or adding new

stationary objects stage. Although the distributions are shown by ellipses in these figures,

the Bayesian formula does not assume that the estimations are Gaussian distributions. In

this example, two new stationary objects are detected and added to the map. The state xS
k

of the whole system now is:

xS
k =




xk

m1

m2


 (2.16)

Let the perception model, p(zk | xk, M), be described as:

zk = h(xk, M) + wk (2.17)

where h is the vector-valued perception model and wk ∼ N (0, Rk) is the perception error,

an uncorrelated zero-mean Gaussian noise sequence with covariance, Rk. Because the zk

are the locations of the stationary objects M with respect to the robot coordinate system, the

perception model h is simply the tail-to-tail relationship of the robot and the map. Let the

perception sensor return the mean location, ẑ1
0 , and variance, R1

0, of the stationary object

m1 and ẑ2
0 and R2

0 of m2. To add these measurements to the map, these measurements are

compounded with the robot state estimate and its distribution because these measurements
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Figure 2.6. The initialization
stage of SLAM. Solid squares
denote stationary objects and
black solid circle denotes the
robot. Distributions are shown
by ellipses.

Figure 2.7. A DBN represent-
ing the initialization stage of
SLAM. After this stage, the
undirected graphical model is
produced in which two station-
ary objects and the robot state
are directly dependent.

are with respect to the robot coordinate system. Therefore, the mean and covariance of the

whole system can be computed as in:

µxS
0

=




µx0

⊕(µx0 , ẑ
1
0)

⊕(µx0 , ẑ
2
0)


 (2.18)

ΣxS
0

=




Σx0x0 Σx0m1 Σx0m2

ΣT
x0m1 Σm1m1 Σm1m2

ΣT
x0m2 ΣT

m1m2 Σm2m2




=




Σx0x0 Σx0x0∇T
1⊕ Σx0x0∇T

1⊕
∇1⊕Σx0x0 ∇1⊕Σx0x0∇T

1⊕ +∇2⊕R1
0∇T

2⊕ 0
∇1⊕Σx0x0 0 ∇1⊕Σx0x0∇T

1⊕ +∇2⊕R2
0∇T

2⊕


 (2.19)

This stage is shown as p(xk−1,M | Zk−1, Uk−1) in equation (2.15). Figure 2.7 shows

a DBN representing the initialization stage, or the adding new stationary objects stage, in

which the undirected graphical model is produced by moralizing2 the directed graphical

model. The observed nodes are eliminated to produce the final graphical model which

shows that two stationary objects and the robot state are directly dependent.

Stage 2: Predication. In Figure 2.8, the robot moves and gets a motion measurement

u1 from odometry or inertial sensors. Let the robot motion model, p(xk | xk−1, uk), be

2In the Graphical Model literature, moralizing means adding links between unmarried parents who share a
common child.
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described as:

xk = f(xk−1, uk) + vk (2.20)

where f(.) is the vector of non-linear state transition functions and vk is the motion noise,

an uncorrelated zero-mean Gaussian noise sequence with covariance, Qk. Assuming that

the relative motion in the robot frame is given by uk, clearly the new location of the robot

is the compounding relationship of the robot pose xk−1 and uk. Because only the robot

moves, only the elements of the mean and the covariance matrix that corresponding to

xk must be computed. In this example, the mean and the covariance matrix of the whole

system can be computed as:

µxS
1

=



⊕(µx0 , u1)

µm1

µm2


 (2.21)

and

ΣxS
1

=




Σx1x1 Σx1m1 Σx1m2

ΣT
x1m1 Σm1m1 Σm1m2

ΣT
x1m2 ΣT

m1m2 Σm2m2




=



∇1⊕Σx0x0∇T

1⊕ +∇2⊕Q1∇T
2⊕ ∇1⊕Σx0m1 ∇1⊕Σx0m2

ΣT
x0m1∇T

1⊕ Σm1m1 Σm1m2

ΣT
x0m2∇T

1⊕ ΣT
m1m2 Σm2m2


 (2.22)

Figure 2.8. The prediction stage
of SLAM.

Figure 2.9. A DBN representing
the prediction stage of SLAM.

This is the prediction stage of the SLAM problem which is shown as
∫

p(xk | xk−1, uk)

p(xk−1,M | Zk−1, Uk−1)dxk−1 in equation (2.15). Figure 2.9 shows a DBN representing the

prediction stage of the SLAM problem. The new nodes, x1 and u1, are added to the graph-

ical model from the initialization stage. After moralizing the directed graphical model,

eliminating the odometry node u1 and eliminating the node x0, the resulting undirected
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graphical model is produced in which two stationary objects and the robot state are still

directly dependent.

Stage 3: Data Association. Figure 2.10 shows that the robot gets new measure-

ments, z1
1 and z2

1 , at the new location x1 and associates z1
1 and z2

1 with the stationary object

map. This is the data association stage of the SLAM problem. Gating is one of the data

association techniques for determining whether a measurement z originates from some

landmark m. More details about data association will be addressed in Chapter 5.

Figure 2.10. The data associa-
tion stage of SLAM. Irregular
stars denote new measure-
ments.

Figure 2.11. A DBN represent-
ing the data association stage
of SLAM.

Figure 2.11 shows a DBN representing the data association stage. The new perception

measurement nodes, z1
1 and z2

1 , are added to the graphical model from the prediction stage.

After data association, two directed edges are added to connect new measurements with

the stationary object map.

Stage 4: Update. Figure 2.12 shows the update stage of the SLAM problem. Let

the perception sensor return the mean location, ẑ1
1 , and variance, R1

1, of the stationary

object m1 and ẑ2
1 and R2

1 of m2. These constraints are used to update the estimate and

the corresponding distribution of the whole system with Kalman filtering or other filtering

techniques.

An innovation and its corresponding innovation covariance matrix are calculated by:

ν1 = z1 − ẑ1 (2.23)

Σν1 = ∇hΣxS
1
∇T

h + ΣR1 (2.24)

24



2.2 SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.12. The update stage of SLAM Figure 2.13. A DBN represent-
ing the update stage of SLAM

where z1 and ẑ1 are computed by the compounding operation:

z1 =
[ ⊕(ª(µx1), µm1)
⊕(ª(µx1), µm2)

]
(2.25)

ẑ1 =
[

ẑ1
1

ẑ2
1

]
(2.26)

and∇h is the Jacobian of h taken at µx1 . Then the state estimate and its corresponding state

estimate covariance are updated according to:

xS
1 = xS

1 + K1ν1 (2.27)

ΣxS
1

= ΣxS
1
−K1∇hΣxS

1
(2.28)

where the gain matrix is given by:

K1 = ΣxS
1
∇T

h Σ−1
ν1

(2.29)

This is the update stage of the SLAM problem which is shown as p(zk | xk,M) in equa-

tion (2.15). Figure 2.13 shows a DBN representing the update stage of the SLAM problem.

After the update stage, the robot and two stationary objects are fully correlated.

Computational Complexity

The Kalman filter solution of the SLAM problem is elegant, but a key bottleneck is its

computational complexity. Because it explicitly represents correlations of all pairs among

the robot and stationary objects, the size of the covariance matrix of the whole system

grows as O(l2), given that the number of stationary objects is l. The time complexity of

the standard EKF operation in the update stage is also O(l2). This computational burden

restricts applications to those in which the map can have no more than a few hundred
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stationary objects. The only way to avoid this quadratically increasing computational re-

quirement is to develop suboptimal and approximate techniques. Recently, this problem has

been subject to intense research. Approaches using approximate inference, using exact in-

ference on tractable approximations of the true model, and using approximate inference

on an approximate model have been proposed. These approaches include:

• Thin junction tree filters (Paskin, 2003).

• Sparse extended information filters (Thrun et al., 2002; Thrun and Liu, 2003).

• Submap-based approaches: the Atlas framework (Bosse et al., 2003), compressed

filter (Guivant and Nebot, 2001) and Decoupled Stochastic Mapping (Leonard

and Feder, 1999).

• Rao-Blackwellised particle filters (Montemerlo, 2003).

This topic is beyond the scope intended by this dissertation. (Paskin, 2003) includes

an excellent comparison of these techniques.

Perception Modelling and Data Association

Besides the computational complexity issue, the problems of perception modelling

and data association have to be solved in order to accomplish city-sized SLAM. For in-

stance, the described feature-based formulas may not be feasible because extracting fea-

tures robustly is very difficult in outdoor, urban environments. Data association is difficult

in practice because of featureless areas, occlusion, etc. We will address perception mod-

elling in Chapter 3 and data association in Chapter 5.

2.3. Moving Object Tracking

Just as with the SLAM problem, the moving object tracking problem can be solved

with the mechanism of Bayesian approaches such as Kalman filtering. Assuming correct

data association, the moving object tracking problem is easier than the SLAM problem in

terms of computational complexity. However, motion models of moving objects are often

partially unknown and time-varying. The moving object tracking problem is more difficult

than the SLAM problem in terms of online motion model learning. In this section, we

address the formulation, mode learning with state inference, calculation procedures and

motion modelling issues of the moving object tracking problem.
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Formulation of Moving Object Tracking

The robot (sensor platform) is assumed to be stationary for the sake of simplicity. The

general formula for the moving object tracking problem can be formalized in the proba-

bilistic form as:

p(ok, sk | Zk) (2.30)

where ok is the true state of the moving object at time k, and sk is the true motion mode of

the moving object at time k, and Zk is the perception measurement set leading up to time

k.

Using Bayes’ rule, Equation 2.30 can be rewritten as:

p(ok, sk | Zk) = p(ok | sk, Zk)p(sk | Zk) (2.31)

which indicates that the whole moving object tracking problem can be solved by two

stages: the first stage is the mode learning stage p(sk | Zk), and the second stage is the

state inference stage p(ok | sk, Zk).

Mode Learning and State Inference

Without a priori information, online mode learning of time-series data is a daunting

task. In the control literature, specific data collection procedures are designed for iden-

tification of structural parameters of the system. However, online collected data is often

not enough for online identification of the structural parameters in moving object tracking

applications.

Fortunately, the motion mode of moving objects can be approximately composed of

several motion models such as the constant velocity model, the constant acceleration model

and the turning model. Therefore the mode learning problem can be simplified to a model

selection problem. It is still difficult though because the motion mode of moving objects

can be time-varying. In this section, practical multiple model approaches are briefly reviewed

such as the generalized pseudo-Bayesian (GPB) approaches and the interacting multiple

model (IMM) approach. Because the IMM algorithm is integrated into our whole algo-

rithm, the derivation of the IMM algorithm will be described in detail. The multiple model

approaches described in this section are identical to those used in (Bar-Shalom and Li, 1988,

1995).

The same problems are solved with switching dynamic models in the machine learning

literature (Ueda and Ghahramani, 2002; Pavlovic et al., 1999; Ghahramani and Hinton,
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1998). In the cases that the models in the model set are linear, such systems are called jump-

linear systems or switching linear dynamic models. However, most of them are batch so that

they are not suitable for our applications.

Fixed Structure Multiple Model Approach for Switching Modes. In the fixed

structure multiple model approach, it is assumed that the mode of the system obeys one of

a finite number of models in which the system has both continuous nodes as well as discrete

nodes. Figure 2.14 shows a Dynamic Bayesian Network representing three time steps of an

example multiple model approach for solving the moving object tracking problem.

Figure 2.14. A DBN for multiple model based moving object tracking. Clear circles
denote hidden continuous nodes, clear squares denotes hidden discrete nodes and
shaded circles denotes continuous nodes.

The mode of the moving object is assumed to be one of r possible models which is

described by:

sk ∈ {Mj}r
j=1 (2.32)

where M is the model set.

In practice the system does not always stay in one mode. Because mode jump or mode

switch does occur, the mode-history of the system should be estimated. The mode history

through time k is denoted as Sk

Sk = {s1, s2, . . . , sk} (2.33)

Given r possible models, the number of possible histories, M l
k, is rk at time k, which

increases exponentially with time. Let l be the index of the mode history.

l = 1, 2, . . . , rk (2.34)

The lth mode history, or sequence of modes, through time k is denoted as:

M l
k = {Ml1

1 ,Ml2
2 , . . . ,Mlk

k }
= {M l

k−1,Mlk
k } (2.35)
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where li is the model index at time i from the history l and

1 5 li 5 r i = 1, . . . , k (2.36)

Using Bayes’ rule, the conditional probability of the lth mode history M l
k can be ob-

tained as:

µl
k

4
= p(M l

k | Zk)

= p(M l
k | Zk−1, zk)

=
p(zk | M l

k, Zk−1)p(M l
k | Zk−1)

p(zk | Zk−1)

= η · p(zk | M l
k, Zk−1)p(M l

k | Zk−1)

= η · p(zk | M l
k, Zk−1)p(Mlk

k , M l
k−1 | Zk−1)

= η · p(zk | M l
k, Zk−1)p(Mlk

k | M l
k−1, Zk−1)µl

k−1 (2.37)

It is assumed that the mode jump process is a Markov process in which the current

node depends only on the previous one.

p(Mlk
k | M l

k−1, Zk−1) = p(Mlk
k | M l

k−1)

= p(Mlk
k | Mlk−1

k ) (2.38)

Equation 2.37 can be rewritten as:

µl
k = ηp(zk | M l

k, Zk−1)p(Mlk
k | Mlk−1

k )µl
k−1 (2.39)

in which conditioning on the entire past history is needed even using the assumption that

the mode jump process is a Markov process.

Using the total probability theorem, Equation 2.31 can be obtained by:

p(ok | Zk) =
rk∑

l=1

p(ok | M l
k, Zk)p(M l

k | Zk)

=
rk∑

l=1

p(ok | M l
k, Zk)µl

k (2.40)

This method is not practical because an exponentially increasing number of filters are

needed to estimate the state. Also even if the modes are Markov, conditioning on the entire

past history is needed. In the same way as dealing with the computational complexity of

the SLAM problem, the only way to avoid the exponentially increasing number of histories

is to use approximate and suboptimal approaches which merge or reduce the number of

the mode history hypotheses in order to make computation tractable.
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The Generalized Pseudo-Bayesian Approaches. The generalized pseudo-Bayesian

(GPB) approaches (Tugnait, 1982) apply a simple suboptimal technique which keeps the

histories of the largest probabilities, discards the rest, and renormalizes the probabilities.

In the generalized pseudo-Bayesian approaches of the first order (GPB1), the state

estimate at time k is computed under each possible current model. At the end of each cycle,

the r hypotheses are merged into a single hypothesis. Equation 2.40 is simplified as:

p(ok | Zk) =
r∑

j=1

p(ok | Mj , Zk)p(Mj | Zk)

=
r∑

j=1

p(ok | Mj , zk, Zk−1)µ
j
k

≈
r∑

j=1

p(ok | Mj , zk, ôk−1, Σok−1)µ
j
k (2.41)

where the Zk−1 is approximately summarized by ôk−1 and Σok−1 . The GPB1 approach uses

r filters to produce 1 state estimate. Figure 2.15 describes the GPB1 algorithm.

Figure 2.15. The GPB1 algorithm of one cycle for 2 switching models.

In the generalized pseudo-Bayesian approaches of second order (GPB2), the state es-

timate is computed under each possible model at current time k and previous time k − 1.

p(ok | Zk) =
r∑

j=1

r∑

i=1

p(ok | Mj
k,Mi

k−1, Zk)p(Mi
k−1 | Mj

k, Zk)p(Mj
k | Zk) (2.42)

In the GPB2 approach, there are r estimates and covariances at time k− 1. Each is pre-

dicted to time k and updated at time k under r hypotheses. After the update stage, the r2

hypotheses are merged into r at the end of each estimation cycle. The GPB2 approach uses

r2 filters to produce r state estimates. Figure 2.16 describes the GPB2 algorithm, which does

not show the state estimate and covariance combination stage. For output only, the latest

state estimate and covariance can be combined from r state estimates and covariances.

The Interacting Multiple Model Algorithm. In the interacting multiple model

(IMM) approach (Blom and Bar-Shalom, 1988), the state estimate at time k is computed

under each possible current model using r filters and each filter uses a suitable mixing of

the previous model-conditioned estimate as the initial condition. It has been shown that the
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Figure 2.16. The GPB2 algorithm of one cycle for 2 switching models

IMM approach performs significantly better than the GPB1 algorithm and almost as well

as the GPB2 algorithm in practice. Instead of using r2 filters to produce r state estimates

in GPB2, the IMM uses only r filters to produce r state estimates. Figure 2.17 describes the

IMM algorithm, which does not show the state estimate and covariance combination stage.

The derivation of the IMM algorithm is described as the following:

Figure 2.17. The IMM algorithm of one cycle for 2 switching models

Similar to Equation 2.40, the Bayesian formula of the IMM-based tracking problem is

described as:

p(ok | Zk) Total Prob.=
r∑

j=1

p(ok | Mj
k, Zk)p(Mj

k | Zk)

Bayes
=

r∑

j=1

p(zk | ok,Mj
k, Zk−1)p(ok | Mj

k, Zk−1)

p(zk | Mj
k, Zk−1)

p(Mj
k | Zk)

= η

r∑

j=1

p(zk | ok,Mj
k, Zk−1)p(ok | Mj

k, Zk−1)p(Mj
k | Zk)

Markov= η

r∑

j=1

p(zk | ok,Mj
k)︸ ︷︷ ︸

Update

p(ok | Mj
k, Zk−1)︸ ︷︷ ︸

Prediction

p(Mj
k | Zk)︸ ︷︷ ︸

Weighting

(2.43)
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where p(Mj
k | Zk) is the model probability and can be treated as the weighting of the estimate

from the model Mj
k. p(ok | Mj

k, Zk−1) is the prediction stage and p(zk | ok,Mj
k) is the

update stage. The final estimate is the combination of the estimates from all models.

The model probability, p(Mj
k | Zk), can be calculated recursively as follows:

µj
k

4
= p(Mj

k | Zk)
Bayes

= ηp(zk | Mj
k, Zk−1)p(Mj

k | Zk−1)

Total Prob.= η p(zk | Mj
k, Zk−1)︸ ︷︷ ︸

Mode Match

r∑

i=1

p(Mj
k | Mi

k−1, Zk−1)︸ ︷︷ ︸
Mode Transition

p(Mi
k−1 | Zk−1)︸ ︷︷ ︸

µi
k−1

(2.44)

The last term on the right hand side is the model probability of the modelMi at time k−1.

The second term on the right hand side is the mode transition probability. Here it is assumed

that the mode jump process is a Markov process with known mode transition probabilities.

Therefore,

Pij
4
= p(Mj

k | Mi
k−1, Zk−1)

= p(Mj
k | Mi

k−1) (2.45)

The first term of the right hand side can be treated as mode-matched filtering, which is

computed by:

Λj
k

4
= p(zk | Mj

k, Zk−1)

= p(zk | Mj
k, ôk−1,Σok−1) (2.46)

To summarize, the recursive formula for computing the model probability is:

µj
k = ηΛj

k

r∑

i=1

Pijµ
i
k−1 (2.47)

where η is the normalization constant.

The prediction stage of Equation 2.43 can be done as follows:

p(ok | Mj
k, Zk−1)

Total Prob.=
r∑

i=1

p(ok | Mj
k,Mi

k−1, Zk−1)p(Mi
k−1 | Mj

k, Zk−1)

Total Prob.≈
r∑

i=1

∫
p(ok | Mj

k,Mi
k−1, {ol

k−1}r
l=1)dok−1µ

i|j

Interaction≈
r∑

i=1

∫
p(ok | Mj

k,Mi
k−1, ô

i
k−1)dôk−1µ

i|j (2.48)

The second line of the above equation shows that Zk−1 is summarized by r model-

conditioned estimates and covariances, which is used in the GPB2 algorithm. The third

line shows the key idea of the IMM algorithm which uses a mixing estimate ôk−1 as the
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input of the filter instead of {ol
k−1}r

l=1. The last term on the right hand side, the mixing

probability can be obtained by:

µi|j 4
= p(Mi

k−1 | Mj
k, Zk−1)

= ηp(Mj
k | Mi

k−1, Zk−1)p(Mi
k−1 | Zk−1)

= ηPijµ
i
k−1 (2.49)

where η is the normalization constant. Using the assumption that the mixture estimate is a

Gaussian and then approximating this mixture via moment matching by a single Gaussian,

the mixed initial condition can be computed by:

o0j
k−1 =

r∑

i=1

ôi
k−1µ

i|j (2.50)

and the corresponding covariance is:

Σo0j
k−1

=
r∑

i=1

{Σi
ok−1

+ (ô0j
k−1 − ôi

k−1)(ô
0j
k−1 − ôi

k−1}µi|j (2.51)

With the mixed initial conditions, the prediction and update stages can be done with

each model using Kalman filtering. Let the estimate and the corresponding covariance

from each model be denoted by ôj
k and Σj

ok
respectively. For output purposes, the state

estimate and covariance can be combined according to the mixture equations:

ôk =
r∑

j=1

ôj
kµj

k (2.52)

Σok
=

r∑

j=1

{Σj
ok

+ (ôj
k − ôk)(ôj

k − ôk)T }µj
k (2.53)

Calculation Procedures of the IMM algorithm

From the Bayesian formula of the moving object tracking problem, one cycle of the

the calculation procedures consists of the initialization, prediction, data association and

update stages.

Stage 1: Initialization. Figure 2.18 shows the initialization stage of moving object

tracking and Figure 2.19 shows the corresponding DBN. In this stage, it is assumed that

there are r possible models in the model set, and the prior model probabilities and the

mode transition probabilities are given. The mixing probabilities are computed by Equa-

tion 2.49 and the mixed initial conditions are computed by Equation 2.50 and Equation

2.51.

33



CHAPTER 2. THEORY

Figure 2.18. The initialization
stage of moving object track-
ing.

Figure 2.19. A DBN represent-
ing the initialization stage of
moving object tracking.

Stage 2: Prediction. Figure 2.20 shows the prediction stage of moving object track-

ing and Figure 2.21 shows the corresponding DBN. With the mixed initial conditions, each

filer use its corresponding motion model to perform prediction individually in the IMM

algorithm.

Figure 2.20. The prediction
stage of moving object tracking

Figure 2.21. A DBN represent-
ing the prediction stage of
moving object tracking

Stage 3: Data Association. Figure 2.22 shows the data association stage of moving

object tracking and Figure 2.21 shows the corresponding DBN. In this stage, the sensor

returns a new measurement zk and each filter use its own prediction to perform data asso-

ciation.

Stage 4: Update. Figure 2.24 shows the update stage of moving object tracking and

Figure 2.25 shows the corresponding DBN. In this stage, each filter is updated with the

associated measurement and then the mode-matched filtering is done by Equation 2.46.
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Figure 2.22. The data associa-
tion stage of moving object
tracking

Figure 2.23. A DBN represent-
ing the data association stage
of moving object tracking

The model probabilities are updated by Equation 2.47. For output purposes, the state and

covariance can be computed by Equation 2.52 and Equation 2.53.

Figure 2.24. The update stage of
moving object tracking

Figure 2.25. A DBN represent-
ing the update stage of moving
object tracking

Motion Modelling

In the described formulation of moving object tracking, it is assumed that a model set

is given or selected in advance, and tracking is performed based on model averaging of

this model set. Theoretically and practically, the performance of moving object tracking

strongly relates to the selected motion models. Figure 2.26 illustrates the different perfor-

mances using different motion models. Given the same data set, the tracking results differ

according to the selected motion models. Figure 2.27 illustrates the effects of model set

completeness. If a model set does not contain a stationary motion model, move-stop-move

object tracking may not be performed well. We will address the motion modelling related

issues in Chapter 4.
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(a) (b)

Figure 2.26. Model Selection. On the left is the result of tracking using a compli-
cated motion model. On the right is the same data using a simple motion model.

(a) (b)

Figure 2.27. Move-stop-move object tracking. On the left is the result of tracking
using only moving motion models. On the right is the result of tracking using
moving motion models and a stationary motion model.

Perception Modelling and Data Association

Regarding perception modelling, it is assumed that objects can be represented by

point-features in the described formulation. In practice this may not be appropriate be-

cause of a wide variety of moving objects in urban and suburban areas. In Chapter 3, the

hierarchical object based representation for moving object tracking will be described in de-

tail. With regard to data association, using not only kinematic information from motion

modelling but also geometric information from perception modelling will be addressed in

Chapter 5.

2.4. SLAM with Generic Objects

In this section, we will present the first approach to the simultaneous localization,

mapping and moving object tracking problem, SLAM with generic objects. Without mak-

ing any hard decisions about whether an object is stationary or moving, the whole problem

can be handled by calculating a joint posterior over all objects (robot pose, stationary ob-

jects, moving objects). Such an approach would be similar to existing SLAM algorithms,

but with additional structure to allow for motion learning of the moving objects.
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The formalization of SLAM with generic objects is straightforward. Similar to the

moving object tracking problem, first we define that the generic object is a hybrid state

consisting of the state and the motion mode.

yi
k

4
= {yi

k, si
k} and Yk

4
= {y1

k, y2
k, . . . , yl

k} (2.54)

where l is the number of generic objects. We then use this hybrid variable Y to replace

the variable M in Equation 2.15 and the Bayesian formula of SLAM with generic objects is

given as:

p(xk, Yk | Zk, Uk)︸ ︷︷ ︸
Posterior at k

∝ p(zk | xk, Yk)︸ ︷︷ ︸
Update

·
∫ ∫

p(xk | xk−1, uk)p(Yk | Yk−1) p(xk−1, Yk−1 | Zk−1, Uk−1)︸ ︷︷ ︸
Posterior at k − 1

dxk−1dYk−1

︸ ︷︷ ︸
Prediction

(2.55)

Figure 2.28 shows a DBN representing the SLAM with generic objects of duration three

with two generic objects, which integrates the DBNs of the SLAM problem and the MOT

problem.

Figure 2.28. A DBN for SLAM with Generic Objects. It is an integration of the DBN
of the SLAM problem (Figure 2.5) and the DBN of the MOT problem (Figure 2.14).
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For SLAM with generic objects, motion modelling of generic objects is critical. A gen-

eral mechanism solving motion modelling of stationary objects, moving objects and ob-

jects between stationary and moving has to be developed. We will describe a move-stop

hypotheses tracking algorithm in Chapter 4 for dealing with this issue.

In the framework of SLAM with generic objects, the robot, stationary objects and mov-

ing objects are generally correlated through the convolution process in the update stage.

Although the formulation of SLAM with generic objects is elegant, it is clear that SLAM

with generic objects is more computationally demanding than SLAM due to the required

motion modelling of all generic objects at all time steps.

The framework of SLAM with generic objects indicates that measurements belonging

to moving objects contribute to localization and mapping as well as measurements belong-

ing to stationary objects. Nevertheless, highly maneuverable objects are difficult to track

and often unpredictable in practice. Including them in localization and mapping would

have a negative effect on the robot’s localization.

In next section, we will present the second approach to the whole problem, SLAM

with Detection and Tracking of Moving Objects.

2.5. SLAM with Detection and Tracking of Moving Objects

Because of the computational intractability of SLAM with generic objects, SLAM with

Detection and Tracking of Moving Objects, or SLAM with DATMO, decomposes the es-

timation problem into two separate estimators. Although the derivation of SLAM with

DATMO is not as simple as SLAM with generic objects, the computation of SLAM with

DATMO is considerably simplified in which it is possible to update both the SLAM fil-

ter and the DATMO filter in real-time. The resulting estimation problems are much lower

dimensional than the joint estimation problem by maintaining separate posteriors for the

stationary objects and the moving objects. In this section, we address the formulation and

calculation procedures of SLAM with DATMO.

Formulation of SLAM with DATMO

The derivation described in this section is identical to (Wang et al., 2003b).

Assumptions. Before introducing the derivation, the assumptions of SLAM with

DATMO are addressed. The first assumption is that measurements can be decomposed

into measurements of static and moving objects:

zk = zo
k + zm

k and hence Zk = Zo
k + Zm

k (2.56)
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Here the sensor measurement belonging to stationary objects is denoted by the variable zm
k

and the sensor measurement belonging to moving objects is denoted by the variable zo
k. In

particular this implies the following conditional independence

p(zk | Ok, M, xk) = p(zo
k | Ok,M, xk) p(zm

k | Ok,M, xk)

= p(zo
k | Ok, xk) p(zm

k | M,xk) (2.57)

where the variable xk denotes the true pose of the robot at time k, and the variable M =

{m1
k,m2

k, . . . ,ml
k} denotes the true locations of the stationary objects, of which there are l

in the world at time k. The variable Ok = {o1
k, o2

k, . . . , on
k} denotes the true states of the

moving objects, of which there are n in the world at time k.

The second assumption is that when estimating the posterior over the map and the

robot pose, the measurements of moving objects carry no information, neither do their

positions Ok:

p(M, xk | Ok, Zk, Uk) = p(M, xk | Zm
k , Uk) (2.58)

where the variable Uk = {u1, u2, . . . , uk} denotes the motion measurements up to time k.

This is correct if we have no information whatsoever about the speed at which objects

move. Here it is an approximation, but one that reduces the complexity of SLAM with

moving features enormously.

Derivation. We begin by factoring out the most recent measurement:

p(Ok,M, xk | Zk, Uk) ∝ p(zk | Ok,M, xk, Zk−1, Uk) p(Ok,M, xk | Zk−1, Uk) (2.59)

Observing the standard Markov assumption, we note that p(zk | Ok,M, xk, Zk−1, Uk) does

not depend on Zk−1, Uk, hence we have

p(Ok,M, xk | Zk, Uk) ∝ p(zk | Ok, M, xk) p(Ok,M, xk | Zk−1, Uk) (2.60)

Furthermore, we can now partition the measurement zk = zo
k + zm

k into moving and static,

and obtain by exploiting the first assumption and Equation 2.57:

p(Ok,M, xk | Zk, Uk) ∝ p(zo
k | Ok, xk) p(zm

k | M,xk) p(Ok,M, xk | Zk−1, Uk) (2.61)

The rightmost term p(Ok, M, xk | Zk−1, Uk) can now be further developed, exploiting the

second assumption

p(Ok,M, xk | Zk−1, Uk) = p(Ok | Zk−1, Uk) p(M, xk | Ok, Zk−1, Uk)

= p(Ok | Zk−1, Uk) p(M, xk | Zm
k−1, Uk) (2.62)
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Hence we get for our desired posterior

p(Ok,M, xk | Zk, Uk)

∝ p(zo
k | Ok, xk) p(zm

k | M,xk) p(Ok | Zk−1, Uk) p(M,xk | Zm
k−1, Uk)

∝ p(zo
k | Ok, xk) p(Ok | Zk−1, Uk)︸ ︷︷ ︸

DATMO

p(zm
k | M, xk) p(M,xk | Zm

k−1, Uk)︸ ︷︷ ︸
SLAM

(2.63)

The term p(Ok | Zk−1, Uk) resolves to the following prediction

p(Ok | Zk−1, Uk) =
∫

p(Ok | Zk−1, Uk, Ok−1) p(Ok−1 | Zk−1, Uk) dOk−1

=
∫

p(Ok | Ok−1) p(Ok−1 | Zk−1, Uk−1) dOk−1 (2.64)

Finally, the term p(M, xk | Zm
k−1, Uk) in Equation 2.63 is obtained by the following step:

p(M,xk | Zm
k−1, Uk)

= p(xk | Zm
k−1, Uk,M) p(M | Zm

k−1, Uk)

=
∫

p(xk | Zm
k−1, Uk,M, xk−1) p(xk−1 | Zm

k−1, Uk,M) p(M | Zm
k−1, Uk) dxk−1

=
∫

p(xk | uk, xk−1) p(xk−1,M | Zm
k−1, Uk−1) dxk−1 (2.65)

which is the familiar SLAM prediction step. Putting everything back into Equation 2.63 we

now obtain the final filter equation:

p(Ok,M, xk | Zk, Uk)

∝ p(zo
k | Ok, xk)︸ ︷︷ ︸
Update

∫
p(Ok | Ok−1) p(Ok−1 | Zk−1, Uk−1) dOk−1

︸ ︷︷ ︸
Prediction

p(zm
k | M,xk)︸ ︷︷ ︸
Update

∫
p(xk | uk, xk−1) p(xk−1,M | Zm

k−1, Uk−1) dxk−1

︸ ︷︷ ︸
Prediction

(2.66)

Solving the SLAM with DATMO problem. From Equation 2.66, input to this

SLAM with DATMO filter are two separate posteriors, one of the conventional SLAM form,

p(xk−1,M | Zm
k−1, Uk−1), and a separate one for DATMO, p(Ok−1 | Zk−1, Uk−1).

The remaining question is now how to recover those posteriors at time k. For the

SLAM part, the recovery is simple:

p(xk, M | Zm
k , Uk)

=
∫

p(Ok,M, xk | Zk, Uk) dOk

∝ p(zm
k | M, xk)

∫
p(xk | uk, xk−1) p(xk−1,M | Zm

k−1, Uk−1) dxk−1 (2.67)
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For DATMO, we get

p(Ok | Zk, Uk)

=
∫ ∫

p(Ok,M, xk | Zk, Uk) dM dxk

∝
∫ [

p(zo
k | Ok, xk)

∫
p(Ok | Ok−1) p(Ok−1 | Zk−1, Uk−1) dOk−1

]

p(xk | Zm
k , Uk) dxk (2.68)

where the posterior over the pose p(xk | Zm
k , Uk) is simply the marginal of the joint calcu-

lated in Equation 2.67:

p(xk | Zm
k , Uk) =

∫
p(xk,M | Zm

k , Uk)dM (2.69)

For Gaussians, all these integrations are easily carried out in closed form. Equation 2.68

shows that DATMO should take account of the uncertainty in the pose estimate of the

robot because the perception measurements are directly from the robot.

Calculation Procedures

Figure 2.29 shows a DBN representing three time steps of an example SLAM with

DATMO problem with one moving object and one stationary object. The calculation pro-

cedures for solving the SLAM with DATMO problem are the same as the SLAM problem

and the moving object tracking problem, which consist of the initialization, prediction,

data association and update stages. In this section, we explain the procedures to compute

Equation 2.66 with the visualization aid from DBN.

Stage 1: Initialization. Figure 2.30 shows the initialization stage. In this example,

two stationary objects and one moving object are initialized. Figure 2.31 shows a DBN

representing this example. It is assumed that the measurements can be classified into the

measurements of stationary objects and moving objects.

Stage 2: Prediction. Figure 2.32 shows the prediction stage in which the robot gets a

new motion measurement. Only the robot and the moving object are predicted. The robot

motion prediction is done with the robot motion model and the new motion measurement.

However, there is no motion measurement associated with the moving object, and the

motion model of this moving object is unknown. In this dissertation, the IMM algorithm

is applied. The moving object motion prediction is done with the mixed initial conditions

from the selected motion models. Figure 2.33 shows a DBN representing the prediction

stage.
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Figure 2.29. A DBN of the SLAM with DATMO problem of duration three with one
moving object and one stationary object.

Figure 2.30. The initialization
stage of SLAM with DATMO

Figure 2.31. A DBN represent-
ing the initialization stage of
SLAM with DATMO

Stage 3: Data Association. Figure 2.34 shows the data association stage in which

the robot gets a new perception measurement at the new location. The new perception

measurement is associated with the stationary objects and the moving object. Figure 2.35

shows a DBN representing this stage.

Stage 4: Update of the SLAM part. Figure 2.36 shows the update stage of the SLAM

part of the whole problem. Only measurements associated with stationary objects are used

to update the robot pose and the stationary object map. After this update, the map and the

robot pose are more accurate. Figure 2.37 shows a DBN representing this stage.
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Figure 2.32. The prediction
stage of SLAM with DATMO

Figure 2.33. A DBN represent-
ing the prediction stage of
SLAM with DATMO

Figure 2.34. The data associa-
tion stage of SLAM with
DATMO

Figure 2.35. A DBN represent-
ing the data association stage
of SLAM with DATMO

Figure 2.36. The update stage of
the SLAM part of SLAM with
DATMO

Figure 2.37. A DBN represent-
ing the update stage of the
SLAM part of SLAM with
DATMO

Stage 5: Update of the DATMO part. Figure 2.38 shows the update stage of the

DATMO part of the whole problem. Because the robot pose estimate is more accurate after

the update of the SLAM part, the measurement associated with the moving object is more
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accurate as well. In the update stage of the DATMO part, this more accurate measurement

is used to update the moving object pose as well as its motion models.

Figure 2.38. The update stage
of the DATMO part of SLAM
with DATMO

Figure 2.39. A DBN represent-
ing the update stage of the
DATMO part of SLAM with
DATMO

2.6. Summary

In this chapter, we have established the foundations of the simultaneous localiza-

tion, mapping and moving object tracking problem. We described the formulas for ma-

nipulating uncertain spatial relationships, and reviewed the probabilistic formulas of the

SLAM problem and the moving object tracking problem. We treated simultaneous localiza-

tion, mapping and moving object tracking as a new discipline at the intersection of SLAM

and moving object tracking, and described two solutions, SLAM with generic objects and

SLAM with DATMO. The corresponding formulas provide a solid basis for understanding

and solving the whole problem.

In addition to the established foundations, we need to eliminate the gaps between

the foundations and implementation for solving the whole problem from ground vehicles

at high speeds in urban areas. These gaps arise from a number of implicit assumptions

in terms of perception modelling, motion modelling and data association, which will be

addressed in the later chapters. In the next chapter, we will discuss the issues of perception

modelling.
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Perception Modelling

A photograph is a secret about a secret. The more it tells you, the less you know.
– Diane Arbus

PERCEPTION MODELLING, or representation, provides a bridge between perception

sensor measurements and theory; different representation methods lead to different

means to calculate the theoretical formulas. Representation should allow infor-

mation from different sensors, from different locations and from different time frames to

be fused.

In the tracking literature, targets are usually represented by point-features. In most

air and sea vehicle tracking applications, the geometrical information of the targets is not

included because of the limited resolution of perception sensors. However, the signal-

related data such as the amplitude of the signal can be included to aid data association

and classification. On the other hand, research on mobile robot navigation has produced

four major paradigms for environment representation: feature-based approaches (Leonard

and Durrant-Whyte, 1991), grid-based approaches (Elfes, 1988; Thrun et al., 1998), direct

approaches (Lu and Milios, 1994, 1997), and topological approaches (Choset and Nagatani,

2001). Because topological maps are usually generated on top of grid-based or feature-

based maps by partitioning grid-based or feature-based maps into coherent regions, we

will only focus on feature-based approaches, grid-based approaches and direct approaches.

First, these three paradigms will be compared in terms of:

• Uncertainty management,

• Sensor characteristics,

• Environment representability,

• Data compression,

• Loop-closing mechanism.
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All of these issues should be considered in both the moving object tracking problem and

the SLAM problem except the last term, loop-closing mechanism.

The comparison will show that these paradigms are problematic and not sufficient for

large, outdoor environments. In order to to overcome the difficulties, a hierarchical object

based approach to hierarchically integrate the direct method, the grid-based approach and

the feature-based method is presented.

3.1. Perception Models

In this section, we will discuss the advantages and disadvantages of the feature-based,

grid-based and direct approaches.

Feature-based methods

Feature (landmark) based approaches compress raw data into predefined features.

They provide an elegant way such as the EKF-based approaches to manage uncertainty

of localization and mapping. The loop closing mechanism is seamlessly embedded by

maintaining the covariance matrix given correct data association.

For most indoor applications, lines, circles, corners and other simple geometrical fea-

tures are rich and easy to detect. (Pfister et al., 2003) present a weighted matching algorithm

to take sensor characteristics as well as correspondence error into account. But their method

cannot be expended to unstructured outdoor environments because of the planar environ-

ment assumption.

For outdoor applications, extracting features robustly and correctly is extremely diffi-

cult because outdoor environments contain many different kinds of objects. For example,

bushes (see Figure 3.1), trees, or curvy objects (see Figure 3.2) have shapes which are hard

to define. In these kinds of environments, whenever a feature is extracted an error from

feature extraction will be produced because of wrong predefined features. Figure 3.3 il-

lustrates that the results of circle extraction of the same object using measurements from

different positions are different. Figure 3.4 illustrates the ambiguity of line extraction for a

curved object.

Grid-based methods

Grid-based methods use a cellular representation called Occupancy Grids (Matthies

and Elfes, 1988) or Evidence Grids (Martin and Moravec, 1996). Mapping is accomplished

using a Bayesian scheme, and localization can be accomplished using correlation of a sen-

sor scan with the grid map (Konolige and Chou, 1999).
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Figure 3.1. Vegetation and plant object: Bush. The ellipses indicate the bush area in
the SICK scan data and in the unwarped image from the omni-directional camera.

Figure 3.2. Curvy object: A building. The rectangles indicate a curvy building in
the SICK scan data and in the image from the three-camera system.

In terms of sensor characteristics and environment representability, grid-based approaches

are more advanced than feature-based approaches. Grid-maps can represent any kinds of

environments and the quality of the map can be adjusted by adapting the grid resolution.
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Figure 3.3. Circle extraction. Figure 3.4. Line extraction.

Grid-based approaches are specially suitable for noisy sensors such as stereo camera, sonar

and radar in which features are hard to define and extract from highly uncertain and unin-

formative measurements.

Nevertheless, grid-based approaches do not provide a mechanism for loop closing. Re-

call that correlation between the robot and landmarks is explicitly managed by the co-

variance matrix or the information matrix in the feature-based approaches. Correlation

between the robot and landmarks is implicitly embedded in Occupancy Grids. How to re-

trieve correlation from Occupancy Grids is an open question. Given that a loop is correctly

detected, loop closing can not be done with the existing grids. Additional computation

power is needed to run consistent pose estimation algorithms such as (Lu and Milios, 1997;

Kelly and Unnikrishnan, 2003) and the previous raw scans have to be used to generate a

new global consistent map (Gutmann and Konolige, 1999; Thrun et al., 2000).

Direct methods

Direct methods represent the physical environment using raw data points without

extracting predefined features.

Localization can be done by using range image registration algorithms from the com-

puter vision literature. For instance, the Iterative Closest Point (ICP) algorithm (Besl and

McKay, 1992; Chen and Medioni, 1991; Zhang, 1994) is a widely used direct method; many

variants have been proposed based on the basic ICP concept (Rusinkiewicz and Levoy,

2001). However, a good initial prediction of the transformation between scans is required

because of its heuristic assumption for data association. When transformation between

scans is unavailable, a number of technique can be used to recognize scans and provide

a good initial prediction of the transformation such as Spin Image (Johnson, 1997), princi-

ple moments (Besl and McKay, 1992), normal of distinctive points (Potmesil, 1983), and

principle curvatures (Feldmar and Ayache, 1994).
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The map is represented as a list of raw scans. Because there is overlap between scans,

memory requirement for storing the map can be reduced by the integration (merging) pro-

cess such as (Garland and Heckbert, 1998) and the map can be represented as triangular

meshes1 (Turk and Levoy, 1994), parametric surfaces (Menq et al., 1992), and octrees (Cham-

pleboux et al., 1992). Just as with the grid-based approaches, when loops are detected

additional computation power is needed to run consistent pose estimation algorithms and

the previous raw scans are used to generate a global consistent map.

In terms of uncertainty management and sensor characteristics, very little work addresses

how to quantify the uncertainty of the transformation estimate from registration process.

Uncertainty arises mainly from outliers, wrong correspondences, and measurement noises.

Without taking measurement noise into account, several methods to estimate the covari-

ance matrix of the pose estimate were proposed by (Gutmann and Schlegel, 1996), (Simon,

1996), (Lee et al., 2002), and (Bengtsson and Baerveldt, 2001). Compared to indoor applica-

tions, the distances between objects and sensors in outdoor environments are usually much

longer, which make measurements more uncertain and sparse. By assuming measurement

noise is Gaussian, (Pennec and Thirion, 1997) used the extended Kalman filter to estimate

both the rigid transformation and its covariance matrix. However, this approach is very

sensitive to correspondence errors. Additionally, the assumption that the uncertainty of

the pose estimate from registration processes can be modelled by Gaussian distributions is

not always valid.

Comparison

To summarize, we show the comparison of different representations in Table 3.1. With

regard to uncertainty management and loop closing mechanism, feature-based approaches

have an elegant means. Regarding sensor characteristics, grid-based approaches are the

easiest to implement and the most suitable for imprecise sensors such as sonar and radar.

Respecting environment representability, feature-based approaches are limited to indoor

or structured environments in which features are easy to define and extract.

3.2. Hierarchical Object based Representation

Because none of these three main paradigms is sufficient for large, outdoor environ-

ments, we propose a hierarchical object based representation to integrate these paradigms

and to overcome their disadvantages.

1The web page, http://www.cs.cmu.edu/∼ph/, provides comprehensive link collections.
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Table 3.1. An attempt to compare the different representation methods. Xindicates
that the method is elegant and appropriate. 4 indicates that extra work is needed
or the method is inapplicable.

Representations Feature-based Grid-based Direct
Uncertainty management X X 4
Loop closing mechanism X 4 4
Sensor characteristics 4 X X
Environment representability 4 X X
Data Compression X 4 4

In outdoor or urban environments, features are extremely difficult to define and ex-

tract because both stationary and moving objects do not have specific sizes and shapes.

Therefore, instead of using an ad hoc approach to define features in specific environments

or for specific objects, free-form objects are used.

At the preprocessing stage, scans (perception measurements) are grouped into seg-

ments using a simple distance criterion. The segments over different time frames are in-

tegrated into objects after localization, mapping and tracking processes. Instead of using

track in tracking terminology, segment is used because of the perception sensor used in this

work. Because not only moving targets but also stationary landmarks are tracked in the

whole process, the more general term, object, is used instead of the term, target.

Registration of scan segments over different time frames is done by using the direct

method, namely the ICP algorithm. Because range images are sparser and more uncertain

in outdoor applications than indoor applications, the pose estimation and the correspond-

ing distribution from the ICP algorithm are not reliable. For dealing with the sparse data

issues, a sampling-based approach is used to estimate the uncertainty from correspon-

dence errors. For dealing with the uncertain data issues, a correlation-based approach is

used with the grid-based method for estimating the uncertainty from measurement noise.

For loop closing in large environments, the origins of the object coordinate system are used

as features with the mechanism of the feature-based approaches.

Our approach is hierarchical because these three main representation paradigms are

used on different levels. The direct method is used on the lowest level and the feature-

based approach is used on the highest level. Objects are described by a state vector, or

object-feature and a grid map, or object-grids. Object-features are used with the mechanism

of the feature-based approaches for moving object tracking and for loop closing. Object-

grids are used to to take measurement noise into account for estimating object registration

uncertainty and to integrate measurements over different time frames. Figure 3.5 shows

an example of the hierarchical object based representation.
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Figure 3.5. Hierarchical object based representation. The black solid box denotes
the robot (2mx5m).

In this section, scan segmentation, sensor noise modelling and sparse data issues will

be described. The sampling and correlation based approach for estimating the uncertainty

of object registration will be addressed in Section 3.3. The hierarchical object based repre-

sentation for moving object tracking and for SLAM will be addressed in Section 3.4 and

Section 3.5 respectively.

Scan Segmentation

Scan segmentation is the first stage of the hierarchical object-based approach. (Hoover

et al., 1996) proposed a methodology for evaluating range image segmentation algorithms,

which are mainly for segmenting a range image into planar or quadric patches. Because

objects in outdoor environments do not have specific sizes and shapes, these algorithms

are not suitable.

Here we use a simple distance criterion to segment measurement points into objects.

Although this simple criterion can not produce perfect segmentation results, more precise

segmentation will be accomplished by the localization, mapping and moving object track-

ing processes using spatial and temporal information over several time frames. Figure 3.6

shows an example of scan segmentation.
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Figure 3.6. An example of scan segmentation.

Perception Sensor Modelling

It is well known that several important physical phenomena such as the material

properties of an object, the sensor incidence angle, and environmental conditions affect

the accuracy of laser scanner measurements. Although laser rangefinders such as SICK

laser scanners provide more accurate measurements than sonar, radar and stereo cameras,

neglecting measurement noise in the localization, mapping, and moving object tracking

processes may be over optimistic in situations using data collected from a platform at high

speeds in outdoor environments.

According to the manual of SICK laser scanners (Sick Optics, 2003), the spot spacing

of SICK LMS 211/221/291 is smaller than the spot diameter for an angular resolution of

0.5 degree. This means that footprints of consecutive measurements overlap each other.

The photo in Figure 3.7 taken from an infrared camera shows this phenomenon. A red

rectangle indicates a footprint of one measurement point.

With regard to range measurement error, we conservatively assume the error as 1% of

the range measurement because of outdoor physical phenomena. The uncertainty of each

measurement point zi
k in the polar coordinate system is described as:
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Figure 3.7. Footprints of the measurement from SICK LMS 291

Σzi
k

=
[

σ2
ri 0
0 σ2

θi

]
(3.1)

The uncertainty can be described in the Cartesian coordinate system by the head-to-

tail operation described in Section 2.1. Figure 3.8 shows the SICK LMS 211/221/291 noise

model.
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Figure 3.8. SICK LMS 211/221/291 noise model. Left: the whole scan. Right: the
enlargement of the blocked region on the left. The distributions of the measure-
ment points are shown by 2σ ellipses (95% confidence).

In most indoor applications, it is assumed that a horizontal range scan is a collection

of range measurements taken from a single robot position. When the robot is moving at

high speeds, this assumption is invalid. We use the rotating rate of the scanning device

and the velocity of the robot to correct the errors from this assumption.

Sparse Data

Compared to indoor applications, the distances between objects and sensors in out-

door environments are usually much longer, which make measurements more uncertain
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and not as dense. Sparse data causes problems of data association in the small, or correspon-

dence finding, which directly affect the accuracy of direct methods. In the computer vision

and indoor SLAM literature, the assumption that corresponding points present the same

physical point is valid because data is dense. If a point-point metric is used in the ICP

algorithm, one-to-one correspondence will not be guaranteed with sparse data, which will

result in decreasing the accuracy of transformation estimation and slower convergence.

Research on the ICP algorithms suggests that minimizing distances between points and

tangent planes can converge faster. But because of sparse data and irregular surfaces in

outdoor environments, the secondary information derived from raw data such as surface

normal can be unreliable and too sensitive. A sampling-based approach for dealing with

this issue will be addressed in the next section.

3.3. Sampling- and Correlation-based Range Image Matching

Recall that localization using a given map can be described in a probabilistic form as:

p(zk | xk,M) (3.2)

where xk is the predicted pose of the robot, M is the given map, and zk is the new per-

ception measurement. This formula can be also treated as the update stage of the SLAM

problem. By replacing M and zk with two range images A and B and replacing xk with an

initial guess of the relative transformation T ′ between these two range images, the range

image registration problem can be described in the same form:

p(B | T ′, A) (3.3)

When the laser scanners are used, the localization problem and the range image reg-

istration problem are identical. A number of range image registration techniques in the

computer vision literature can be used for solving the localization problem.

In this section, first the ICP algorithm is introduced. Then the sampling and correla-

tion based approach is presented for taking correspondence errors and measurement noise

into account. We also define a parameter called the object saliency score to quantify the

saliency of the object based on the covariance estimate from the sampling and correlation

based range image registration algorithm.

The Iterated Closest Point Algorithm

Let two measurement point sets A and B be collected from the two true locations xwA

and xwB in the world frame w respectively. The true relative transformation T in the A
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frame can be computed by:

T = ⊕(ª(xwA), xwB)

= ⊕(xAw, xwB) = xAB (3.4)

where ⊕ is the compounding operation and ª is the reverse operation defined in Chapter

2.1.

With a reasonable guess of the relative transformation T ′, the goal of range image reg-

istration is to find the optimal estimate T̂ of T to align these two point sets with minimal

disparity. The ICP algorithm is a widely used direct method and has become the dominant

method for aligning 2D and 3D range images because of its simplicity. The ICP algorithm

can be summarized as follows. Using a reasonably good initial guess of the relative trans-

formation T ′, a set of point is chosen from A, and the corresponding closest points are

found from B. The better estimate of the relative transformation T̂ is computed by using

a least squares method. This procedure is iterated until the change of the estimated re-

lated transformation becomes very small. Let n corresponding point pairs be denoted by

{(ai, bi)}n
i=1. A distance metric can be defined as:

E =
n∑

i=1

‖ ⊕ (T ′, bi)− ai‖2 (3.5)

By minimizing E, a closed-from solution can be obtained as (Lu and Milios, 1994):

T̂θ = arctan
Σbxay − Σbyax

Σbxax + Σbyay

T̂x = āx − (b̄x cos T̂θ − b̄y sin T̂θ)

T̂y = b̄y − (āx sin T̂θ + āy cos T̂θ) (3.6)

where

āx =
1
n

n∑

i=1

ai
x , āy =

1
n

n∑

i=1

ai
y , b̄x =

1
n

n∑

i=1

bi
x , b̄y =

1
n

n∑

i=1

bi
y

Σbxax =
n∑

i=1

(bi
x − b̄x)(ai

x − āx) , Σbyay =
n∑

i=1

(bi
y − b̄y)(ai

y − āy)

Σbxay =
n∑

i=1

(bi
x − b̄x)(ai

y − āy) , Σbyax =
n∑

i=1

(bi
y − b̄y)(ai

x − āx) (3.7)

For localization, mapping and tracking, both the pose estimate and its corresponding

distribution are important. In (Lu and Milios, 1997), Equation 3.5 is linearized and the

analytical solution of the covariance matrix can be derived using the theory of linear re-

gression. In (Bengtsson and Baerveldt, 2001), a Hessian matrix based method to compute
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the covariance matrix was proposed. Because of the heuristic way the ICP algorithm finds

corresponding points, neither method reliably estimates the uncertainty from correspon-

dence errors. The method of Fu and Milios tends to underestimate the uncertainty and the

method of Bengtsson and Baerveldt tends to overestimate the uncertainty. Additionally,

these methods do not take measurement noise into account.

Because the heuristic way for finding corresponding points causes local minimum

problems, a good reasonable initial guess of the relative transformation is essential for the

successful usage of the ICP algorithm. Nevertheless, the saliency of the range images is also

critical. Without a reasonable guess of the relative transformation, the ICP algorithm can

still find a global minimum solution as long as the sensed scene has enough salient features

or a high saliency score. The following figures illustrate the object saliency effect. Figure

3.9 shows two scans from a static environment and the scan segmentation results.
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Figure 3.9. Left: Scan A. Right: Scan B. The solid box denotes the robot (2mx5m).
Segmentation results are shown with segment numbers.

In this example, we assume that the motion measurement is unavailable and the initial

guess of the relative transformation is zero. Figure 3.10 shows this initial guess of the

relative transformation.

In order to illustrate the object saliency effect, range images A and B are aligned using

the same initial relative transformation guess but using different scan segments: one is

matching with only segment 1 of scan A and segment 1 of scan B; the other is matching

with the whole scans of A and B. Figure 3.11 shows the registration results. It seems

that the ICP algorithm provides satisfactory results in both cases and it is hard to quantify

which result is better. However, by comparing the results with the whole scans in Figure

3.12, it is easy to justify that registration using only scan segment 1 of A and B provides a

local minimum solution instead of the global one.
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Figure 3.10. An initial guess of the relative transformation. Measurement points of
scan A are denoted by ”·”; measurement points of scan B are denoted by ”×”.
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Figure 3.11. Results of segment 1 registration. Left: registration using only segment
1 of scan A and segment 1 of scan B. Right: registration using the whole scans of
A and B.

Correspondence Finding Ambiguity

Because of sparse and featureless data issues, precisely estimating the relative transfor-

mation and its corresponding distribution is difficult and the ambiguity is hard to avoid

in practice. However, as long as the ambiguity is modelled correctly, this ambiguity can

be reduced properly when more information or constraints are available. If the distribu-

tion does not describe the situation properly, data fusion can not be done correctly even

if the incoming measurements contain rich information or constraints to disambiguate the
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Figure 3.12. Registration results of Figure 3.11 are shown with the whole scans.
Left: registration using segment 1 of scan A and segment 1 of scan B. Right: regis-
tration using the whole scans of A and B.

estimates. Therefore, although more computational power is needed, a sampling-based

approach is applied to deal with the issues of correspondence finding ambiguity, or data

association in the small.

Instead of using only one initial relative transformation guess, the registration process

is run N times with randomly generated initial relative transformations. Figure 3.13 shows

the sampling-based registration of scan segment 1 in the previous example. 100 randomly

generated initial relative transformation samples are shown in the left figure and the cor-

responding registration results are shown in the right figure. Figure 3.13 shows that one

axis of translation is more uncertain than the other translation axis and the rotation axis.

Figure 3.14 shows the corresponding sample means and covariances using different num-

bers of samples. The covariance estimates from the sampling-based approach describe the

distribution correctly.
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Figure 3.13. Sampling-based uncertainty estimation. Left: the randomly generated
initial transformation samples. Right: the transformation estimates after applying
the registration algorithm.
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Figure 3.14. The corresponding sample means and covariances using different
numbers of samples. Covariances are shown by 2σ ellipses (95% confidence). ¤ is
the pose estimate using the whole scans, which can be treated as the ground truth.
The means estimates from 10, 100 and 1000 samples are labelled as a pentagram, a
circle and a star respectively.

Measurement Noises

Because the sampling-based approach does not handle the measurement noise issues,

the grid-based method (Elfes, 1988, 1990) and the correlation-based method (Konolige and

Chou, 1999) are applied and integrated for taking measurement noise into account.

First, measurement points and their corresponding distributions are transformed into

occupancy grids using the perception model described in Section 3.2. Let ga be an object-

grid built using the measurement A and gxy
a be the occupancy of a grid cell at 〈x, y〉.

The grid-based approach decomposes the problem of estimating the posterior probability

p(g | A) into a collection of one-dimensional estimation problems, p(gxy | A). A common

approach is to represent the posterior probability using log-odds ratios:

lxy
a = log

p(gxy
a | A)

1− p(gxy
a | A)

(3.8)

Figure 3.15 and Figure 3.16 show the corresponding occupancy grids of the segment 1

of scan A and scan B.

After the grid maps la and lb are built, correlation of la are lb is used to evaluate how

strong the grid-maps are related. The correlation is computed as:
∑
xy

p(Axy)p(Bxy) (3.9)

Because the posterior probability is represented using log-odds ratios, multiplication

of probabilities can be done using additions.

59



CHAPTER 3. PERCEPTION MODELLING

2 4 6
0

1

2

3

4

5

6

7

8

9

10

meter

m
et

er

Figure 3.15. Occupancy grids. Left: the measurement points and their correspond-
ing distributions of Segment 1 of A. Right: the corresponding occupancy grids of
Segment 1 of A. The whiter the grid map the more certain the occupancy probabil-
ity.
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Figure 3.16. Occupancy grids. Left: the measurement points and their correspond-
ing distributions of Segment 1 of B. Right: the corresponding occupancy grids of
Segment 1 of B.

In the previous section, the sampling-based approach treated the samples equally.

Now the samples are weighted with their normalized correlation responses. Figure 3.17

shows the normalized correlation responses.

The samples with low correlation responses can be filtered out for getting more ac-

curate sample mean and covariance. Further, by properly clustering the samples, the dis-

tribution can be more precisely described by several Gaussian distributions instead of one
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Figure 3.17. The normalized correlations of the samples. Left: 3D view. Right 2D
view. The 2σ ellipse denotes the unweighted sample covariance. The samples,
which have correlation higher than the correlation median, are labelled by ◦. The
other samples are labelled by ×.

Gaussian distribution. Figure 3.18 shows that the samples with high correlation values are

clustered into three clusters and the distribution of the pose estimate now can be repre-

sented by three Gaussian distributions.
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Figure 3.18. Mean and covariance estimation by clustering. Left: Mean and covari-
ance estimates using the samples with high correlation values. Right: The mean
and the distribution are described by three Gaussian distributions.

Based on this observation, instead of using the Particle Filter with hundreds or thou-

sands of particles for dealing with the non-Gaussian distribution issues, we can use the

proper number of samples (particles) to correctly describe non-Gaussian distributions with-

out losing accuracy with this data-driven approach. This will be left for future work.

Object Saliency Score

(Stoddart et al., 1996) defined a parameter called registration index, which provides a

simple means of quantifying the registration error when aligning a particular shape. Simi-

larly, we define a parameter called object saliency score using the trace of the autocovariance
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estimate from the sampling and correlation based approach. The autocovariance is com-

puted as:

p(A | T ′[i], A) (3.10)

where T ′[i] is the ith randomly generated perturbation.

The object saliency score is defined and computed as:

S =
1

trace(ΣA)
(3.11)

where S is the object saliency score, and ΣA is the autocovariance matrix of the object A

from the sampling and correlation based approach. The larger the object saliency score

the more certain the pose estimate from registration process. Table 3.2 shows the object

saliency scores of the different objects shown in Figure 3.9.

Table 3.2. Object saliency scores of the different objects shown in Figure 3.9.

Object Object Saliency Score
Segment 1 (Bush Area) 2.1640

Segment 16 (Parked Car) 15.6495
Segment 17 (Building Wall) 9.0009

Whole scan 15.8228

According to the object saliency scores, the pose estimates of the bush area and the

wall object are more uncertain than the parked car and the whole sensed area. Regardless

of the initial relative transformation guess, this is intuitively correct because the whole

scan and the parked car contain salient features but the bush area and the wall do not.

Assuming that the environment is static, it is suggested that the whole scan should be used

in registration process because the whole scan is more likely to contain salient features than

individual segments and more certain pose estimates can be obtained from the registration

process.

3.4. Hierarchical Object-based Representation for Tracking

There is a wide variety of moving objects in urban and suburban environments such

as pedestrians, animals, bicycles, motorcycles, cars, trucks, buses and trailers. The criti-

cal requirement for safe driving is that all such moving objects be detected and tracked

correctly. Figure 3.19 shows an example of different kinds of moving objects in an urban

area. The hierarchical object representation is suitable and applicable for our applications

because free-form objects are used without predefining features or appearances.

Because the number of measurement points belonging to small moving objects such

as pedestrians is often less than four, the centroid of the measurement points is used as
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Figure 3.19. A wide variety of moving objects in urban areas. A: a dump truck, B: a
car, C: a truck, D: two pedestrians, E: a truck.

the state vector of the moving object. The state vector, or object-feature of a small moving

object contains only location without orientation because the geometrical information is

insufficient to correctly determine orientation.

However, when tracking large moving objects, using the centroid of the measurements

is imprecise. Different portions of moving objects are observed over different time frames

because of motion and occlusion. This means that the centroids of the measurements over

different time frames do not present the same physical point. Figure 3.20 shows the differ-

ent portions of a moving car observed over different time frames.

Therefore, the sampling and correlation based range matching algorithm is used to es-

timate the relative transformation between the new measurement and the object-grids and

its corresponding distribution. Because the online learned motion models of moving ob-

jects may not be reliable at the early stage of tracking, the predicted location of the moving

object may not good enough to avoid the local minima problem of the ICP algorithm. Ap-

plying the sampling- and correlation-based range matching algorithm to correctly describe

the uncertainty of the pose estimate is especially important.

Since the big object orientation can be determined reliably, the state vector, or object-

feature, can consist of both location and orientation. In addition, the geometrical informa-

tion is accumulated and integrated into the object-grids. As a result, not only are motions

63



CHAPTER 3. PERCEPTION MODELLING

0 5
0

2

4

6

8

10

0 5
0

2

4

6

8

10

0 5
0

2

4

6

8

10

No.2330 No.2340 No.2350 

No.2330 

No.2340 

No.2350 

Figure 3.20. Different portions of a moving car.

of moving objects learned and tracked, but their contours are also built. Figure 3.21 shows

the registration results using the SCRIM algorithm. In Chapter 5, using geometrical infor-

mation to aid data association will be addressed.

3.5. Hierarchical Object-based SLAM

Recall that the key issues for successfully implementing SLAM in very large environ-

ments are computational complexity, representation and data association. This work does

not focus on the computational complexity issue since the recent work about this issue

provides several promising algorithms. Instead, we intended to develop practical and re-

liable algorithms for solving the representation and data association issues. In this section,
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Figure 3.21. Registration results of the example in Figure 3.20 using the SCRIM al-
gorithm. On the right: the states are indicated by ¤, and the final scan points
are indicated by ×. On the left: the scan measurements over several frames are
transformed to the same coordinate system using the registration results.

we will demonstrate that city-sized SLAM is feasible by using the hierarchical object based

approach where SLAM is accomplished locally using grid-based approaches and globally

using feature-based approaches. The data association issues will be addressed in Chapter

5.

Figure 3.22 shows an aerial photo of the CMU neighborhood where the data was col-

lected. The line indicates the Navlab11 trajectory. Figure 3.23 shows the pose estimates

from the onboard inertial measurement system. It illustrates that, even using high-end

inertial measurement systems, the error of the robot pose estimate accumulates and map-

ping using these estimates will diverge eventually. This data set contains about 36,500

scans. The visual images collected from the onboard three-camera system are only for vi-

sualization.

Local Mapping using Grid-based approaches

Since feature extraction is difficult and problematic in outdoor environments, we ap-

ply grid-based approaches for building the map. However, as addressed in the beginning

of this chapter, the grid-based approaches need extra computation for loop-closing and all

raw scans have to be used to generate a new global consistent map, which is not practical

for online city-sized mapping. Therefore, the grid-map is only built locally.

After localizing the robot using the sampling and correlation based range image match-

ing algorithm, the new measurement is integrated into the grid map. The Bayesian re-

cursive formula for updating the grid map is computed by: (See (Elfes, 1988, 1990) for a
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Figure 3.22. Aerial photo of the CMU neighborhood. The line indicates the trajec-
tory of Navlab 11.
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Figure 3.23. Pose estimates from the inertial measurement system.

derivation.)

lxy
k = log

p(gxy | Zk−1, zk)
1− p(gxy | Zk−1, zk)

= log
p(gxy | zk)

1− p(gxy | zk)
+ lxy

k−1 + lxy
0 (3.12)
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where g is the grid map, gxy be the occupancy value of a grid cell at 〈x, y〉, l is the log-odds

ratio, and

lxy
0 = log

p(gxy)
1− p(gxy)

(3.13)

Practically, there are two requirements for selecting the size and resolution of grid

maps: one is that a grid map should not contain loops, and the other is that the quality of

the grid map should be maintained at a reasonable level. For solving the above example,

the width and length of the grid map are set as 160 meters and 200 meters respectively,

and the resolution of the grid map is set at 0.2 meter. When the robot arrives at the 40

meter boundary of the grid map, a new grid map is initialized. The global pose of the map

and the corresponding distribution is computed according to the robot’s global pose and

the distribution. Figure 3.24 shows the boundaries of the grid maps generated along the

trajectory using the described parameters. Figure 3.25 shows the details of the grid maps,

which contain information from both stationary objects and moving objects. The details of

dealing with moving objects will be addressed in the following chapters.
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Figure 3.24. Generated grid maps along the trajectory. The boxes indicate the
boundaries of the grid maps.

Global Mapping using Feature-based Approaches

The first step to solve the loop-closing problem is to robustly detect loops or recognize

the pre-visited areas. It is called the data association in the large problem in this dissertation

or the revisiting problem (Stewart et al., 2003). Figure 3.26 shows that the robot entered the
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(a) Grid-map 1 (b) Grid-map 2

(c) Grid-map 3 (d) Grid-map 4

Figure 3.25. Details of the grid maps. Gray denotes areas which are not occupied
by both moving objects and stationary objects, whiter than gray denotes the areas
which are likely to be occupied by moving objects, and darker than gray denotes the
areas which are likely to be occupied by stationary objects.

explored area. Because of the accumulated pose error, the current grid map is not consis-

tent with the pre-built map. In this section we assume that loops are correctly detected.
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The issues and solutions of the data association in the large problem will be addressed in

Chapter 5.3.
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Figure 3.26. The data association in the large problem.

For closing loops in real time, feature-based approaches are applied. Because the occu-

pancy grid approach is used for local mapping, we have to develop a method to transform

or decompose the occupancy grid map into stable regions (features) and a covariance ma-

trix containing the correlation among the robot and the regions. Unfortunately, this is still

an open question. Therefore, instead of decomposing the grid maps, we treat each grid

map as a 3 degree-of-freedom feature directly. Figure 3.27 shows the result without loop-

closing and Figure 3.28 shows the result using the feature based EKF algorithm for loop-

closing. Information from moving objects is filtered out in both figures. The covariance

matrix for closing this loop only contains 14 three degree-of-freedom features.

Since we set the whole grid maps as features in the feature-based approaches for loop-

closing, the uncertainty inside the grid maps is not updated with the constraints from de-

tected loops. Although Figure 3.28 shows a satisfying result, the coherence of the overlay

between grid maps is not guaranteed. Practically, the inconsistency between the grid-maps

will not effect the robot’s ability to perform tasks. Local navigation can use the current built

grid map which contains the most recent information about the surrounding environment.

Global path planning can be done with the global consistent map from feature-based ap-

proaches in a topological sense. In addition, the quality of the global map can be improved
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Figure 3.27. The result without loop-closing. Information from moving object is
filtered out.

by using smaller grid maps to smooth out the inconsistency between grid maps. At the

same time, the grid-maps should be big enough to have high object saliency scores in or-

der to reliably solve the data association problem in the large.

3.6. Summary

In this chapter we have discussed the problems of perception modelling in both SLAM

and moving object tracking. Three main paradigms of representation: direct methods,

grid-based approaches and feature-based approaches are integrated into the framework of

this hierarchical object based approach. We have presented a sampling- and correlation-

based range image matching algorithm for estimating the uncertainty of the pose estimate

precisely by taking the correspondence errors and measurement noise into account. The

object saliency score is defined and we will describe how to use this score to aid data associ-

ation in Chapter 5. We have demonstrated that the hierarchical object based representation

satisfies the requirements of uncertainty management, sensor characteristics, environment rep-

resentability, data compression and loop closing mechanism. The use of this algorithm has been

verified by the experimental results using data collected from Navlab11.
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Figure 3.28. The result with loop-closing. Information from moving object is fil-
tered out.

In the next chapter, we will describe one of the most important topics in Bayesian

based SLAM and moving object tracking, motion modelling.

71





CHAPTER 4

Motion Modelling

Make things as simple as possible but not simpler.
– A. Einstein

MOTION MODELLING, or estimation of structural parameters of a system, is

called system identification in the control literature and learning in the artificial

intelligence literature. From a theoretical point of view, motion modelling is

as important as perception modelling in Bayesian approaches. From a practical point of

view, without reasonably good motion models, the predictions may be unreasonable and

cause serious problems in data association and inference. Reliable prediction of both robot

and moving objects is a key for collision warning, static and dynamic obstacle avoidance,

and planning.

Because the robot motion model can be learned or identified in advance, it is reason-

able to assume that the robot motion model is known and the only uncertainties consist of

additive noises with known statistical properties. In the SLAM problem, motion modelling

is easier than perception modelling. In the moving object tracking problem, motion modes

of a moving object are partially unknown and possibly time varying in practice, making

motion modelling difficult.

We begin this chapter with a short introduction of model selection. We will introduce

the robot motion modelling problem briefly, and the rest of this chapter will focus on the

issues of moving object motion modelling.

4.1. Model Selection

The performance of offline learning or online adapting algorithms strongly relates to

their prediction capability, which highly depends on the selected models (Hastie et al.,

2001). Because model selection is very important for both robot and moving object motion

modelling, in this section we introduce the fundamentals briefly.
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Off-line Learning

Intuitively, complex models are better than simple models because complicated ones

can describe complicated systems more precisely than simple ones. It is true in the training

stage of learning. In the training stage, training error consistently decreases with model

complexity. However, training error is not a good index for testing error. For offline learn-

ing, a model with zero training error is often overfitted and does not work well in the

general case. Figure 4.1 shows that in the testing stage more complicated models are able

to adapt more complicated underlying structures, but the estimation error increases. Esti-

mation error also increases when the model is simpler. There is an optimal model complexity

between simple and complicated models. See Chapter 8 of (Hastie et al., 2001) for more

details about the model selection and model assessment related issues.

Figure 4.1. Model complexity. Behavior of test sample and training sample errors
as the model complexity varies, adapted from (Hastie et al., 2001)

Online Adapting

For online adapting, using more models is not necessarily the optimal solution. Ad-

ditionally, it increases computational complexity considerably. (Li and Bar-Shalom, 1996)

provided a theoretical proof that even the optimal use of motion models does not guarantee

better tracking performance.

Use of a fixed set of models is not the only option for multiple model based track-

ing approaches. A variable structure (VS) can be used in multiple model approaches (Li

and Bar-Shalom, 1992; Li, 2000). By selecting the most probable model subset, estimation

performance can be improved. However, this requires more complicated computation pro-

cedures.
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For tracking, not only motion but also other types of information or constraints can

be selected and added to the model set. In (Kirubarajan et al., 1998), terrain conditions

are used as constraint models and are added to the model set to improve performance of

ground target tracking via a VS-IMM algorithm.

4.2. Robot Motion Modelling

Robot motion modelling involves kinematics and dynamics, which are the core top-

ics in the control literature. This topic has received a great deal of attention over several

decades in the car, air, and marine industries. Kinematic equations describe the spatial re-

lationships between the vehicle (robot) frame and the world frame. Dynamic equations are

derived from Newtonian or Lagrangian mechanics, which explain the force interaction be-

tween the robot and its surrounding environment. Research on manned vehicles has been

used as the guideline for robot design and modelling. For robots operated on the ground,

(Wong, 2001) provides a comprehensive treatment of ground vehicle modelling on both

road and off-road terrains. For marine robots, (Fossen, 2002) is the definitive textbook and

(Wang, 1996) addresses the modelling and control issues of underwater vehicles. For aerial

vehicles, (McLean, 1990) is a good reference.

One of the keys for online robot motion modelling is modelling of motion sensors.

With advanced sensor modelling, accurate relative localization using inexpensive odome-

try has been demonstrated to be feasible for mobile robots in (Kelly, 2000) and (Doh et al.,

2003).

While perception modelling has been the subject of extensive study, only few results

such as (Julier and Durrant-Whyte, 2003) address the role played by the robot motion

model in the navigation system. Although robot motion modelling is beyond the scope

intended by this dissertation and will not be discussed further, a good treatment of robot

motion modelling can be a crucial factor for robots operating at high speeds, on three-

dimensional rough terrain, in the sky, or underwater.

4.3. Moving Object Motion Modelling

Because of their low computational cost and satisfactory performance, the IMM algo-

rithm and its variants (Mazor et al., 1998) have been successfully implemented in many

tracking applications for dealing with the moving object motion modelling problem. Since

the formulation of the IMM algorithm has been addressed in Section 2.3, we will only de-

scribe the motion models used in the IMM algorithm. Because it is very time-consuming

and difficult to obtain ground-truth for moving object tracking in our applications, we use

synthetic data to examine the algorithms under varying conditions.
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Discrete Time State Space Model

Just as with the robot motion modelling problem, moving objects can be described by

kinematic and dynamic equations. Motion models used for moving object tracking often

have a simpler form because of limited data associated with moving objects and limited time

for motion model learning or adapting in practice. In the tracking literature, moving objects

can be characterized by a simplified discrete time state space model, namely:

ok+1 = Fkok + Gkuk + vk (4.1)

where ok is the state vector at time k, Fk is the transition matrix of the system at time k, Gk

is the discrete time gain at time k, uk is the input assumed to be constant over a sampling

period, and vk is the discrete time process noise. Note that Equation 4.1 describes a time-

varying discrete time system.

In most moving object tracking applications, the control input uk is unknown and there

is no sensor measuring the control input directly. One approach for dealing with this prob-

lem is to directly estimate this unknown input using the measurements associated with

moving objects. However, (Fitzgerald, 1980) has showed that it is often not feasible to

obtain an accurate control input estimate if only positional information is available.

Instead, by assuming that a moving object behaves according to one of a finite num-

ber of models, multiple model approaches are applied widely and successfully in many

maneuvering object tracking applications. In this section, we will describe two of the basic

motion models, the constant velocity model and the constant acceleration model.

The Constant Velocity Model

The constant velocity (CV) model is shortened from the the piecewise constant white

noise constant velocity model, which assumes that the control input of the system can be

described as white noise. In other words, the acceleration of the moving object is modelled

as white noise.

As described in (Bar-Shalom and Li, 1995), the state equation for this model is:

ok+1 = Fok + Γvk (4.2)

where the process noise vk is a zero-mean white acceleration sequence.

Let the Cartesian state vector of the system be:

o = [x, vx, y, vy]T (4.3)

The time-invariant state transition matrix is

F =
[

Fx 0
0 Fy

]
, Fx = Fy =

[
1 t
0 1

]
(4.4)
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where t is the sampling period.

Assuming vk is constant during the k-th sampling period t, the increases in the veloc-

ity and the position are vkt and vkt2/2 respectively. Therefore, the noise gain is computed

by:

Γ =
[

Γx

Γy

]
, Γx = Γy =

[
1
2 t2

t

]
(4.5)

The covariance of the process noise multiplied by the gain is

Q =
[

Qx 0
0 Qy

]
(4.6)

where

Qx = Qy = E[ΓvkvkΓ
′
]

=
[

1
4 t4 1

2 t3
1
2 t3 t2

]
σ2

v (4.7)

It is suggested that σv should be of the order of the maximum acceleration magnitude

aM for the constant velocity model.

The Constant Acceleration Model

The constant acceleration (CA) model is shortened from the piecewise constant white

noise acceleration model in which the system is assumed to perform accelerations that are

constant over a sampling interval. In this model, the acceleration increment is assumed to

be zero-mean white sequence. The state equation of this model is the same as Equation 4.2

but the white process noise vk is the acceleration increment.

Let the Cartesian state vector of the system be:

o = [x, vx, ax, y, vy, ay]T (4.8)

The transition matrix is described as:

F =
[

Fx 0
0 Fy

]
, Fx = Fy =




1 t 1
2 t2

0 1 t
0 0 1


 (4.9)

The noise gain is

Γ =
[

Γx

Γy

]
, Γx = Γy =




1
2 t2

t
1


 (4.10)

The covariance of the process noise multiplied by the gain is

Q =
[

Qx 0
0 Qy

]
(4.11)
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where

Qx = Qy = Γσ2
vΓ

′

=




1
4 t4 1

2 t3 1
2 t2

1
2 t3 t2 t
1
2 t2 t 1


 σ2

v (4.12)

For the CA model, it is suggested that σv should be of the order of the magnitude of

the maximum acceleration increment over a sampling period, ∆aM .

The IMM algorithm with the CV and CA Models

In this section, we will illustrate the performance and the limitation the IMM algo-

rithm with the CV and CA models using synthetic data. In all simulations, the sensor plat-

form is assumed to be stationary and the moving objects are described by point-features,

i.e. no orientation information. The standard deviation of the additive noise in the percep-

tion measurements is 0.1 meter.

Case 1: a constant acceleration maneuver. In this simulation, the initial velocity of the

tracked object is 5 m/s and its acceleration is 10 m/s2. Figure 4.2 shows the tracking re-

sults, the ground truth and the measurements and the performance is satisfying. Figure 4.3

shows the velocity estimates and the probabilities of the CV model and the CA model dur-

ing tracking. As expected, the CA model dominates the whole tracking process according

to the probabilities.
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Figure 4.2. A simulation of the
constant acceleration maneu-
ver. Top: the whole trajectory.
Bottom: a portion of the trajec-
tory is enlarged for clarifica-
tion.
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Figure 4.3. The velocity esti-
mates and the probabilities of
the CV model and the CA
model in the constant accel-
eration maneuver simulation.
Top: the velocity estimates.
Bottom: the probabilities of the
CV model and the CA model.
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Case 2: a constant velocity maneuver. In this simulation, the velocity of this tracked

object is 15 m/s and its acceleration is 0 m/s2. Figure 4.4 and Figure 4.5 show the simulation

results. At the beginning, the filtered state was overshooting and oscillating. After about

1 second, the system was stably tracked. According the probabilities of the CV model

and the CA model, the CV model did not strongly dominate the tracking process. The

probability difference between the CV model and the CA model is not as big as the constant

acceleration maneuver example. This is because of the model complexity issues, which will

be discussed in Section 4.5.
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Figure 4.4. A simulation of the
constant velocity maneuver.
Top: the whole trajectory. Bot-
tom: a portion of the trajectory
is enlarged for clarification.
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Figure 4.5. The velocity esti-
mates and the probabilities of
the CV model and the CA
model in the constant velocity
motion simulation.

Case 3: a turning maneuver. In this simulation, the speed of the tracked object is 15

m/s and the angular velocity is 18 degree/s. Figure 4.6 and Figure 4.7 show the satisfying

results even the turning maneuver is neither the CV maneuver nor the CA maneuver. The

CV and CA models assume that the motion of the system is independent in the x and y

directions and the filter can be decoupled with respect to these axes. In the cases that a

moving object performs a coordinated turn, the motion is highly correlated across these

directions and the coordinated turning model can be used for getting better performance

and maneuver classification.

Case 4: a move-stop-move maneuver. This simulation demonstrates a more compli-

cated maneuver which consists of the following motion patterns in order: constant velocity,

constant deceleration, stop, constant acceleration and constant velocity. This maneuver is

one of the representative maneuvers for ground moving objects in urban environments. It

seems that Figure 4.8 and Figure 4.9 show the satisfying results.
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Figure 4.6. A simulation of the
turning maneuver. Top: the
whole trajectory. Bottom: a
portion of the trajectory is en-
larged for clarification.
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Figure 4.7. The velocity esti-
mates and the probabilities of
the CV model and the CA
model in the turning maneuver
simulation.
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Figure 4.8. A simulation of the
move-stop-move maneuver.
Top: the whole trajectory. Bot-
tom: a portion of the trajectory
is enlarged for clarification.
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Figure 4.9. The velocity esti-
mates and the probabilities of
the CV model and the CA
model in the move-stop-move
maneuver simulation.

However, due to uncertainty in the measurements, the velocity estimate did not go

to zero when the tracked object was stationary. Figure 4.8 indicates that the estimates

from the IMM with CV and CA models moved around the true stationary location instead

of converging to the true stationary location. Figure 4.10 shows a simulation in which a

stationary object is tracked using a Kalman filter with the CV model. The filtered result

overshoots and converges slowly. For SLAM with generic objects, such overshoots and

slow convergence degrade inference and learning of the whole process. We will discuss

this issue further in the next section.
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Figure 4.10. The simulation in which the stationary object is tracked using a Kalman
filter with a CV model. Green ∗ are the measurements and red × are the filtered
states.

4.4. The Stationary Motion Model

For dealing with move-stop-move maneuvers, (Kirubarajan and Bar-Shalom, 2000;

Coraluppi et al., 2000; Coraluppi and Carthel, 2001) have suggested adding a stationary

motion model to the motion model set. In this section, we will describe two models for

stationary motion modelling: one is a stop model simplified from the CV model and the

other is a stationary process model. We will explain why using the Kalman filter with the

stop model simplified from the CV model is not correct.

The Stop Model Simplified from the CV Model

Following the derivation of the CV model and the CA model, the stop model can be

derived by simplifying the CV model.

Let the Cartesian state vector of the stop model be:

o =
[

x
y

]
(4.13)

The time-invariant state transition matrix of the stop model is:

F =
[

1 0
0 1

]
(4.14)

In the stop model, vk is zero-mean white velocity sequence. The noise gain is com-

puted by:

Γ =
[

t
t

]
(4.15)

The covariance of the process noise multiplied by the gain is:

Q =
[

t2 0
0 t2

]
σ2

v (4.16)
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σv should be of the order of the measurement noise magnitude from both motion and

perception sensors. Before describing the correctness of this stop model, we describe the

second model for stationary motion modelling, the stationary process model.

The Stationary Process Model

In the time series analysis literature, there are a number of theorems and models about

stationary processes. In this section, we introduce the definitions of stationary processes

briefly and describe the stationary process model used for stationary motion modelling.

It is defined that a series of observations z0, z1, z2, . . . is strongly stationary or strictly

stationary if

(zk1 , . . . , zk2) = (zk1+h, . . . , zk2+h) (4.17)

for all sets of time points k1, . . . , k2 and integer h. A sequence is weakly stationary, or sec-

ond order stationary if the expectation value of the sequence is constant and the covariance

of zk and zk+h, cov(zk, zk+h) = γh, is independent of k. A white noise sequence is a second

order stationary series.

The stationary process model is assumed to be properly described by a second order

stationary series. Because the motion mode of moving objects is time-varying, stationary

process should be identified locally.

There are a number of methods to test whether a series can be considered to be white

noise or whether a more complicated model is needed. Because of limited data and time

in practice, the mean and the covariance of the series are used to decide if the series is a

stationary process.

Comparison

We compare the performances of these two stationary motion models. The stop model

simplified from the CV model is used with Kalman filtering. In the stationary process

model, the mean and covariance are computed directly and the recursive formula is de-

rived and used.

Figure 4.11 and Figure 4.12 shows the results of stationary object tracking. Both re-

sults from the stop model and the stationary process model were not overshooting. The

stationary process model converged to the true location. But the result of the stop model

did not well represent the statistical properties of the stationary motion sequence.

Figure 4.13 and Figure 4.14 shows the results of constant velocity maneuver tracking

using these two stationary motion models. The filtering with the stop model performed the

wrong inference. Instead of taking the whole sequence into account, the Kalman filtering
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Figure 4.11. A simulation in
which the stationary object is
tracked using a Kalman filter
with the stop model. The dis-
tribution of the last state esti-
mate is shown by 1σ ellipse.
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Figure 4.12. A simulation in
which a stationary object is
tracked using the stationary
process model. The distribu-
tion of the last state estimate is
shown by 1σ ellipse.

with the stop model performs the average of the current measurement and the previous

one. On the other hand, the covariance of the stationary process model represents the

statistical property of the data properly, which indicates that the time series measurements

can not be described by the stationary process model and this series should be a moving

process.
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Figure 4.13. A simulation in
which an object moving at a
constant velocity is tracked us-
ing a Kalman filter with the
stop model. The distribution of
the last state estimate is shown
by 1σ ellipse.
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Figure 4.14. A simulation in
which the constant velocity ob-
ject is tracked using the station-
ary process model. The distri-
bution of the last state estimate
is shown by 1σ ellipse.

As a result, the stationary process model is used for stationary motion modelling. In

this section, the stop model indicates the model simplified from the constant velocity model
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for distinguishing from the stationary process model. Beyond this section, the stationary

process model and the stop model are exchangeable.

Compared to the CA model and the CV model, the stationary process model is an ex-

tremely simple model. In the next section, we will discuss the effects of model complexity

in tracking.

4.5. Model Complexity

Given a fixed set of models, the IMM algorithm performs model averaging but not model

selection. It is a decision-free or soft-decision algorithm. The overall estimate is the probabilis-

tically weighted sum of all models and the overall covariance is determined accordingly.

For move-stop-move object tracking, it seems that we could just add the stationary process

model to the model set and solve the problem with the same IMM algorithm. However,

as observed in (Shea et al., 2000; Coraluppi and Carthel, 2001), all of the estimates tend

to degrade when the stop model is added to the model set and mixed with other moving

motion models. In this section, we attempt to provide a theoretical explanation of this

phenomenon.

The Nested Model Set

The models used for tracking belong to a nested model set in which the stationary pro-

cess model is a subset of the CV model and the CV model is a subset of the CA model.

Figure 4.15 shows this nested model set. In the nested model set, the more complicated

models can exactly describe the simpler maneuvers such as constant velocity motions and

stationary motions. This explains why the CA model and the CV model have similar prob-

ability values for tracking an object moving at a constant velocity. For tracking a compli-

cated maneuver, the CA model has much higher probability value than the CV model since

the CV model can not describe this complicated maneuver well.

Figure 4.15. The nested model set.
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Since one CA model can explain all these stop, constant velocity, and constant accel-

eration maneuvers, why do we need to use all these models? Assuming enough data is

given and the mode of the moving object only obeys one model, more complicated models

such as the CA model indeed perform better than the simpler models. Recall the model

selection issues addressed in Section 4.1. In the cases with limited data and operations in

real time, a complicated model is often overfit when the system is in a simple mode and

more data is needed to perform inference accurately.

Occam’s Razor

Chapter 28 of (MacKay, 2003) proves that simpler models are preferred than more

complicated models when models are compared using Bayes’ theorem. In other words,

when the models in the model set have similar probability values, Bayesian theorem prefers

to choose the simpler model. It is also called Occam’s Razor.

Figure 4.16 shows Occam’s Razor embodied by Bayesian theorem. The evidence of

the model Mi is the probability of the data given this model, p(Z | Mi). A more powerful

model such as the CA model can make larger range of predictions than simpler models

such as the CV model and the stop model. However simple models provide stronger evi-

dence than complicated models when data falls into the area that both models share. For

instance, when data falls in region CCV , the simpler and less powerful CV model is more

probable than the CA model.

Figure 4.16. Occam’s Razor: Bayesian inference automatically and quantitatively
embodies Occam’s Razor, modified from Chapter 28 of (MacKay, 2003)

Because the CV model and the CA model share a large portion of Z axis as shown in

Figure 4.16, the degradation is not so significant when the CV model and the CA model are
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mixed outside the shared region (see Table 4.1). Because the stationary process model is an

extremely simple model which can only explain the stationary motion, a point in the axis

of Z, the stop model should not be used beyond this point. When the stationary process

model is added to the model set, the performance beyond this stationary point degrades as

observed in (Shea et al., 2000; Coraluppi and Carthel, 2001). As a result, selecting probable

models should be done with great caution, especially when dealing with very simple mod-

els such as the stationary process model. In the next section, we describe the move-stop

hypothesis tracking for dealing with this issue.

Table 4.1. Model Complexity. Xindicates that the model is perfect for the specific
motion, 4 indicates that the model is adequate for the specific motion and × indi-
cates that the model is wrong for the specific motion.

The Stop model The CV model The CA model
Stationary Motion X 4 4
Constant Vel. Motion × X 4
Constant Acc. Motion × × X

4.6. Move-Stop Hypothesis Tracking

In practice, the minimum detection velocity (MDV) can be obtained by taking account

of the modelled uncertainty sources. For objects whose velocity estimates from the IMM

algorithm with the moving models are larger than this minimum detection velocity, the ob-

jects are unlikely to be stationary and the IMM algorithm with the moving models should

perform well. In the cases that the performance of the IMM algorithm with the CV model

and the CA model is not satisfying, other motion models can be added to the model sets or

a variable structure multiple model estimation algorithms can be applied. However they

are computationally demanding.

For objects whose velocity estimates are less than this minimum detection velocity,

tracking should be done with great caution. Instead of adding the stationary process model

to the model set, move-stop hypothesis tracking is applied where the move hypothesis and

the stop hypothesis are inferred separately.

For move hypothesis inference, tracking is done via the IMM algorithm with the CV

model and the CA model. For stop hypothesis inference, the stationary process model is

used to verify if the system is a stationary process at the moment with a short period of

measurements. The covariances from the move hypothesis and the stop hypothesis are

compared. The hypothesis with more certain estimates will take over the tracking process.

Figure 4.17 and Figure 4.18 show the simulation result of move-stop hypothesis tracking.

Figure 4.18 is the enlargement of Figure 4.17 around the true stationary location.
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Figure 4.17. A simulation of the move-stop-move maneuver tracked by move-stop
hypothesis tracking.
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Figure 4.18. The enlargement of Figure 4.17.

Besides comparing the uncertainty estimates of the move hypothesis and the stop

hypothesis, data association is a means to select the correct hypothesis. Recall that the

estimates are often overshooting when the CV model or the CA model is used to track

a stationary object in which correspondences between the object and new measurements

usually can not be established because new measurements are outside the gates of the

moving models. More details about data association will be addressed in the next chapter.

4.7. Simultaneous Multiple Moving Object Tracking

Thus far, we have addressed the motion modelling issues in the single moving object

tracking problem. For multiple moving object tracking, it can be decoupled and treated as
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the single moving object tracking problem if the objects are moving independently. How-

ever, in many tracking applications, moving objects are moving dependently such as sea

vessels or air fighters moving in formation. In the urban and suburban areas, cars or pedes-

trians often move in formation as well because of specific traffic conditions. Although the

locations of these objects are different, velocity and acceleration may be nearly the same in

which these moving objects tend to have highly correlated motions.

Similarly to the SLAM problem, the states of these moving objects can be augmented

to a system state and then be tracked simultaneously. (Rogers, 1988) proposed an aug-

mented state vector approach which is identical to the SLAM problem in the way of dealing

with the correlation problem from sensor measurement errors. See Chapter 7 of (Blackman

and Popoli, 1999) for details of this algorithm.

4.8. Summary

In this chapter, we discussed the importance of motion modelling in SLAM and mov-

ing object tracking from both theoretical and practical points of view. We mainly focused

on the moving object motion modelling issues, in particular move-stop-move object track-

ing. We explained why a stop model simplified from the CV model is not correct and why

a stationary process model should be used instead. Because of the model complexity ef-

fects in motion modelling, we presented the move-stop hypothesis tracking algorithm for

tracking objects whose velocity estimates are smaller than the minimum detection velocity.

Thus far, the described theories and algorithms of perception modelling and motion

modelling assume correct data association. Because of uncertainty, the data association

problem is unavoidable in practice. In the next chapter, the data association problem will

be discussed in detail.
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Data Association

Only the paranoid survive.
– Andy Grove

DATA ASSOCIATION is one of the most important and challenging problems in

practice. It is important because wrong data association can diverge inference

and learning. It is challenging because the most probable association between

measurements and objects needs to be selected from a very large set of possible matches.

In this chapter, we address the data association problem in the small, in the cluttered and

in the large:

• Data association in the small, or correspondence finding, involves determining corre-

spondences at the measurement-to-measurement level and the segment-to-object

level using two or multiple consecutive measurements. It is difficult when mea-

surements are sparse or objects are featureless.

• Data association in the cluttered aims to resolve the situations in which the ambigu-

ity can not be removed with techniques of data association in the small. This is

critical for clarifying and maintaining identifications of objects in cluttered envi-

ronments.

• Data association in the large, or revisiting, is the recognition of places where the

robot is in a previously explored area. It is difficult because of accumulated pose

estimate errors, unmodelled uncertainty sources, temporary stationary objects

and occlusion.

With the knowledge of Chapter 3 and Chapter 4, not only kinematic information but

also geometric information are used to aid data association. In many situations, measure-

ments or environments are not informative, so that data association problem in the small

can not be solved immediately even with the use of spatial, geometric and kinematic clues.
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However, as long as ambiguity is modelled properly, a delayed but firm decision can be

made until the later measurements are received and are enough to disambiguate the previ-

ous uncertain association. For tackling data association in the large, these techniques may

be not sufficient.

In this chapter, we will address three principles to tackle these data association prob-

lems:

• Exploiting information contained in measurements,

• Modelling or describing ambiguity correctly, and

• Increasing search space to deal with unexpected situations.

We begin this chapter with the data association problem in the small.

5.1. Data Association in the Small

There are two levels of data association in the small: one is the measurement-to-

measurement level and the other is the segment-to-object level. Since segments or objects

contain either raw measurement points or a grid map, the sampling and correlation based

range image registration algorithm is used for solving the measurement-to-measurement

level data association.

In this section, the segment-to-object level data association is addressed. An object

score function is defined and used for quantitatively measuring the confidence of objects

over time. Based on Chapter 3 and Chapter 4, kinematic and geometric information is used

for computing the object score function.

Object Score Function

Following research in the tracking literature (Sittler, 1964; Blake et al., 1999), a likeli-

hood ratio is defined in order to evaluate segment-object hypotheses:

PT

PF
=

p(HT | Zk)
p(HF | Zk)

=
p(Zk | HT )p(HT )
p(Zk | HF )p(HF )

(5.1)

where PT is the probability of the true object hypothesis HT , PF is the probability of the

false alarm hypothesis HF , and Zk is the segment measurements over time.

In practice,it is more convenient to use the log likelihood ratio which is defined as the

object score function:

O = log
PT

PF
(5.2)

where O is the object score function.
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The recursive formula to compute the object score function can be derived as:

Ok = log
p(Zk | HT )p(HT )
p(Zk | HF )p(HF )

= log
p(zk | HT )p(Zk−1 | HT )p(HT )
p(zk | HF )p(Zk−1 | HF )p(HF )

=
k∑

i=1

lOi + lO0 (5.3)

where

lOk = log
p(zk | HT )
p(zk | HF )

(5.4)

and

lO0 = log
p(HT )
p(HF )

(5.5)

Note that zk is not the raw measurement points described in Chapter 3. Here zk is

information about segments, which can be contributed from different forms of informa-

tion. In our applications, zk consist of the geometric information zG
k and the kinematic

information zK
k . Assuming these contributions are independent, zk can be computed as:

zk = zG
k + zK

k (5.6)

and Equation 5.4 can be rewritten as:

lOk = log
p(zG

k | HT )
p(zG

k | HF )
+ log

p(zK
k | HT )

p(zK
k | HF )

= lGk + lKk (5.7)

where lKk is the object score contributed from kinematic information and lGk is the object

score contributed from geometric information. Before describing the formulas to compute

lKk and lGk , a technique for eliminating unlikely segment-to-object pairings is introduced

next.

Gating

Gating is a statistical test for connecting likely observation-to-object pairs. Let µm

and Σm be the predicted mean and covariance of the object m in the robot frame and the

measurement returned from the perception sensor be z. The norm of the residual vector

can be computed by a Mahalanobis metric:

d2 = (z − µm)T Σ−1
m (z − µm) (5.8)
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A gate G can be defined for associating the measurement and the object. A measurement-

object correspondence is established when

d2 ≤ G (5.9)

Figure 5.1 shows an example of gating. If Euclidean distance is used for gating, z1
k is

chosen instead of z2
k. Gating using Mahalanobis distance selects z2

k instead of z1
k which is

more appropriate in a statistical sense.

Figure 5.1. Gating. z2
k is chosen instead of z1

k by using a Mahalanobis metric.

In practice, the gate G should be chosen to be large enough to compensate both mod-

elled and unmodelled uncertainty. In cluttered environments, gating is only used to elim-

inate highly unlikely matches. More precise association will be done using the algorithms

for solving data association in the cluttered such as the multiple hypothesis tracking (MHT)

algorithm.

Kinematic Contribution to Data Association

If an object is classified as a stationary object m, the kinematic contribution of the new

measurement zK
k to this object m is simplified to the spatial contribution only and Equation

5.8 can be directly used to compute lKk :

lKk = log
p(zK

k | HT )
p(zK

k | HF )

= log
e−d2/2/[(2π)D/2

√
|Σm|]

1− p(zK
k | HT )

(5.10)

where d2 is the norm of the residual vector, D is the vector dimension and Σm is the co-

variance matrix of the stationary object m.

If an object is classified as a moving object o, kinematics of this moving object o can

be learned or selected with the IMM algorithm. For computing d2, we can use the mixed

predicted pose µo and its corresponding distribution Σo, or use the predicted poses and the

92



5.2 DATA ASSOCIATION IN THE CLUTTERED

corresponding distributions from the motion models in the model set for performing more

accurate association. This procedure is called maneuver gating in the tracking literature.

For an object between move and stationary, d2 is computed with the move hypothesis

and the stop hypothesis respectively. The object scores of the hypotheses can be used for

hypothesis selection in move-stop hypothesis tracking.

Geometric Contribution to Data Association

Measurements from laser scanners contain rich geometric information which can be

used to aid data association in the small. By applying the sampling and correlation based

range image matching algorithm, the relative transformation of a new segment and a object

and the corresponding covariance matrix can be obtained. The covariance matrix quanti-

tatively represents the similarity of the new segment and the object. Therefore, we define

lGk as:

lGk = log
p(zG

k | HT )
p(zG

k | HF )

= log
1/[(2π)D/2

√
|ΣS|]

1− p(zG
k | HT )

(5.11)

where ΣS is the covariance matrix from the sampling and correlation based range matching

algorithm.

Other Contributions to Data Association

The key to solving data association in the small is to exploit information contained in

measurements in order to remove ambiguities quickly. Beside the kinematic and geomet-

ric information, other contributions should be included if available. For instance, single-

related contributions from reflectance or amplitude of laser measurements and color or

texture information from cameras could be included using the same mechanism.

5.2. Data Association in the Cluttered

Algorithms of data association in the cluttered aim to resolve ambiguities that can not

be removed with techniques of data association in the small. Because the ambiguity can

not be removed right away, describing the ambiguity properly is the key to disambiguating

the situations correctly when new information is received. Figure 5.2 shows an example

where both z1
k and z2

k are inside the gate of object o1
k. Given nearly the same object scores,

there is no way to eliminate one of them.
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Figure 5.2. Data association in the cluttered.

The data association in the cluttered problem has been studied for several decades.

There are a number of algorithms which have been demonstrated successfully in many ap-

plications. The multiple hypothesis tracking (MHT) approach (Reid, 1979; Cox and Hingo-

rani, 1996), the joint probabilistic data association (JPDA) approach (Fortmann et al., 1983),

and the multidimensional assignment approach (Poore, 1994) are some of the most repre-

sentative algorithms. The differences and comparisons of these algorithms are beyond the

scope of this dissertation and are not addressed here.

Our system applies the MHT method, which maintains a hypothesis tree and can re-

vise its decisions while getting new information. This delayed decision approach is more

robust than other approaches. The main disadvantage of the MHT method is its exponen-

tial complexity. If the hypothesis tree is too big, it is not feasible to search the whole set

of hypotheses to get the most likely set of matching. Note that the MHT algorithm is only

applied wherever there is segment-to-object conflict. Figure 5.3 shows the clustering stage

of the MHT algorithm where o1
k, o2

k, z1
k, z2

k, z3
k belong to the same cluster because of the

shared measurement z2
k.

Figure 5.3. Clustering.
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Fortunately, with accurate laser measurements, there are usually few association con-

flicts in our application because of precise data association in the small contributed by

kinematic and geometric information.

5.3. Data Association in the Large

An example of the data association in the large problem has been illustrated in Section

3.5. When the robot reenters a visited area, loop detection or place recognition has to be

done in order to build a globally consistent map (Stewart et al., 2003; Thrun and Liu, 2003;

Hähnel et al., 2003).

For data association in the small and in the cluttered, the uncertainty and the ambigu-

ity of the robot and objects’ pose estimates can be described well in practice. But for data

association in the large, because of accumulated errors and unmodelled uncertainty, the

distribution estimates may not describe the uncertainty properly, which means gating can

not be performed correctly. Figure 5.4 illustrates the data association in the large problem

where the distribution estimates are modelled improperly and can not correctly indicate

where the true poses of the robot and objects are. For dealing with this problem, in this

section we propose three principles: covariance increasing, information exploiting, and ambi-

guity modelling where the latter two have been used for solving data association in the small

and in the cluttered.

Figure 5.4. Data association in the large.

Covariance Increasing

Although the distribution may not describe the uncertainty properly, it still provides

useful information for recognizing the current measurement in the built map. In the track-

ing literature, (Li, 1998) has presented a theoretical conclusion that the covariance matrix

from the Kalman filter should be increased for dealing with the missed detection problem.

Similarly, instead of searching the whole built map, only the built map within the gate of

the increased covariance is verified. Because of the unmodelled uncertainty sources, it may
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be difficult to decide how much the covariance matrix should be increased theoretically. In

practice, the covariance matrix can be increased in the way of wave propagation until loops

are detected. Note that loop detection is only activated whenever there is an inconsistency

in the global map. Figure 5.5 illustrates an example of covariance increasing.

Figure 5.5. Covariance increasing.

Information Exploiting

For loop closing, not only recognizing but also localizing the current measurement

within the global map has to be accomplished. As addressed in data association in the

small, including geometric information can be greatly beneficial to data association or

recognition. Unfortunately, because of temporary stationary objects, occlusion, and low object

saliency scores, recognizing and localizing places are difficult even with the proper informa-

tion about which portions of the built map are more likely.

Because of temporary stationary objects such as cars stopped by traffic lights and

parked cars, the currently built stationary object maps may be very different from the

global stationary object map. Since the environments are dynamic, stationary objects may

be occluded when the robot is surrounded by big moving objects such as buses and trucks.

In practice many areas such as bushes and walls do not have high object saliency scores.

In these situations, recognition and localization may be incorrect even with the use of geo-

metric information.

In order to deal with the above situations, big regions are used for loop-detection

instead of using raw scans. In large scale regions, large and stable objects such as build-

ings and street blocks are the dominating factors in the recognition and localization pro-

cesses, and the effects of temporary stationary objects such as parked cars is minimized.

It is also more likely to have higher saliency scores when the size of the regions is larger.

In other words, the ambiguity of recognition and localization can be removed more eas-

ily and robustly. Because the measurements at different locations over different times are
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accumulated and integrated into the local region, the occlusion of stationary objects is re-

duced as well. Figure 5.6 shows a grid-map pair of the same regions built at different

times. Although the details of grid-maps are not the same in the same region because of

the described reasons, full grid maps contain enough information for place recognition and

localization.

Because grid maps are used, visual image registration algorithms from the computer

vision literature can be used for recognition and localization. Following the sampling and

correlation based range image matching algorithm, we use the correlation between grid

maps to verify the recognition (searching) results, and we perform recognition or searching

between two grid maps according to the covariance matrix from the feature-based SLAM

process instead of sampling. The search stage is speeded up using multi-scale pyramids.

Figure 5.7 shows the recognition and localization results of the examples in Figure 5.6 using

different scales.

(a) Grid-map 1 (b) Grid-map 16

Figure 5.6. The grid-map pair of the same region built at different times: Grid-map
1 and Grid map 16. Different moving object activities at different times, occlusion
and temporary stationary objects are shown.
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(a) 1/8 Scale (b) 1/4 Scale

(c) 1/2 Scale

Figure 5.7. Recognition and localization results using different scales of grid map 1
and grid map 16. Two grid maps are shown with respect to the same coordinate
system.

Ambiguity Modelling

In cases that information exploiting provides more than one feasible recognition re-

sult, the ambiguity should be described properly for a later but firm decision as addressed

in data association in the cluttered.

Since the ambiguity in our experiments can be removed quickly and reliably using

the described information exploiting based algorithms, we increase the difficulty of the

problem by cutting the data set of 21 grid maps into 2 disjoint sequences. We assume that

these two sequences are collected from two robots and the relative starting locations of

these two robots are unknown. Now the problem is to built a joint map using these two

sequences. Figure 5.8 shows these two sequences, one is grid map 1-14 and another is grid

map 15-21. Figure 5.9 and Figure 5.10 show the details of these grid maps.

Because the relative starting locations of these two sequences are unknown, recogniz-

ing and localizing places have to be performed globally in which the saliency score of a grid

map may not be good enough to remove the ambiguity. Figure 5.11 shows the bar graph of

the maximum correlation values of the grid map pairs between the grid map 1-14 sequence

and the grid map 15-21 sequence. Figure 5.12 shows two slices of Figure 5.11 in which mul-

tiple possible matches are found in the place recognition of grid map 12 and grid map 13.
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(a) Sequence 1: Gird map 1-14
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(b) Sequence 2: Grid map 15-21

Figure 5.8. Two sequences. The relative starting locations of these two sequences
are assumed to be unknown.

1 2 3

4 5 6

7 8 9

Figure 5.9. Details of grid map 1-9. Measurements associated with moving object
are filtered out.
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10 11 12

13 14 15
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Figure 5.10. Details of grid map 10-21. Measurements associated with moving ob-
ject are filtered out.

In other words, grid-map 12 and grid-map 13 can not remove the ambiguity. Practically,

it can be solved by selecting a larger grid map or using multiple consecutive grid maps to

increase the saliency score for removing the ambiguity. Figure 5.13 shows that the ambigu-

ity is reliably removed with the use of multiple consecutive grid maps where hypothesis

k consists of the sequence pair between the grid map sequence k-k+5 and the grid map
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sequence 16-21. Hypothesis 1 has the highest total correlation value, which is verified to

be the correct recognition by the ground truth.
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Figure 5.11. The bar graph of the maximum correlation values of the grid map pairs
between the grid map 1-14 sequence and the grid map 15-21 sequence using 1/8
scale grid maps.
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Figure 5.12. The slices of Figure 5.11.
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Figure 5.13. The total correla-
tion value of the consecutive
grid maps. Each hypothe-
sis consists of five consecutive
grid maps.

5.4. Summary

In this chapter, we addressed data association in the small, in the cluttered and in the

large. These problems were tackled by three principles: information exploiting, ambiguity

modelling and covariance increasing. With the rich information contained in the laser scan-

ner measurements, not only kinematic but also geometric information are used for aiding
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data association. Following these three principles, we demonstrated that data association

in the large can be solved in practice.

Now we have the main components for solving simultaneous localization, mapping

and moving object tracking. In the next chapter, we will address the implementation issues,

which link all these main components together.
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Implementation

Always look on the bright side of life.
– Monty Python

IN the previous chapters, we have established foundations, perception modelling, mo-

tion modelling and data association regarding to solve the simultaneous localization,

mapping and moving object tracking problem. In this chapter, we link these indi-

vidual components together and describe the associated implementation issues from both

theoretical and practical points of view.

Compared to the previous chapters, the topics in this chapter are more varied. We

begin this chapter with the discussion of solving the whole problem globally or locally.

We will describe two practical moving object detection algorithms, consistency based de-

tection and moving object map based detection. We will explain data-driven approaches

for tackling non-linearity and non-Gaussianity. We will show ample experimental results

to demonstrate the feasibility of simultaneous localization, mapping and moving object

tracking from ground vehicles at high speeds in urban areas. Finally, we will also point

out the limitations of our system in terms of the 2-D environment assumption and sensor

failures.

6.1. Solving the Moving Object Tracking Problem Locally or Globally?

Both the formulations of SLAM with DATMO and SLAM with GO show that the un-

certainty of the robot pose estimate from SLAM has to be taken into account for performing

moving object tracking because measurements are collected from the robot. This means

that more uncertain measurements have to be processed in moving object tracking. Since

the goal of SLAM is to build a globally consistent map, the uncertainty of the robot pose

estimate is maintained and updated with respect to a global coordinate system. If moving
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object tracking is also performed in the global frame, motion modelling and data associa-

tion will be very difficult. Figure 6.1 illustrates that two measurements are within the gate

of a moving object because of performing tracking in the global frame.

Fortunately, locally performing moving object detection, data association in the small

and in the cluttered, and motion modelling does not violate the formulas of SLAM with

DATMO and SLAM with GO, and inference and learning of the whole process can still be

done globally. Hence, instead of using the global coordinate system, a temporary global

coordinate system is selected for performing moving object tracking. With respect to this

temporary global coordinate system, the uncertainties of the pose estimates of the robot

and moving objects are maintained reasonably in which detection, data association and

motion modelling can be performed reliably. Given the distributions with respect to the

global coordinate system, the distributions in the temporary global frame can be obtained

with the tail-to-tail operation addressed in Section 2.1. Figure 6.1 and Figure 6.2 illustrate

the differences between performing tracking globally and locally. In Figure 6.2, data asso-

ciation is performed correctly in the temporary global frame.

Figure 6.1. Performing detection, data association and motion modelling in a global frame.

Figure 6.2. Performing detection, data association and motion modelling with re-
spect to a temporary global coordinate system.

104



6.2 MOVING OBJECT DETECTION

In practice, once a moving object is detected at the first time, the robot frame could be

assigned as the temporary global frame for tracking this moving object. If the hierarchical

object based representation is used, the origin of the current grid map could be assigned as

the temporary global frame.

6.2. Moving Object Detection

Recall that SLAM with DATMO makes the assumption that the measurements can

be decomposed into measurements of stationary and moving objects. This means that

correctly detecting moving object is essential for successfully implementing SLAM with

DATMO.

In the tracking literature, a number of approaches have been proposed for detecting

moving objects, which can be classified into two categories: with and without the use of

thresholding. (Gish and Mucci, 1987) have proposed an approach that detection and track-

ing occur simultaneously without using a threshold. This approach is called track before

detect (TBD) in the tracking literature, although detection and tracking are performed si-

multaneously. However, the high computational requirements of this approach make the

implementation unfeasible. (Arnold et al., 1993) have shown that integrating TBD with

the dynamic programming algorithm provides an efficient solution for detection without

thresholding, which could be a solution for implementing SLAM with GO practically.

In this section, we describe two approaches for detecting moving objects: a consis-

tency based approach and a motion object map based approach. Although these two ap-

proaches work with the use of thresholding, the experimental results using laser scanners

are satisfying. In addition, move-stop hypothesis tracking can be used to detect moving

objects with estimates below the designed threshold.

Consistency-based Detection

Intuitively, any inconsistent part between the map and the new measurement should

belong to moving objects. In (Wang and Thorpe, 2002), we pointed out that this intuition

is not totally correct. There are two cases for detecting moving objects:

Case 1: From previous scans or the map, we know some space is not occupied. If we

find any object in this space, this object must be moving. In Figure 6.3, object A must be a

moving object.

Case 2: In Figure 6.4, we can not say that object B is a moving object. Object B may be

a new stationary object because object B may have been occluded by object C. What we are

sure is that object C is a moving object. Although we can not tell whether or not object B is
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Figure 6.3. Case 1 of detection. See the text for details.

moving by registering only two scans, the previous information does help us to decide the

characteristics of object B.

Figure 6.4. Case 2 of detection. See the text for details.

The consistency-based moving object detection algorithm consists of two parts: the

first is the detection of moving points; the second is the combination of the results from

segmentation and moving point detection for deciding which segments are potential mov-

ing objects.

The details are as follows: given a new scan, the local surrounding map, and the pose

estimate from SLAM, we first transform the local surrounding map to the coordinate frame

of the current laser scanner, and then convert the map from a rectangular coordinate system

to a polar coordinate system. Now it is easy to detect moving points by comparing values

along the range axis of the polar coordinate system.
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A segment is identified as a potential moving object if the ratio of the number of

moving points to the number of total points is greater than 0.5. Figure 6.5 shows the re-

sults of moving object detection and a red box indicates a moving car recognized by our

consistency-based detector.

Note that the consistency-based detector is a motion-based detector in which tempo-

rary stationary objects can not be detected. If the time period between consecutive mea-

surements is very short, the motions of moving objects will be too small to be detected.

Therefore, in practice an adequate time period should be chosen for maximizing the cor-

rectness of the consistency-based detection approach and reducing the load of the more

computational expensive move-stop hypothesis tracking algorithm.

Figure 6.5. Consistency-based detection.

Moving Object Map based Detection

Detection of pedestrians at very low speeds is difficult but possible by including in-

formation from the moving object map. From our experimental data, we found that the

data associated with a pedestrian is very small, generally 1-4 points. Also, the motion of a

pedestrian can be too slow to be detected by the consistency-based detector. Because the

moving object map contains information from previous moving objects, we can say that

if a blob is in an area that was previously occupied by moving objects, this object can be

recognized as a potential moving object.

Iterated SLAM with DATMO

Theoretically, making hard decisions such as thresholding leads to an irretrievable

loss of information. For SLAM and DATMO, any misclassification of moving objects and
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stationary objects could degrade the performance. To successfully implement SLAM with

DATMO, detection should be as accurate as possible. By taking advantage of the feasible

implementation of SLAM with DATMO, SLAM with DATMO can be performed iteratively

until the result converges just as with the ICP algorithm.

Figure 6.6. Iterated SLAM with DATMO.

6.3. Stationary Object Map and Moving Object Map

Instead of discarding information from moving objects, a stationary object map (SO-

map) and a moving object map (MO-map) are created to store information from stationary

objects and moving objects respectively. Information can easily be accumulated and re-

trieved by maintaining SO-map and MO-map. Because SO-map only contains stationary

object information, SO-map should be clean without any fuzzy areas. In contrast, MO-map

is fuzzy because MO-map only contains moving object information. Any inconsistency of

SO-map and MO-map provides important information for detecting and correcting mis-

takes that SLAM with DATMO made. If there are many moving objects passing through

an area, any object that appears in this area should be recognized as a moving object as

addressed in the previous section.

By integrating information from moving cars and pedestrians, lanes and sidewalks

can be recognized. This kind of information is extremely important to robots operating in

environments occupied by human beings. In the applications of exploration, robots can

go wherever there is no obstacle. However, for tasks in environments shared with human

beings, robots have to follow the same rules that people obey. For example, a robot car

should be kept in the lane and should not go onto the unoccupied sidewalks. For colli-

sion warning, avoidance and planning tasks, velocity estimates of moving objects should

not be the only source for deciding if the situation is critical; higher level environment un-

derstanding is necessary. The stationary object map and the moving object map provide

essential information to accomplish these tasks.
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6.4. Data-Driven Approach to Non-Linearity and Non-Gaussianity

Research on SLAM has presented a number of possible methods for solving the SLAM

problem such as the extended Kalman filter (Smith and Cheeseman, 1986; Smith et al.,

1990), the unscented Kalman filter, the sum-of-Gaussian method (Majumder et al., 2002)

and the particle filter (Thrun et al., 2000), which have been proposed for solving the moving

object tracking problem in the tracking literature. These methods can be used to solve the

simultaneous localization, mapping and moving object tracking problem as well.

The main differences between these methods are the representations of the joint pos-

terior density. In practice, the extended Kalman filter can perform well as long as the es-

timates are close to the true values and the joint posterior density can be well represented

by Gaussian distributions. On the other hand, given enough particles (sample points), the

particle filter can provide a complete representation of the joint posterior density, which

is the key to dealing with non-linearity and non-Gaussianity. Note that proper perception

modelling and motion modelling are still critical to do inference and learning using the

particle filter.

Unfortunately, the simultaneous localization, mapping and moving object tracking

problem has a much higher dimensionality than the SLAM problem and the moving object

tracking problem. Particle filtering may not be feasible because of the curse of dimension-

ality and history. A few studies such as (Crisan and Doucet, 2002; Verma et al., 2003; Pineau

and Thrun, 2002; Roy, 2003) on applying suboptimal approximations to beat the curse of

dimensionality and history need to be further studied.

In this dissertation, we apply a data-driven approach to tackle the unavoidable non-

linearity and non-Gaussianity issues. In perception modelling, the sampling and correlation

based range matching algorithm are used for analyzing the geometric characteristics of

moving objects in the initialization stage of tracking. Once motion models are learned or

selected properly, the predicted poses from these motion models are reliable and the ICP

algorithm can be used instead of the sampling and correlation based range matching algo-

rithm. In motion modelling, move-stop hypothesis tracking is also a data-driven approach.

In data association in the small, in the cluttered and in the large, new hypotheses are created

whenever there are conflicts, and delayed but firm decisions can be obtained, which are

data-driven as well.

Our results show that the data-driven approach is a promising methodology for deal-

ing with non-linearity and non-Gaussianity. Some issues such as clustering and model

selection need to be studied further.
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6.5. Experimental Results

Before 2001, experimental data was collected with the Navlab8 vehicle (see Figure

1.7). A SICK PLS100 laser scanner was mounted on the right side of the Navlab8 vehicle,

doing horizontal profiling. The preliminary experimental results showed that it is feasible

to accomplish localization, mapping and moving object tracking without using measure-

ments from motion sensors. However the algorithms fail when large portions of stationary

objects are occluded by moving objects around the Navlab8 vehicle.

Currently, the Navlab11 vehicle (see Figure 1.8) is used to collect data. The Navlab11

vehicle is equipped with motion sensors (IMU, GPS, differential odometry, compass, incli-

nometer, angular gyro) and perception sensors (video sensors, a light-stripe rangefinder,

three SICK single-axis scanning rangefinders). The SICK scanners, one SICK LMS221 and

two SICK LMS291, were mounted in various positions on the Navlab11 vehicle, doing hor-

izontal or vertical profiling. The Navlab11 vehicle was driven through the Carnegie Mellon

University campus and around nearby streets. The range data were collected at 37.5 Hz

with 0.5 degree resolution. The maximum measurement range of the scanners is 81 m. Ta-

ble 6.1 shows some features of SICK laser scanners. In this section, we show a number of

representative results.

Table 6.1. Features of SICK laser scanners. The measurement points are interlaced
with 0.25◦ and 0.5◦ resolution

SICK Laser Scanner PLS 100 LMS 221/221/291
Scanning Angle 180◦ 100◦, 180◦

Angular Resolution 0.5◦, 1◦ 0.25◦, 0.5◦, 1◦

Maximum Range ∼ 51 m ∼ 81 m
Collection Rate 6 Hz with 0.5◦ resolution 37.5 Hz with 0.5◦ resolution

Detection and Data Association

Figure 6.7 shows a result of multiple vehicle detection and data association. Five dif-

ferent cars were detected and associated over 11 consecutive scans. This result demon-

strates that our detection and data association algorithms are reliable even with moving

objects 60 meters away. Additionally, the visual image from the tri-camera system illus-

trates the difficulties of detection using cameras.

Figure 6.8 and Figure 6.9 show results of pedestrian detection and data association.

In Figure 6.8, object 19, 40, and 43 are detected pedestrians, object 17 is a detected car and

Object 21 is a false detection. Without using features or appearances, our algorithms detect

moving objects based on motion. In Figure 6.9, the visual image shows several stationary
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Figure 6.7. Multiple vehicle detection and data association. Rectangles denote the
detected moving objects. The segment numbers of the moving objects are shown.

pedestrians that are not detected. Although our approaches cannot classify stationary cars

and pedestrians, these temporary stationary objects actually do not have to be dealt with,

because their stationary state will not cause any critical threat that the driver/robot has to

be aware of, therefore this drawback is tolerable.

Figure 6.10 shows a result of bus detection and data association. Comparatively, Fig-

ure 6.11 shows a temporary stationary bus. These big temporary stationary objects have

a bad effect upon data association in the large. The approaches for dealing with these

temporary stationary objects have been addressed in the previous chapter.

Tracking

In this section, we show several tracking results of different objects in the real world.

IMM with the CV and CA models. Figure 6.12 shows the tracking results of the

example in Figure 3.20. The IMM algorithm with the CV and CA models performed well

in this case. The distributions of the state estimates described the uncertainty properly.
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Figure 6.8. Pedestrian detection and data association. See the text for details.
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Figure 6.9. Pedestrian detection and data association. The visual image shows sev-
eral stationary pedestrians, which are not detected by our motion-based detector.

112



6.5 EXPERIMENTAL RESULTS

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

50

60

115

Scan 150

Figure 6.10. Bus detection and data association.
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Figure 6.11. Temporary stationary objects. A temporary stationary bus is shown.
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Figure 6.12. Tracking results of the example in Figure 3.20. In (c), the distributions
of the state estimates are shown by 1σ ellipses.

Ground Vehicle Tracking. The previous example showed a very short period track-

ing in which data association was easy because the tracked object was not occluded. Fig-

ure 6.13-6.17 illustrate an example of tracking for about 6 seconds. Figure 6.13 shows the

detection and data association results and Figure 6.14 shows the partial image from the

tri-camera system. Figure 6.15 shows the raw data of the 201 scans in which object B was

occluded during the tracking process. Figure 6.16 shows the tracking results. The occlu-

sion did not affect tracking because the learned motion models provide reliable predictions

of the object states. The association was established correctly when object B reappeared in

this example. Figure 6.17 shows the speed estimates of these four tracked objects from the

IMM algorithm.

Pedestrian Tracking. Figure 6.18-6.25 illustrate an example of pedestrian tracking.

Figure 6.18 shows the scene in which there are three pedestrians. Figure 6.19 shows the
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Figure 6.13. Detection and data
association results. The solid
box denotes the robot.

Figure 6.14. The partial image
from the tri-camera system.
Four lines indicate the detected
vehicles.
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Figure 6.15. Raw data of 201 scans. Measurements associated with stationary ob-
jects are filtered out. Measurements are denoted by× every 20 scans. Object B was
occluded during the tracking process.
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Figure 6.16. Results of multiple ground vehicle tracking. The trajectory of the robot
is denoted by the red line and the trajectories of the moving objects are denoted by
the blue lines. × denotes that the state estimates are from not the update stage but
the prediction stage because of occlusion.

visual images from the tri-camera system and Figure 6.20 show the 141 raw scans. Because

of the selected distance criterion in segmentation, object B consists of two pedestrians. Fig-

ure 6.21 shows the tracking result which demonstrates the ability to deal with occlusion.
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Figure 6.17. Speed estimates.

Figure 6.22 and 6.24 show the speed estimates of object A and B respectively. Figure 6.23

and 6.25 show the probabilities of the CV and CA models of object A and B respectively.
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Figure 6.18. An intersection.
Pedestrians are pointed out by
the arrow.

Figure 6.19. Visual images from
the tri-camera system. Block
boxes indicate the detected and
tracked pedestrians.

Move-Stop-Move Object Tracking. Figure 6.26-6.30 illustrate an example of move-

stop-move object tracking. Figure 6.26 and Figure 6.28 show the scan from the laser scanner

and the visual image from the camera. Figure 6.28 shows the 201 raw scans and the robot

trajectory.

Figure 6.29 shows the tracking results using IMM with the CV and CA models and

Figure 6.30 shows the speed estimates. As described in Chapter 4, the speed estimates did

not converge to zero.

Figure 6.31 shows the result using the move-stop hypothesis tracking algorithm where

the stationary motions were identified.
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Figure 6.20. Raw data of 201
scans. Measurements are de-
noted by × every 20 scans.
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Figure 6.21. Results of multiple
pedestrian tracking. The final
scan points are denoted by ma-
genta × and the estimates are
denoted by blue +.
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Figure 6.22. Speed estimates of
object A.
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Figure 6.23. Probabilities of the
CV and CA models of object A.
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Figure 6.24. Speed estimates of
object B.
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Figure 6.25. Probabilities of the
CV and CA models of object B.

3D (2 1
2D) City-Sized SLAM

We have demonstrated that it is feasible to accomplish city-sized SLAM in Chapter

3, and Figure 3.28 shows a convincing 2-D map of a very large urban area. In order to
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Figure 6.26. The scene.
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Figure 6.27. 201 raw scans and
the robot trajectory. Measure-
ments are denoted by red× ev-
ery 20 scans.

Figure 6.28. The visual image from the tri-camera system. The move-stop object is
indicated by a box.
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Figure 6.29. The result of move-stop object tracking using IMM with the CV and
CA models. On the left: the tracking result. On the right: the enlargement of the
left figure. The measurement-estimate pairs are shown by black lines.

build 3-D (2 1
2 -D) maps, we mounted another scanner on the top of the Navlab11 vehicle

to perform vertical profiling. Accordingly, high quality 3D models can be produced in a

minute. Figure 6.32 shows a 3D map of several street blocks. Figure 6.33 shows the 3D
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Figure 6.30. Speed estimates from IMM. On the right: the enlargement of the left
figure. Note that speed estimates did not converge to zero.
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Figure 6.31. The result of tracking using the move-stop hypothesis tracking algo-
rithm. On the left: location estimates. On the right: velocity estimates. Zero veloc-
ity estimates are denoted by red ×.

model of the Carnegie Museum of Natural History. Figure 6.34, Figure 6.35 and Figure

6.36 show the 3-D models of different objects, which may be very useful to applications of

civil engineering, architecture, landscape architecture, city planning, etc.

6.6. 2-D Environment Assumption in 3-D Environments

Although the formulations derived in Chapter 2 are not restricted to two-dimensional

applications, it is more practical and easier to solve the problem in real-time by assuming

that the ground is flat. But can algorithms based on the 2-D environment assumption sur-

vive in 3-D environments? For most indoor applications, this assumption is fair. But for

applications in urban, suburban or highway environments, this assumption is not always

valid. False measurements due to this assumption are often observed in our experiments.

One is from roll and pitch motions of the robot, which are unavoidable due to turns at

high speeds or sudden stops or starts (see Figure 6.37). These motions may cause false
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Figure 6.32. A 3-D map of several street blocks.

Figure 6.33. A 3-D model of the Carnegie Museum of Natural History.

measurements such as wrong scan data from the ground instead of other objects. Addi-

tionally, since the vehicle moves in 3-D environments, uphill environments may cause the

laser beam to hit the ground as well (see Figure 6.38). As compared with most metropolitan

areas, Pittsburgh has more hills. Table 6.2 shows the steepness grades of some Pittsburgh

hills.

In order to accomplish 2-D SLAM with DATMO and SLAM with GO in 3-D envi-

ronments, it is critical to detect and filter out these false measurements. Our algorithms
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Figure 6.34. 3-D models of buildings on Filmore street.

Figure 6.35. 3-D models of parked cars in front of the Carnegie Museum of Art.

Figure 6.36. 3-D models of trees on S. Bellefield avenue.

can detect these false measurements implicitly without using other pitch and roll measure-

ment. First, the false measurements are detected and initialized as new moving objects

by our moving object detector. After data associating and tracking are applied to these
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Figure 6.37. Dramatic changes between consecutive scans due to a sudden start.

Figure 6.38. False measurements from a uphill environment.

measurements, the shape and motion inconsistency will tell us quickly that these are false

measurements. Also these false measurements will disappear immediately once the mo-

tion of the vehicle is back to normal. The results using data from Navlab11 show that our

2-D algorithms can survive in urban and suburban environments. However, these big and
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Table 6.2. Steepness grades of Pittsburgh hills. A 0% grade is perfectly flat and a
100% grade is 45 degrees from the horizontal. This list is from the Pittsburgh Press
on Jan 11st, 1987 and was compiled by the Surveys Division and the Snow and Ice
Control Program, Dept. of Public Works.

Street Area Steepest Grade
Canton Avenue Beechview 37.00%
Dornbush Street Homewood 31.98%
Greenleaf Street Mt. Washington 19.60%
South Negley Avenue Squirrel Hill 15.81%

fast moving false alarms may confuse the warning system and cause a sudden overwhelm-

ing fear before these false alarm are filtered out by the SLAM with DATMO or SLAM with

GO processes. Using 3-D motion and/or 3-D perception sensors to compensate these ef-

fects should be necessary.

6.7. Sensor Selection and Limitation

The derived Bayesian formulations for solving the simultaneous localization, map-

ping and moving object tracking problem are not restricted to any specific sensors. In this

section, we discuss the issues on selection and limitations of perception and motion sen-

sors.

Perception Sensors. In the tracking literature, there are a number of studies on is-

sues of using different perception sensors (Bar-Shalom and Li, 1995; Blackman and Popoli,

1999). In the SLAM literature, use of different sensors has been proposed as well. For in-

stance, bearing-only sensors such as cameras (Deans, 2002), and range-only sensors such

as transceiver-transponders (Kantor and Singh, 2002; Newman and Leonard, 2003) have

been used for SLAM.

The fundamentals for using heterogeneous sensors for SLAM, moving object tracking,

SLAM with GO, and SLAM with DATMO are the same. The difference is sensor modelling

according to sensor characteristics. Inference and learning using accurate sensors are more

practical and tractable than using imprecise sensors. More computational power and more

measurements are needed to extract useful information from imprecise sensors. In appli-

cations such as safe driving in urban and suburban environments, robots move at high

speeds and have to reason about the surrounding situations as quickly as possible. There-

fore, in this dissertation we mainly focus on the issues of using active range sensors.

Although laser scanners are relatively accurate, some failure modes or limitations ex-

ist. Laser scanners can not detect some materials such as glass because the laser beam can

go through these materials. Laser scanners may not detect black objects because laser light
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is absorbed. If the surface of objects is not diffusing enough, the laser beam can be reflected

out and not returned to the devices. In our experiments these failure modes are rarely ob-

served but do happen. In Figure 6.39, the measurement from the laser scanner missed two

black and/or clean cars, which are shown clearly in the visual image form the tri-camera

system. Oppositely, Figure 6.40 shows a failure mode of cameras in which the visual image

is saturated by direct sun. But the measurements of the laser scanner are not affected.

Developing better or perfect sensors to resolve these problems may not be feasible in

practice. In the next chapter, we will address one of the future extensions of our system,

heterogenous sensor fusion, to overcome these limitations.
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Figure 6.39. The failure mode of the laser scanners. Car A and Car B are not shown
completely in the laser scanner measurement.

Motion Sensors. In this dissertation, we demonstrate that it is indeed feasible to ac-

complish simultaneous localization, mapping and moving object tracking using odometry

and laser scanners. However, we do not suggest the totally abandonment of inexpensive

sensors such as compasses and GPS if they are available. With extra information from these

inaccurate but inexpensive sensors, inference and learning can be easier and faster. For in-

stance, for the data association in the large problem, the computational time for searching

can be reduced dramatically in the orientation dimension with a rough global orientation

estimate from a compass, and in the translation dimensions with a rough global location
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Figure 6.40. The direct sun effect on the regular camera.

estimate from GPS. The saved computational power can be used for other functionalities

such as warning and planning.

6.8. Ground Truth

It would of course be nice to have ground truth, to measure the quantitative improve-

ment of localization, mapping and moving object tracking with the methods introduced

in this thesis. Unfortunately, getting accurate ground truth is difficult, and is beyond the

scope of the work in this thesis. Several factors make ground truth difficult:

• Localization: collecting GPS data in city environments is problematic, due to re-

flections from tall buildings and other corrupting effects.

• Mapping: the accuracy and resolution of the mapping results are better than

available digital maps.

• Moving object tracking: any system that works in the presence of uninstrumented

moving objects will have a difficult time assessing the accuracy of tracking data.

Some of these difficulties are illustrated by Figures 6.41, 6.42, and 6.43. Figure 6.41

shows the locations of intersections on an available digital map. In Figure 6.43, those same

intersections are overlayed on our reconstructed map. In Figure 6.42, the reconstructed

map is overlayed on an aerial photo. Qualitatively, the maps line up, and the scale of the
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maps is consistent to within the resolution of the digital maps. Quantitative comparisons

are much more difficult.

Figure 6.41. An available digi-
tal map. The locations of inter-
sections are denoted by circles.

Figure 6.42. The reconstructed
map is overlayed on an aerial
photo.
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Figure 6.43. The same intersections shown in Figure 6.41 are overlayed on our re-
constructed map.

A future project to generate quantitative results would need to:

• characterize the sensors used and their errors.

• carefully characterize the errors of dead reckoning (odometry and heading mea-

surements).

• instrument a few vehicles to be known moving objects, e.g. with accurate GPS or

accurate pose estimation systems.
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• carefully map a few points on the map to very high resolution, e.g. by using a

theodolite to measure distances between corners of a few buildings, or by using

carrier phase GPS at the level of the building rooftops, where multipath would

not be a factor.

6.9. Summary

In this chapter, we have described consistency based detection and moving object map

based detection for reliably detecting moving objects using laser scanners. We have shown

ample results using data collected from the Navlab11 vehicle, which demonstrate that it

is indeed feasible to accomplish simultaneous localization, mapping and moving object

tracking from ground vehicles at high speeds in urban areas. Additionally, we pointed out

some limitations of our system due to the 2-D environment assumption and sensor failures.

127





CHAPTER 7

Conclusion

The ”grand challenge” problem for field robotics is: Create smart, reliable, mo-
bile machines, capable of moving more capably than equivalent manned ma-
chines in a wide variety of unstructured environments.

...
There are immediate applications, both in terms of complete systems and in
terms of robotic components used in other applications. But there is also a rich
set of open problems, in fundamental research as well as in applications, that
will keep us all busy well into the future.

(Thorpe and Durrant-Whyte, 2001)

A new discipline has been established at the intersection of SLAM and moving

object tracking in this work. Simultaneous localization, mapping and moving

object tracking can be treated as an innovation to seamlessly integrate SLAM

and moving object tracking, or an improvement of SLAM and moving object tracking re-

spectively.

In the localization and mapping problem, information associated with stationary ob-

jects are positive; moving objects are negative, which degrades the results. Conversely,

measurements belonging to moving objects are positive in the moving object tacking prob-

lem; stationary objects are negative information, and are filtered out. The central thesis

of this work is that both stationary objects and moving objects are positive to the whole

problem and they are mutually beneficial.

7.1. Summary

In this dissertation, we established a probabilistic framework for integrating SLAM

and moving object tracking. The first solution, SLAM with generic objects, is a general ap-

proach which is similar to existing SLAM algorithms but with motion modelling of generic

objects. Unfortunately. it has a very high dimensionality and is computationally demand-

ing. In practice, its performance is often degraded because of highly maneuvering objects.
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Consequently, we provided the second solution, SLAM with DATMO, in which the

estimation problem is decomposed into two separate estimators. By maintaining separate

posteriors for stationary objects and moving objects, the resulting estimation problems are

much lower dimensional than SLAM with generic objects. This makes it possible to up-

date both filters in real-time. The critical requirement for successful implementation of

SLAM with DATMO is correct moving object detection. In addition to move-stop hypoth-

esis tracking, we provided a consistency based approach and a moving object map based

approach for detecting moving objects reliably.

Assuming that the static environment assumption is valid, SLAM is still limited to

indoor environments, or outdoor environments with specific characteristics. For accom-

plishing simultaneous localization, mapping and moving object tracking from ground ve-

hicles at high speeds in crowded urban environments, we provided several algorithms and

guidelines to eliminate the gaps between theory and implementation. These gaps are cate-

gorized into three classes: perception modelling, motion modelling and data association.

We used the hierarchical object based representation to tackle the perception mod-

elling issues of SLAM and moving object tracking. The hierarchical object based represen-

tation integrates direct methods, grid-based approaches and feature-based approaches. In

addition, we used the sampling and correlation based range image matching algorithm to

tackle the uncertain and sparse data issues. Our experimental results have demonstrated

that the hierarchical object based representation is an efficient and feasible way to accom-

plish city-sized SLAM.

Theoretically, motion modelling is as important as perception modelling in Bayesian

approaches. Practically, reliable pose predictions from the learned motion models of the

robot and moving objects are essential to tasks such as collision warning, dynamic obstacle

avoidance and planning. We began with a description of the model selection and model

complexity issues. We explained why it is not correct to use the IMM algorithm with the

stop model simplified from the constant velocity model for tackling move-stop-move target

tracking. The corresponding solutions, the stationary process model and the move-stop

hypothesis tracking, are described.

The data association problem is unavoidable because of uncertainty in the real world.

We addressed three data association problems in practice: in the small, in the cluttered and

in the large. We described three general principles to solve data association: information

exploiting, ambiguity modelling and covariance increasing. Geometric information from

perception modelling as well as kinematic information from motion modelling are used to
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remove the ambiguity. We used the correlation based image registration algorithm along

with multi-scale pyramids to solve the revisiting problem robustly and efficiently.

After these theoretical and practical developments, the described formulas and algo-

rithms were carried out with the Navlab8 and Navlab11 vehicles at high speeds in crowded

urban and suburban areas. The copious results indicated that simultaneous localization,

mapping and moving object is indeed feasible.

7.2. Future Extensions

This dissertation raises several interesting topics and there are a number of possible

extensions for improving the performances of the system and the algorithms in both theo-

retical and practical ways.

Between SLAM with GO and SLAM with DATMO

Since the full solution of simultaneous localization, mapping and moving object, SLAM

with GO, is computationally demanding and infeasible in practice, we have presented and

implemented the second solution, SLAM with DATMO. The experimental results using

laser scanners and odometry have demonstrated the feasibility of SLAM with DATMO.

Recall that correct moving object detection is critical for successfully implementing SLAM

with DATMO. Nevertheless, in the cases of using sonar and cameras, classifying moving

objects and stationary objects may be difficult where a more robust but tractable solution

is needed.

Fortunately, it is possible to find an intermediate solution between SLAM with DATMO

and SLAM with GO as illustrated in Figure 7.1. In this dissertation, we have pointed out

some potential extensions such as detection without thresholding in Section 6.2 and simul-

taneous multiple moving object tracking in Section 4.7.

Figure 7.1. Between SLAM with GO and SLAM with DATMO.

Heterogeneous Sensor Fusion

For understanding complex scenes and increasing reliability and integrity of the robot,

heterogeneous sensor fusion is the key. In this work, the Bayesian framework of simulta-

neous localization, mapping and moving object tracking provides the guidance for fusing
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measurements from perception and motion sensors. The experimental results using laser

scanners and odometry/IMU are shown to be promising.

Nevertheless, laser scanners may not be sufficient to fully understand a complex scene.

For instance, traffic signs, lights and lanes can not be recognized. Besides, laser scanners

may fail to produce reliable measurements in the situations addressed in Section 6.7. There-

fore, other heterogeneous information should be included and fused to boost reliability and

integrity.

Visual images from cameras contain rich information for scene understanding and

compensate for some of the disadvantages of laser scanners. There are a number of ways

to improve system performance using state-of-the-art algorithms from the computer vision

literature. For example, pedestrian detection using laser scanners is difficult because the

number of measurement points associated with a pedestrian is often small in our applica-

tions. Recognition algorithms can be used to confirm the results of ladar-based detection.

Because only portions of the image with high likelihood have to be processed and range

measurements from laser scanners can be used to solve the scale issue, the recognition

process can be speeded up and run in real-time.

4-D Environments

The real world is indeed four-dimensional, three dimensions for space and one di-

mension for time. Figure 7.2 shows two examples of 4-D environments. Accomplishing

simultaneous localization, mapping and moving objects using 3-D perception and motion

sensors is essential to successfully deploy a robot in such environments.

Figure 7.2. 4-D environments.

From a theoretical point of view, the formulation of simultaneous localization, map-

ping and moving objects in 4-D environments is the same as the described formulas in this
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dissertation. However, because of the higher dimensionality in 4-D environments, uncer-

tainty estimation and analysis would be more difficult.

From a practical point of view, perception and motion modelling should be modified

according to sensor capability. Because of the richness of 3-D spatial information, data

association should be easier and more robust. However, more computational power is

required to process large amount of perception and motion data.

Toward Scene Understanding

Estimating the states and motion patterns of the robot and moving objects can be

treated as the lowest level of scene understanding. The described algorithms should be

sufficient for safe driving in which the robot, or agent, provides proper warnings to as-

sist human drivers. For autonomous driving among human drivers, higher level scene

understanding such as event or scenario recognition is critical.

In the AI literature, there are a number of studies about activity, behavior and interac-

tion modelling. Most related studies are based on simulations or experiments conducted

with the use of stationary sensors in indoor or controlled outdoor environments. Our work

would make it feasible to conduct experiments in outdoor, dynamic, uncontrolled and very

large scale environments. Integrating activity, behavior and interaction modelling into the

current framework would lead to a higher level scene understanding.

7.3. Conclusion

It is our hope that this dissertation demonstrates that performing SLAM and moving

object tracking concurrently is superior to doing just one or the other. We have answered

some important and fundamental questions about formulation, perception modelling, mo-

tion modelling and data association. Additionally, we have demonstrated that simulta-

neous localization, mapping and moving object tracking is indeed feasible from ground

vehicles at high speeds in urban environments. We hope that this thesis will serve as a

basis for pursuing the questions in fundamental research as well as in applications related

to scene understanding or other domains.
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APPENDIX A

Notations and Acronyms

A.1. Notations

Uncertain Spatial Relationships.
⊕(., .) compounding operation
ª(.) inverse operation
∇⊕ Jacobian of the compounding operation
∇ª Jacobian of the inverse operation
µ mean
Σ covariance

Robot, Stationary Objects and Moving Objects.
xk true robot state (sensor platform state) at time k
mi

k true location of the stationary object (landmark) i at time k
oi

k true state of the moving object i at time k
yi

k true state of the generic object i at time k
si

k true motion mode of the generic object i at time k
yi

k = {yi
k, si

k} hybrid state of the the generic object i at time k
Mk = {m1

k,m2
k, . . . , ml

k} locations of the stationary objects, of which there are l in the
world at time k

Ok = {o1
k, o2

k, . . . , on
k} states of the moving objects, of which there are n in the

world at time k

Yk = {y1
k, y2

k, . . . , yl+n
k } states of the generic objects, of which there are l + n in the

world at time k

Perception and Motion Measurements.
zk perception measurement at time k
zm
k perception measurement associated with stationary objects

at time k
zo
k perception measurement associated with moving objects at

time k
Zk = {z0, z1, . . . , zk} perception measurements up to time k
uk motion measurement or the control input at time k
Uk = {u1, u2, . . . , uk} motion measurements up to time k

Perception Modelling.
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h(.) perception model
T relative transformation
T ′ initial guess of the relative transformation
T̂ estimate of the relative transformation
gxy occupancy of a grid cell at 〈x, y〉
lxy log-odd ratio of a grid cell at 〈x, y〉
S object saliency score

Motion Modelling.
f(.) motion model
M= {Mj}r

j=1 motion model set
Fk transition matrix of the system at time k
Gk discrete time gain at time k
vk discrete time process noise at time k
Γ noise gain
Q covariance of the process noise

Data Association.
PT probability of true object hypothesis HT

PF probability of the false alarm hypothesis HF

O object score function
lKk object score contributed from kinematic information at time

k
lGk object score contributed from geometric information at time

k

A.2. Acronyms

CA Constant Acceleration motion model
CV Constant Velocity motion model
DBN Dynamic Bayesian Network
EKF Extended Kalman Filter
GPB Generalized Pseudo-Bayesian
ICP Iterated Closest Point
IMM Interacting Multiple Model filtering method
JPDA Joint Probabilistic Data Association
MHT Multiple Hypothesis Tracking
MOT Moving Object Tracking
MTT Multiple Target Tracking
MVD Minimum Detection Velocity
Navlab Navigation Laboratory
PDA Probabilistic Data Association
PF Particle Filter
SCRIM Sampling and Correlation based Range Image Matching
SLAM Simultaneous Localization and Mapping
SLAM with DATMO Simultaneous Localization and Mapping with Detection and

Tracking of Moving Objects
SLAM with GO Simultaneous Localization and Mapping with Generic Objects
SLAMMOT Simultaneous LocAlization, Mapping and Moving Object

Tracking
TBD Tracking Before Tracking
VS-IMM Variable Structure Interacting Multiple Model
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