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Abstract 
 
     Both simultaneous localization and mapping (SLAM) 
and detection and tracking of moving objects (DTMO) 
play key roles in robotics and automation. For certain 
constrained environments, SLAM and DTMO are 
becoming solved problems. But for robots working 
outdoors, and at high speeds, SLAM and DTMO are still 
incomplete. In earlier works, SLAM and DTMO are 
treated as two separate problems. In fact, they can be 
complementary to one another. In this paper, we present a 
new method to integrate SLAM and DTMO to solve both 
problems simultaneously for both indoor and outdoor 
applications. The results of experiments carried out with 
CMU Navlab8 and Navlab11 vehicles with the maximum 
speed of 45 mph in crowded urban and suburban areas 
verify the described work.  
 
1 Introduction 
 
      Simultaneous localization and mapping (SLAM) as 
first proposed by Leonard and Durrant-Whyte [16] is to 
simultaneously estimate positions of newly perceived 
landmarks and the position of the mobile robot itself 
while mapping. Throughout the last decade many 
researchers successfully extended SLAM from indoors [9] 
to outdoors [8], to underground [26][19] and underwater 
[29] environments, to airspace [27], and from 2D to 3D 
[14][31][25].  
    Until now most of the researchers on SLAM assume 
that the unknown environment is static, containing only 
rigid, non-moving objects. Moving objects are taken as 
noise sources. This assumption is reasonable in some 
applications, but moving objects and dynamic 
environments are not avoidable; they are even the main 
concerns in many applications.  
    The Navlab group of CMU builds robot cars, trucks, 
and buses, capable of autonomous driving or driver 
assistance. Both for automated highways or driver 
assistance for maneuvering in crowded city environments 
[21], detection and being able to handle the changes of 
environments are essential for the successful completion 
of these tasks. 
       For most researchers on detection and tracking of 
moving objects (DTMO), one of the most difficult issues 
is to separate moving objects and stationary objects. In 

surveillance applications, even though the sensors are 
mounted on stationary platforms, the changes of the 
environment still make it difficult. Only a small amount 
of DTMO research mounts sensors on moving platforms 
[32][5][7]. The successful accomplishment of tasks relies 
on an accurate pose estimation system.  
    The results of SLAM will be more accurate if moving 
objects can be filtered out. Although moving objects are 
the troublesome parts of SLAM, they are the main 
concerns of DTMO. Therefore if we can integrate SLAM 
with DTMO, SLAM won’t be affected by moving objects. 
Also by the more accurate pose estimation of SLAM, 
DTMO can detect and track moving objects more reliably. 
SLAM and DTMO are mutually beneficial.  
    In this paper, we propose a novel approach to tackle 
these two problems at once. We compare different SLAM 
approaches and get a suitable approach for general 
crowded city environments.  A matching-based tracking 
method is also proposed.  
     The rest of this paper is arranged as follows. In Section 
2 SLAM with DTMO is introduced. Section 3 shows the 
results of the suitable SLAM approach for urban and 
suburban environments. Section 4 introduces the 
algorithms of DTMO. Section 5 introduces the methods to 
accumulate and retrieve the results of SALM with DTMO.  
The experimental results are in Section 6, and the 
conclusion and future work are discussed in Section 7. 
 
2 SLAM with DTMO 
 
     The problem we want to solve is SLAM with DTMO 
of a mobile robot using range sensing from scanning laser 
rangefinders. Usually people assume that a horizontal 
range scan is a collection of range measurements taken 
from a single robot position. When the robot is moving at 
high speeds, this assumption is invalid. We use the 
rotating rate of the scanning device and the velocity of the 
robot to correct the errors of this assumption.    
     Fig. 1 shows the flow diagram of SLAM with DTMO 
algorithm upon which our approach is based. It’s not 
surprising that a lot of work on SLAM has been done 
since 1991. Here we don’t specify any SLAM method. 
This idea of SLAM with DTMO should be adapted to 
varied SLAM approaches. More discussion about 
different kinds of SLAM methods is in Section 3. 
     For each frame of range data, we begin by segmenting 
the range data into connected objects. The tracking of 
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moving object is achieved by registering the objects in the 
ongoing “moving objects” list with the nearby objects in 
the current scan. Once the good matching is found, we 
filter out the object from the current scan and update the 
moving object list and the local moving object map (MO-
Map). In the second step, a registration technique of range 
scans is used to register filtered data with the local 
stationary object map (SO-Map) in order to compute 
relative robot position. After the registration between the 
current scan and SO-Map is found, the moving object 
detection algorithm uses the precise pose to separate any 
new moving objects from stationary objects. Finally SO-
Map, MO-Map and the moving objects list are updated, 
then the whole process iterates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: The algorithm of SLAM with DTMO. The ovals 
are data and the rectangles are processes. 
 
     Pose estimation from Odometry, Inertial Measurement 
Unit (IMU) or Global Positioning System (GPS) is 
necessary in those cases where the most parts of the range 
scan belongs to moving objects or the most parts of the 
environment are out of the maximum range of laser range 
finders. Without these sensors, a model of the vehicle is 
needed. Global localization and mapping is accomplished 
with limited floor plan or digital map information. 
   
 
 
 

3 Simultaneous Localization and Mapping 
for both indoor and outdoor applications 
 
     Basically, in order to build a map of un-constructed 
environments, we need range sensors. Range information 
can be from active range sensors or passive range sensors. 
Hebert did an excellent survey in [20]. Except for Deans 
and Hebert who used omni-directional camera [6], most 
published works in the field of SLAM use precise, active 
ranging sensors. Using passive range sensors in SLAM is 
beyond the scope of this paper.  
     There are two dominant approaches to solve SLAM 
problems. One is probabilistic approach. Here SLAM is 
treated as a maximum likelihood estimation problem. 
Thrun et al. [28] have demonstrated their probabilistic 
approach in museum environments. Another one is scan 
matching approach. Scan matching means finding a 
maximum overlap of scans through a process of 
translation and rotation. Establishing correspondences 
among scans is the first step of this approach. Based on 
correspondence establishment, we categorized various 
scan matching methods into four approaches showed in 
Table 1. 
 

 Approach Abbr. Inventors 
1 Feature to 

Feature 
F2F Shaffer [26], Gonzalez et 

al. [12] 
2 Point to 

Feature 
P2F Cox [3] 

3 Point to Point P2P Lu and Milios [17,18] 
4 Combination Com Gutmann & Schlegel [9]  

Table 1: Scan Matching Algorithms 
 

     Scott et al. [24] tried to compare probabilistic 
approach with scan matching approach quantitatively and 
qualitatively. Gutmann et al. [9,10] compared different 
methods of scan matching approach for indoor 
applications. In this paper, we discuss different methods 
of scan matching approach for both indoor and outdoor 
environments. Probabilistic approach will be implemented 
and compared to scan matching approach in future work. 
     F2F-based methods should have the shortest run-time, 
since by these methods hundreds of range points are 
reduced to dozens of features. For most indoor 
applications, line, circles, corners and other simple 
geometrical features are rich and easy to detect. Zhao and 
Shibasaki [31] picked a site that is similar to indoor 
environments and employed F2F-based method to 
construct an urban map successfully. Guivant et al. [8] 
used intensity (reflectance) of laser signal and geometrical 
primitives to define and detect features. Their approaches 
are still limited to some specific environments or 
conditions.  
     Fig. 2 and 3 are samples of range scans from our 
experiments. The blue box presents a 5 m long and 2 m 
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wide test vehicle. The SICK laser scanner mounted on the 
right side of the vehicle was doing horizontal profiling. It 
is okay to employ F2F approaches in the environments 
like Fig. 2, because lines or corners are easily detected. 

 
Fig. 2: A laser scan sample of urban areas. 

 

     
Fig. 3: A laser scan sample of suburban areas. 

 
It is similar to indoor environments. But Fig. 3 shows that 
it is not reasonable to extract geometric primitives in this 
kind of environment. The reason is that geometric 
primitives can’t represent all environments well. Outdoors 
environments contain many different kinds of objects 
such as bushes, trees, and curved objects whose shapes 
are hard to be defined. Same problem also occurs in 
indoor situations. It is very hard to measure the pose of 
these kinds of objects reliably and accurately because 
only parts of them can be seen. Fig. 4 illustrates that a 
results of circle extraction of the same object are different 
from different measure position. Fig. 5 illustrates the 
ambiguity of line extraction of curved object.  
 
 
 
 
 
 
 
 
 
     Basically, F2F-based approaches try to use less 
information to represent the raw data in order to speed up 
algorithms. If features cannot be detected robustly and 
contain some uncertainties, the whole performance of the 
approaches will decrease. On the contrary, P2P-based 
approaches don’t have these disadvantages; instead, they 
use all the raw data.  
    Based on these considerations, we used P2P-based 
algorithms. ICP (the abbreviation of Iterative Closest 
Point or Iterative Corresponding Point) algorithm is one 
of the most successful and popular P2P algorithms. The 
basic idea of ICP is that using a closest-point rule to 

establish correspondences between points in the current 
scan and local SO-Map (or the previous scan) with a good  

 
Fig. 6: The SLAM result of Fig. 2. 

 

 
Fig. 7: The SLAM result of Fig. 3. 

 
initial guess of their relative pose, and then solving the 
point-to-point least-squares problem to compute their 
relative pose. Finally the relative pose is updated and the 
whole process iterates until the result is satisfying.  
     Since ICP introduced by Chen and Medioni [1], many 
variants have been proposed on the basic ICP concept. 
Rusinkiewicz and Levoy [23] enumerated and classified 
many of these variants. Because the current collected data 
are two-dimensional and are not as complicated as three-
dimensional data, we simply use Lu and Milios’ iterative 
dual correspondence algorithm [16]. More efficient 
method such as Nene and Nayer’s projection search 
technique [22] may be applied for 3D data in future work. 
     In our applications, the iteration algorithm terminates 
when the difference of the current and previous estimated 
translations is less than 5 cm. In practice, the number of 
iterations is usually less than 20.  The results are 
integrated and saved in SO-Map, which is a grid-map 
composed by 5 cm x 5 cm cells. The value of the cell is 
the same as the times that the cell is occupied by 
stationary objects. The higher the value of the cell is, the 
higher possibility the cell belongs to a stationary object. 
     The results of the algorithm are shown in Fig. 6 and 7. 
The small black circles are the current scan data. The light 
blue dots belonging to the previous scans are stored in 
SO-Map. The magenta line is the path of the test vehicle 
and the small magenta circles are the estimated positions 
of the vehicle in previous scans. Several parked cars are 
in front of buildings in Fig. 6. One reason that causes the 
fuzzy area in the right side of Fig. 7 is a slope, which is 
not a vertical object. Other reason is that the test vehicle 
had some pitch motion. This approach successfully 
registered all kinds of range images in our experiment 
data.  
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Fig. 4: Circle Extraction Fig. 5: Line Extraction 



    The main disadvantage of P2P methods is that a good 
initial guess is necessary. This disadvantage can be 
overcome easily by integrating with a simple vehicle 
model or other pose sensors. Although Feature-based 
approaches like F2F and P2F can’t be adapted to all 
environments, the faster performance without initial pose 
guess is still attractive. It should be a good direction to 
combine advantages of both approaches.    
 
4 Detection and Tracking of Moving Objects 
 
     Moving objects do affect the results of SLAM unless 
they are properly detected. Fig. 8 and 9 show the results 
of SLAM without DTMO and with DTMO. In this 
section, our approaches of DTMO are presented. 

 
Fig. 8: SLAM without DTMO 

 
Fig. 9: SLAM with DTMO 

 
4.1 Detection of Moving Objects  
     Intuitively, any inconsistent part from SLAM should 
belong to moving objects. But the idea isn’t totally correct. 
Fig. 10 shows two rules to detect moving objects.  
 
Rule 1: Approaching Object Detection 
     From previous scans, we know some space is not 
occupied. If we find any object in this space, this object 
must be moving. In Fig. 10, object A must be a moving 
object. 
 
Rule 2: Leaving Object Detection 
     In Fig. 10, we can’t say that object B is a moving 
object. Object B may be a new stationary object since 
object C blocked the view of the sensor in previous scans. 
What we are sure is that object C is a moving object. 
Although we can’t tell if object B is moving or not by 
registering only 2 scans, the previous information does 
help us to guess the characteristics of object B. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10: Rules for Detection of Moving Objects 

 
     As mentioned in Section 2, SO-Map and MO-Map are 
used to store the previous results of SLAM with DTMO. 
Similar to SO-Map, MO-Map is also a grid map whose 
cell’s size is 5 cm x 5 cm. The value of the cell in MO-
Map is the same as the times that the cell is occupied by 
different moving objects.  
     The results of the moving object detection are shown 
in Fig. 11 and 12. The light blue dots and light orange 
dots respectively belong to SO-Map and MO-Map. The 
current scan contains black, red and green circles. The 
black circles mean stationary features. The green circles 
are new features since we don’t have enough information 
to tell if they are moving or stationary. The red circles are 
moving objects. Our algorithm found both moving 
pedestrians and cars successfully. 
 

 
Fig. 11: Pedestrian Detection 

 
Fig. 12: Vehicle Detection 

    
4.2 Tracking of Moving Objects 
     In crowded urban environments, there are many kinds 
of moving objects, such as pedestrians, wheelchairs, 
bicycles, motorcycles, cars, buses, trucks, trailers, etc. 
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The main difficulties in tracking can be summarized as 
the following. 
     First, the moving objects have a wide range of sizes 
and velocities. Second, behaviors of moving objects are 
not always predictable. Third, moving objects’ 
appearances can change significantly from scan to scan.  
Fourth, motion of the test vehicle changes suddenly. Also 
single object’s observation may be grouped into several 
objects (See Fig. 13). And objects may disappear and 
reappear. 
     Because feature extraction of moving object is not 
robust and stable for tracking, we track moving objects by 
using the same algorithm in our SLAM to find the best 
match between frames. The idea is the same as map 
building of SLAM. Once the best match is found, 
information about this moving object is integrated. We 
call this method matching-based tracking. By integrating 
information among frames, we are able to overcome these 
difficulties. Since we don’t presume any model to moving 
objects, we are able to solve the unpredictable problem. 
Fig. 9 shows the result of the matching-based tracking. 
We found that there are still some problems in this 
method. A modified approach is ongoing. 
   

 

 
Figure 13: Dimensions of different moving objects. The 
red line indicates the ground; the blue line indicates the 
height of the scanner installed on the test vehicle. For 
trucks and trailers, only wheels are detected in this 
configuration. This means that trucks and trailers will be 
segmented into several groups. 
 
     The basic idea of the modified approach is that when a 
moving object is detected, we don’t assign any model to it 
in the beginning. We assign an area for searching the best 
match. Once the information about this object is enough, 
we generate a model for this object. If the model 
generation is difficult or not stable, we only predict the 
future motion of this object. By motion prediction or 
model generation, we reduce the computational time for 
searching and matching and also improve the 
performance of matching-based tracking. 
 
 
 
 

5 Properties of SO-Map and MO-Map 
 
5.1 Accumulation and Retrieval of Information 
      Information can be easily accumulated and retrieved 
by maintaining SO-Map and MO-Map. If there are many 
moving objects passing through an area, any object that 
appears in this area should be recognized as a moving 
object without any rule. By integrating information from 
moving cars and pedestrians, we can even detect lanes 
and sidewalks. Fig. 14 shows that three lanes are detected.  

 
Fig. 14: Lane Detection (Fifth Ave. in Pittsburgh) 

 
5.2 Consistency of SO-Map and MO-Map 
     SO-Map only contains stationary object information; 
therefore SO-Map is clean without any fuzzy area. In 
contrast, MO-map only contains moving object 
information. MO-Map is fuzzy. Any inconsistency of SO-
Map and MO-Map provides important information.  
     Detection of very slow moving objects is difficult. The 
solution is to use any information we got as much as 
possible. If any fuzzy area is found in SO-Map, this area 
may contain slow moving objects. 
     Compared to vehicles, pedestrians are small objects 
represented by only several points. If some other points 
are misclassified as moving objects because of sensor 
noise and matching errors, these points will be 
misclassified as pedestrians if we only use the number of 
points in this moving group as the clue. Using the 
information of previous moving objects can make 
detection more reliable, reduce the effects of sensor noise 
and matching errors, and provide better classification of 
objects. 
      If an object is misclassified as a moving object in the 
beginning but the cells in MO-Map that belong to this 
object have high values later on, we can say that it is a 
stationary object.  
 
6 Experimental Results 
 
     A SICK PLS 100 scanning laser rangefinder was 
mounted on the right side of our Navlab8 and Navlab11 
vehicles, doing horizontal profiling. Navlab11 is equipped 
with wheel encoders to perform pose estimation.  The 
vehicles were driven through the CMU campus and 
around nearby streets. The maximum speed of the 
vehicles was 45 mph and the range data were collected at 
6Hz. 
 



6.1 SLAM vs. SLAM with DTMO 
     As it can be seen from Fig. 8 and Fig. 9, SLAM with 
DTMO can get rid of moving objects and get a more 
consist mapping result.     
 

   
Fig. 15: Navlab8, SICK PLS100, and an omni-directional 
camera.   
  
6.2 Global Localization and Mapping 
     The accuracy of localization in our algorithms is 
measured by using the digital map shown in Fig. 16 as the 
ground truth. The result is shown in Fig. 17 with circles 
indicating intersections. No other pose information was 
used to get this result.  
    Since localization errors are cumulative, we need to 
develop algorithms that can register the local localization 
with the global. We did this by recognizing landmarks in 
the environment and correcting the pose of the test 
vehicle to the known global positions of the landmarks. 
Since intersections are a large part of the urban road 
infrastructure, an intersection detector would provide 
many opportunities for eliminating the cumulative error. 
The circles in Fig. 17 are intersections found by the 
current intersection detector. Only one intersection was 
missed. The reason for this missed intersection is that 
there are cars or pedestrian, which block the view of the 
intersection. Once the algorithm determines the 
intersection is missed, the next intersection will be set as 
the target for the intersection detector to look for. This is 
the major step in the construction of reliable global maps. 

       
Fig. 16: Digital Map    
 
6.3 Odometry vs. SLAM with DTMO     
     Fig. 19 shows the comparison of pose estimation from 
odometry and SLAM with DTMO. Line 1 is from 
odometry and Line 2 is from SLAM with DTMO. The 
line in Fig. 18 shows the route of this experiment. 
Compared to the ground truth in Fig. 18, the result of 
SLAM with DTMO is not perfect yet. But it is still much 
better than odometry. Also by intersection detection, we 

can use some global consistent range scan alignment 
methods to improve SLAM with DTMO. 

     
Fig. 18: Aerial Map                     Fig. 19: The results 
 
7 Conclusion and Future Work 
 
     To authors’ knowledge, it’s the first time to integrate 
SLAM and DTMO and to successfully demonstrate 
SLAM with DTMO at high speeds in large crowded city 
environments. Also a new matching-based tracking 
method was presented. Our algorithm found both moving 
pedestrians and cars successfully. 
     In future work, we are going to try several approaches 
to increase the efficiency of the algorithms. Global 
consistent range scan matching methods will be used to 
accomplish global localization and mapping. We hope to 
apply this technique to applications such as driving 
assistant system, 3D city-sized mapping, and research of 
dynamic social activities. 
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