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Such methods as uni-vector field method, geometric 
calculation method, and heuristics method have been 
utilized to solve these constraints so far in the robot soc-
cer competitions [2,10-13]. In this paper, we propose a 
fuzzy logic scheme to solve the same problem. The FLC 
consists of two levels: the planner and the motion con-
troller level. Although there is the similar controller that 
was suggested in [14], we have approached a different 
way to reduce arrival time to the ball. Firstly, the fuzzy 
logic path planning is designed by modeling arcs and 
straight lines using fuzzy logic’s nonlinear model map-
ping characteristics in this paper. However, because 
some path errors can be occurred when geometrical path 
planning does not consider kinetic characteristic, it is 
quite challenging to design accurate path controller. In 
order to solve such problems, fuzzy logic that has robust 
characteristic of motion controller is used. In addition, 
the singleton outputs of motion controller level, which 
are obtained in a heuristic or empirical manner, are op-
timized through evolutionary programming. 

In Section 2, the overall fuzzy logic posture controller 
structure that includes a fuzzy logic path planner and a 
fuzzy motion controller is described. They are explained 
in Sections 3 and 4, respectively. In Section 5, simula-
tions and experimental results are demonstrated. We 
conclude in Section 6 with some remarks on the results 
and future research. 

 
2. Overall Fuzzy Control Structure 

 
A. Target System: Robot Soccer System 

The system (Figure 1) consists of three parts. The first 
one is the vision system that locates objects on the field 
by the global camera that is fixed above the field. Sec-
ond component is the host computer which calculates 
strategies and decides actions for each robot. The last 
one is robots that follow actions given by the host com-
puter through radio frequency (RF) communication. 
Since the action is represented as a number of sequential 
motions, sometimes host computer sends each robot's 
left and right wheel velocities rather than higher linguis-
tic commands. In this paper, the fuzzy logic controller 
implemented in the host computer generates and sends 
the velocities to the robot through RF communication to 
achieve shooting behavior of the robot. 

 
B. Modeling of a mobile robot 

Differential-drive mobile robots with characteristics of 
non-slipping and pure rolling are considered. The veloc-
ity vector Q = [v w]T consists of the translational velocity 
of the center of the robot, v, and the rotational velocity, 
w, defined with respect to the center of the robot. The 
velocity vector Q and a posture vector P = [x y θ]T are 
associated with the robot kinematics as follows: 
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where VL is the left wheel velocity and VR is the right 
wheel velocity. The robot should be controlled to move 
to any posture by VL and VR. Hence, the fuzzy controller 
gives the robot a desired direction, θd, at the current po-
sition (x, y). 
 

 
 

(a)  
 

 
(b) 

 

Figure 2. (a) Overall fuzzy logic path planner and motion 
controller structure (b) schematic diagram 

Destination

Obstacle

Fuzzy Motion
Controller

Actuator

Fuzzy Logic
Path Planner

Fuzzy Controller for
Shooting BehaviorVision

System

θd + θoff

θd

VL , VR

θ

ρ

φobs

ρobs

φ

obstacle

robot

φobsθ

ρ
φ

ball
goalρobs



156 International Journal of Fuzzy Systems, Vol. 11, No.3, September2009 

C. Overall Fuzzy Controller 
Because of the constraints mentioned in Section 1, the 

three posture variables (ρ,φ,θ) (Figure 2(b)) are required 
to achieve the shooting action. If all the variables are to 
be elaborated into one fuzzy rule table, the number of 
rules could be too large because they will increase by the 
factor of the number of term sets in each variable. So the 
controller is decomposed into two sub-controllers (Fig-
ure 2) in hierarchical manner that each takes only two 
variables as inputs. This will significantly reduce the 
number of rules and make easier to design the controller. 
In addition, the fuzzy motion controller and the fuzzy 
logic path planner are included in sub-controllers. This is 
for generating a global path connecting the present robot 
position to the ball; however, it can face the constraints. 
The fuzzy motion controller then commands robot wheel 
velocities to follow this desired path given the current 
robot posture. 

 
3. Fuzzy Logic Path Planner 

 
Fuzzy logic path planner is for generating a path glob-

ally that faces the constraints of calculating desired ro-
bot's heading angle θd at each relative position (ρ,φ) 
(Figure 2). It is again divided into two sub-blocks: the 
destination block that generates a path to lead to the des-
tination (the ball) to face the first constraint in Section 1 
and the obstacle block that compensate θd for obstacle 
avoidance to meet the second constraint. 

 
A. Destination Block 

This is for obtaining desired heading angle at each 
robot position. The robot's relative position to the ball is 
represented in polar coordinates (ρ,φ). Since the lower 
half plane is symmetric to X-axis, only the upper-half 

plane is considered. 
Figure 3 shows the basic idea of constructing the 

planner. The desired path is represented by lines and arcs, 
and the desired heading angle is defined as θd for the 
given robot position. θd depicted in Figure 3 can be ob-
tained by: 
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where xc and yc are the positions of the current robot, and 
Rmin is the turning radius, which is set to 5 cm consider-
ing the size of the ball and the robot. 
With the Eq. (3), a fuzzy model is formed. In the fuzzy 
model, ρ and φ are assigned to the inputs based on the 
position of the robot in polar coordinates. Also, the out-
put, θd, has singleton values obtained at the sampled po-
sitions shown in Figure 5. As a result, the input, output, 
and rules of the destination block are defined as follows: 
 
1. Input space (ρ,φ) : relative position of the robot to the 
ball,   
 

ρ ∈ [0cm, 60cm] 
φ ∈ [0, 180 deg.]     

 
In accordance with input spaces, the input variable 
membership functions are depicted in Figure 4. 
 
2. Output (θd): desired heading angle, 
 

θd ∈ [-180 deg., 180 deg.] 
 

3. Rules for destination block 
49 rules are obtained using θd at sampled positions as 
shown in Figure 5. Since input spaces are uniformly di-
vided, the rules are sampled at the center of each input 
region. The resultant rule table for the destination block 
is in Table 1. 
 
Table 1. Rules for destination 
θd ρ 
φ NB NM NS ZE PS PM PB 

NB 90.0 143.1 157.4 163.7 167.3 169.6 171.2 

NM 120.0 158.5 -180.0 -171.0 -166.1 -163.0 -161.0 

NS 160.0 172.1 -155.5 -143.6 -137.6 -134.0 -131.6 

ZE -170.0 -180.0 -126.9 -120.6 -114.3 -110.7 -108.4 

PS -140.0 -135.0 -80.0 -76.9 -71.8 -69.0 -67.4 

PM -20.0 -30.0 -34.2 -35.9 -35.5 -40.2 -45.4 

PB 0 0 0 0 0 0 0 

 

 

Figure 3. The desired path using lines and arcs 
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(a) ρ 

 
(b) φ 

 
Figure 4. Membership functions of ρ and φ according to the 

relative position of the robot to the ball 
 
 

 
Figure 5. θd, desired heading angle, sampled at each region 

 
 

B. Obstacle Block 
This block is to obtain offset angle θoff depicted in 

Figure 6, if there are any obstacles nearby.  
To obtain θoff, four variables such as relative velocity 

(Vr), relative direction (Dr), distance (dr), and relative 
position (Pr, positive if obstacle in front, negative o.w.) 

are utilized to get θesc in the presence of obstacles.   
θesc can be calculated with following the equation: 

       

 )(tan 1
esc

o

esc
esc Rf

d

R == −θ           (4) 

 
Also, those relative quantities are necessary for obtain-
ing the escape radius (Resc) to avoid stationary or moving 
obstacles.  

However, since there are four factors we should con-
sider for obtaining Resc, it is difficult to form the FLC by 
using all of those factors. For this reason, those factors 
are divided into two FLCs and constructed in hierar-
chical structure shown as Figure 7. 
In Figure 7, Vr and Dr are needed to obtain Resc, while Pr 
and dr are used to obtain the proportional gain, Wsgn. For 
example, if the obstacle is located far from the robot, 
Wsgn gets smaller and becomes 0. In contrast, if the ob-
stacle is located nearby the robot, Wsgn gets bigger and 
reaches 2. Consequently, Wsgn is multiplied with θesc to 
produce θoff.  
 

θoff  = Wsgn × θesc 

 
where, 0 ≤ Wsgn ≤ 2. As a result, the input, output, and 
rules for the obstacle block are defined as follows: 
 
1. Input space (Vr, Dr, dr, Pr): relative velocity and posi-
tion of the obstacle to the robot, 
 
                       Vr   ∈     [-0.5, 1.5] 
                    Dr ∈ [0 deg., 180 deg.] 
                               d  r      ∈     [0cm, 90cm] 
                                 Pr     ∈    [-0.5, 1.5] 
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Figure 6. Obstacle avoidance scheme 
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In accordance with the input space, the input variable 
membership functions are depicted in Figure 8. 
 
2. Ouput space (θoff): offset angle added to θd, 

 
θoff ∈ [-18Odeg., 180 deg.] 

 
 The resultant rule table for the obstacle block divided 
into FLC1 for Resc and FLC2 for Wsgn is in Table 2.  
 
 
 

Table 2. Rule for obstacle block, FLC1(left) and FLC2(right) 
Resc Dr  Wsgn dr 
Vr NB ZE PB  Pr ZE PS PM PB

NB 20 20 20  NE 0.8 0.7 0.6 0.0 

ZE 20 25 30  ZE 1.0 1.0 0.9 0.0 

PB 20 35 40  PO 1.0 1.0 1.0 0.0 

 

4. Fuzzy Motion Controller 
 

A. Fuzzy Motion Controller Block 
In the overall structure of Figure 2, the fuzzy motion 

controller block receives θd from the fuzzy logic path 
planner block and part of robot posture information (ρ, θ) 
through its vision. Then the motion controller block 
generates appropriate left and right wheel velocities to 
make θ follow θd at non-zero linear speed before ρ di-
minishes. So the motion controller is concerned only for 
heading angle θ to follow θd with at positive linear ve-
locity. For this conventional problem of mobile robots, 
following heuristics are incorporated: 
 
If ρ large →large 
If | θe | = | (θd + θoff) − θ | large → | VL − VR | large 
 
The input, output, and rules for the fuzzy motion con-

    
                        (a) Vr                                                                     (b) Dr 

    
                        (c) Pr                                                                      (d) dr 

 
Figure 8. Membership functions of Vr, Dr, Pr and dr for the obstacle block in fuzzy planner 
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troller block are defined as follows: 
1. Input space (ρ,θe): posture error of the robot to the ball 
and the path, 
 
             ρ ∈ [0cm, 60cm] 

θe ∈ [-120 deg., 120 deg.] 
 

Depending on the input space, the input variable mem-
bership functions are depicted in Figure 9. 
 
2. Output space (VL, VR): desired left and right wheel 
velocities, 
 

VL, VR ∈ [-54cm/s, 153cm/s] 
 
3. Rules for fuzzy motion controller block 
According to the above heuristics, 49 rules are acquired 
for left and right wheel velocities. Table 3 is the rule ta-
ble for right wheel speed. Left wheel speed is symmetric 
with respect to φ = 0. In the table, one unit corresponds 
to 1.534cm/sec.  

 
(a) ρ 

 
(b) θ  

 
Figure 9. Membership functions of ρ and θe  

 

Table 3. Rules for right wheel 
VR ρ 
θe NB NM NS ZE PS PM PB 

NB -35 -27 -27 -3 -3 -3 -3 

NM -25 8 8 18 31 31 42 

NS 15 15 22 35 57 67 67 

ZE 30 30 50 60 90 100 100 

PS 15 40 44 65 82 92 92 

PM 25 51 51 61 68 68 77 

PB 35 63 63 67 67 67 67 

 
B. Fuzzy Motion Control Block Tuning based on Evolu-

tionary Programming 
In Section 4A, the singleton values of the motion con-

troller block were determined with fuzzy control, which 
has various strong points: intuitive and simple [15]. 
However, most of the times, using professionals’ 
knowledge for designing might not be the most suitable 
system because there will be no professionals’ 
knowledge for newly introduced subject. In order to 
make up for the weak points, hybrid systems such as 
fuzzy system, evolutionary algorithm, and neural net-
works, are studied in depth.  

Fuzzy system and feed-forward control of neural net-
work have similar basic structures. The difference be-
tween those two systems is in each node’s number of 
connections and the function. For instance, fuzzy system 
uses knowledge related with a plant to decide a network 
structure by connecting related variables and maintaining 
inside structure. On the other hand, neural network has a 
learning ability. In order to use such learning method in 
fuzzy system as gradient descent, which is back propa-
gation, fuzzy system should be expressed mathematical-
ly and each of the nodes should be able to differentiate. 
Therefore, it is impossible to optimize the fuzzy system 
by using this neural network. 

Evolutionary algorithm is suitable to use for optimiz-
ing a not differentiable system or a system with local 
solution. Because of such merits, numerous researchers 
applied fuzzy system in automation of system design. 

For this reason, in this paper, evolutionary fuzzy sys-
tem, real variables optimization method based on evolu-
tionary algorithm, is used for tuning of fuzzy system in 
the path motion controller. The condition for optimiza-
tion is the minimum time to reach to the target point. As 
shown in Figure 10, the optimization for fuzzy system 
uses membership function’s center point and width. In 
order not to change the order of the membership func-
tions, following restrictions are considered in evolution-
ary algorithm process. 
 

Ai−1 < Ai       (i−1 < i)           (5) 
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Figure 11 is the flow chart that shows the learning 
scheme of the evolutionary program. An important fea-
ture of EPs is that the range of mutations, the stepsize, is 
not fixed but inherited. Mutation creates a new offspring 
x’

i from each singleton value, xi by adding it to a Gauss-
ian number with mean 0 and standard deviation σi. 

 
x’

i = xi + Ni(0, σi)              (6) 
 

where σi is xi's maximum boundary within which the 
designer allows to change the singleton value. By using 
probability selection method for selecting offspring, σi is 
set to one tenth of xi's original value which was obtained 
heuristically, and total population N is set to 20. To test 
the tracking performance, 36 test data were used. They 
are 36 different starting postures. The time consumed for 
the robot to arrive from each point to the origin (destina-
tion) is all summed up and compared for the selection.  
The initial time using heuristic singleton values was 36.6 
seconds. After 10,000 generations, the tuned controller  

 
ρ(a) ρ 

 
(b) θe 

 
Figure 12. Optimized membership functions of ρ and θe 

 
reduced the time from 4.3 seconds to 32.3 seconds. Fig-
ure 12 is the results of optimizing the minimum time 
required to the target point while satisfying the re-
striction condition of Eq. (6). 
 

5. Simulation and Experiment 
 
A. Simulation 

Simulation is performed based on the following robot 
kinematics: 
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Robot's physical quantities are: 
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Figure 11. The flow chart of the proposed Optimization 
method using EP 
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Figure 10. The optimization for fuzzy system using the tri-
angular-shaped membership function’s center point and 

width 
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