
HOW TOUGH SHOULD IT BE? SIMPLIFYING THE DEVELOPMENT

OF ARGUMENTATION SYSTEMS USING A CONFIGURABLE

PLATTFORM

Frank Loll
1
, Niels Pinkwart

1
, Oliver Scheuer

2
, Bruce. M. McLaren

2

1
Department of Informatics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany

2
German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

Abstract: Teaching to argue is challenging. Classic face-to-face approaches do not scale up for

large groups due to resource limitations (teacher time), but have shown to be effective. As a

consequence, there have been attempts to convey argumentation skills via educational software.

Even though some of these systems have shown their suitability in their original domains of

application, the systems typically do not generalize – there has been little carry over to other

domains. This chapter reviews existing approaches, their technological strengths and

weaknesses, and proposes a generic architecture to overcome the latter. Based on this

architecture, the LASAD (Learning to Argue – Generalized Support Across Domains)

framework has been developed. The goal of this framework is to simplify the development of

argumentation systems based on some well-defined configurations. In this chapter, we describe

the flexibility of the LASAD framework and demonstrate how it can be configured to emulate

the existing argumentation systems Belvedere and LARGO.

INTRODUCTION

Argumentation skills are essential in various

aspects of life. On the one hand, there are

domain-dependent argumentation skills.

Examples can be found, for instance, in the

law, where a lawyer tries to win a case by

convincing a judge or jury, or in science,

where a researcher supports his or her

hypothesis with data gathered from

experiments or observations. On the other

hand, argumentation skills are also

important in everyday life – imagine a child

trying to persuade his or her parents to

increase her weekly pocket money. Thus, it

is important to learn how to argue. Some

researchers characterize argumentation even

as central to thinking itself (Kuhn, 1991).

Although argumentation and the underlying

principles of what makes up good (or bad)

arguments differ across domains, there are

similar ways to teach argumentation in many

domains, typically following a face-to-face

approach. Here, one teacher instructs a small

group of learners or even just one learner.

These approaches have been shown to be

highly effective teaching methods (Bloom,

1984; Kulik and Kulik, 1991).

Although this approach is effective and

convincing, it lacks scalability, i.e. it is not

possible to apply the same teaching method to

larger groups since time and person resources

are naturally limited. Thus, there have been

attempts to support the acquisition of

argumentation skills via software tools. These

tools differ in the way they support the

development of argumentation skills as well:

Some systems serve as pure visualization tools

to reach a common understanding via different

visualization techniques (Kirschner,

Buckingham Shum and Carr, 2003; Van

Gelder, 2003). These visualizations could be

graphs (as used, for instance, in Belvedere

(Suthers, Weiner, Conelly and Paolucci,

1995), Convince Me (Schank and Ranney,

1995; Siegel, 1999), Araucaria (Reed and

Rowe, 2004) and Athena (Rolf and

Magnusson, 2002), matrices (as used in

Belvedere), containers (as used in SenseMaker

(Bell, 1997; Bell and Linn, 2000) or linear and

threaded texts (as used in Academic Talk

(McAlister, Ravenscroft and Scanlon, 2004)

and HERMES (Karacapilidis and Papadias,

2001). Other educational argumentation

systems and frameworks try to analyze the

arguments created by the learners to find

possible weaknesses and give hints on how

to improve argumentation, as is done, for

example in LARGO (Legal Argument

Graph Observer) (Pinkwart, Aleven, Ashley

and Lynch 2006) and ARGUNAUT (De

Groot et al. (2007); McLaren, Scheuer and

Mikšátko, 2010).

ARGUMENTATION IN DIFFERENT

DOMAINS

To clarify the question why there are so

many different approaches and tools to

support the acquisition of argumentation

skills, one must have in mind that the

domains in which argumentation takes place

differ considerably. In the legal domain, for

instance, argumentation is a structured

process involving two parties, the defendant

and the plaintiff. The lawyers of both parties

try to “win” the case for their respective

clients by convincing the judge or a jury

with arguments. The ground rules for

arguing in the courtroom even differ

between countries. In contrast to the Civil

law premise (applied in many countries in

continental Europe) in which laws are

encoded as statutes, in the Common Law

used in England and the U.S. the law is

highly reliant on “precedent cases”, i.e. new

cases should be decided in accordance with

prior similar cases. Apparently, decisions in

such cases are also based on laws and statutes.

The difficulty in using these for argumentation

is based on their open textured nature

(Gardner 1987), meaning that their conditions

for application are abstract, must be

interpreted in the context of specific cases,

and are thus prone to subjectivity. Unlike

many other types of argumentation, legal

argumentation features a moderator (the

judge) present at all time, who has to assure

that protocol and legal ground rules are

correctly applied so that either the judge

himself or a jury can decide the case.

Compared to legal argumentation,

argumentation in ethics is different in many

respects: Here, there is no authoritative or

established and structured approach to resolve

ethical problems, i.e. there is no judge who

decides which argument is strongest and no

institutional use of stare decisis (the legal

principle by which judges are obliged to obey

the precedents established by prior decisions).

Thus, ethical arguments are typically more

free-form in style and structure. Another key

distinction is that the decision-making process

Figure 1: Belvedere (version 4.1) in “Evidence Mode”

Figure 2: Screenshot from LARGO tutorial

in ethics does not always (or even typically)

involve a pre-defined number of parties:

even a single ethicist may present both pro

and con positions or there may be more than

two parties debating. Additionally, ethics

cases are not constrained to binary

conclusions as compared to legal

argumentation. Finally, the goal in arguing

and evaluation ethical problems is

(typically) not to “solve a case” but rather to

learn about the ethical ramifications of

various actions.

A third example is scientific argumentation.

Here, the number of parties involved is also

not restricted to two opponents. Instead,

there can be multiple parties who agree on a

common standpoint but differ in details, and

there can also be multiple (more than two)

standpoints. The facts and theories that can

be used to argue can be revised based upon

observations and conclusions drawn from

new insights or experiments. Since the

relevant knowledge and information are

subject to change (whenever new

observations are made), there is not always a

definite decision about a specific point. This is

different compared to law where a judge or

jury can (and has to) finally close the

discussion with a decision applied to a single

case (which will not be changed). To illustrate

how these domain-dependent differences

influence the design of argumentation

systems, we will look at two prominent

examples of argumentation systems in more

detail: Belvedere and LARGO.

Belvedere, on the one hand, is a multi-user,

graph-based diagramming tool especially

designed for scientific argumentation. In

Belvedere, one states hypotheses that can be

supported or rebutted by means of facts. An

example of an argument created in Belvedere

is found in Figure 1. LARGO, on the other

hand, is an argumentation system designed to

support individual law students in the

acquisition of argumentation skills. Here, a

transcript of a trial is given to the students

who are asked to extract the arguments from

both sides. An example of an argument

created in LARGO is shown in Figure 2.

On the basis of these two short descriptions,

you will notice at first glance that both tools,

even though they aim at the same goal (the

acquisition of argumentation skills in their

specific domain), differ in their core

principles and approaches. Whereas

Belvedere guides students to make external

references to back up stated facts, LARGO

requires the integration of an internal text

(an argument transcript) to have users link

nodes in the graph to parts of this transcript.

Furthermore, the available modeling

elements differ: In LARGO there are only

three types of nodes (hypothetical, test,

fact), but five types of relations (modified

to, distinguished from, analogized to, leads

to, generalization). In Belvedere one can

choose between three node types as well, but

the available types (data, hypothesis, and

unspecified) differ. On the relations‟ side,

there are only three types available (pro, con,

unspecified). Apart from the available

elements, the systems also follow different

user strategies. Belvedere provides multi-user

functionalities, allowing users to create

arguments together with other arguers,

whereas LARGO is designed to be used by

students on their own (an exception here is the

assessment of the quality of an argument

which is done by peer reviews, see (Pinkwart

et al. 2006; Loll and Pinkwart, 2009) for

details). These are the most obvious

differences, but they led to costly and time-

expensive development of independent

systems aiming for the same purpose:

Training students to argue.

THE LASAD FRAMEWORK

To minimize the efforts of developing tools

that fit domain specific needs, we developed

the LASAD (Learning to Argue: Generalized

Figure 3: LASAD in graph-style visualization with Belvedere ontology

Support Across Domains) framework. It was

particularly designed to facilitate the

creation of argumentation systems by means

of a flexible configuration mechanism. Its

primary goal is to avoid excessive

development time and costs in future

development of argumentation systems.

Whereas the development of Belvedere and

LARGO took several years, it is our goal to

create argumentation systems that offer

similar possibilities to their users by means

of a configuration mechanism in only a

fraction of the time of past developments.

That is, it is possible to “create” most parts

of the system like the available elements, the

graphical user interface, the collaboration

support etc, by means of configurations,

eliminating the need of coding as far as

possible. Examples of how different

configurations of LASAD that emulate

Belvedere and LARGO look are shown in

Figures 3 and 4.

These figures also show the different

ontologies (i.e., node and edge types) used

in the two emulated systems, and how these

can be represented in the LASAD

framework. However, argumentation

systems do not differ only in their domain-

dependent ontology. To identify open issues

in the development of argumentation

systems that should be solved by a generic

framework, we conducted a detailed review

of existing argumentation systems (Scheuer,

Loll, Pinkwart and McLaren, 2010). In the

review we covered a broad range of topics

including general information (e.g., system

purpose/intended usage), argumentation

related criteria (e.g., domain and ontology),

main system functions, degrees of system

flexibility, collaboration options, intelligent

argument analysis and system feedback, user-

interface design and interaction techniques,

technological criteria (e.g., adopted

technology standards, software architecture)

as well as evaluation related criteria. The

results can be summarized as following:

First, most argumentation systems are either

specially designed for a single domain, e.g.

the law, ethics or science, or are too general to

serve as appropriate e-learning tools in

specific domains. While the former case often

involves a limited and too specific ontology,

i.e. in a domain-specific set of elements to

create an argument (e.g. hypothetical, test and

fact as node types in the law as used in

LARGO), the latter usually entails an ontology

that is too general to fit domain-specific needs

(e.g. only general nodes as used in Athena). A

happy medium between these two approaches

will, on the one hand, provide domain-specific

tools to create adequate arguments, but, on the

other hand, will be flexible enough to be used

in multiple domains. Such a system

development tool is not yet available. System

configurability that would allow a system to

be that flexible would be beneficial

(Dimitracopoulou, 2005; Lonchamp, 2006;

Slagter, Biemans and Ter Hofte, 2001). First

attempts along these lines can be found, for

instance, in Digalo (Schwarz and Glassner,

2007), where it is possible to define the

available elements to model argumentation

with respect to their number and appearance

as well as to define user roles and rights to fit

domain-specific needs. Nevertheless, the

configuration mechanisms of Digalo are

restricted to the appearance of the elements.

Thus, it is not possible to add domain-specific

elements such as, for instance, a transcript, as

is used in LARGO.

Figure 4: LASAD in graph-style visualization with LARGO ontology

Second, lots of available argumentation

systems (e.g. Athena (Rolf and Magnusson,

2002), Araucaria (Reed and Rowe, 2004)

are designed solely for single users. This is

somewhat surprising, since the question

whether argumentation skills are typically

best practiced in learner groups – i.e.,

through students interacting with peers

(and/or the teacher) – or in individual work

is still open. Thus, an approach supporting

both settings would be beneficial. Some

systems attempt to bypass this problem by

providing means for argument data import

and export to at least support asynchronous

collaboration. Athena, for instance, uses a

report generator to prepare arguments for

later group discussion, while Araucaria

provides a central database (AraucariaDB)

to make arguments exchangeable via the

web. Nevertheless, it would be beneficial to

provide adequate collaboration support (also

for synchronous collaboration) during the

whole argumentation process like, e.g.,

Belvedere does.

Third, most systems are isolated from other

systems and technology, i.e. they do not

offer public interfaces to communicate with

other systems that may provide superior

tools for some tasks. An example for the

usefulness of this kind of interoperability

between systems is ARGUNAUT (De Groot et

al., 2007), an analysis framework designed to

support teachers and moderators in identifying

possible problems in students‟ interactions

independent of the underlying system so that it

is possible to intervene. Another example is

CoFFEE (see (De Chiara, Manno, and

Scarano, 2010) in this book), which is an

expandable framework in which new

functionalities can be added as autonomous

and configurable components. Some

components are designed especially for

argumentation (e.g., the graphical and the

threaded discussion tool). Together, these

components use a shared workspace and can

be used in groups to define sessions to adapt

the system for use in courses with different

requirements, e.g. in schools or universities.

Finally, until now there is no common and

established methodology on how to create

argumentation systems. Consequently, the

wheel is constantly reinvented. While in

general software engineering developers are

aware of the importance of documenting and

reusing typical recurring problem solutions for

future system designs, there are only few

comparable approaches in e-learning and

especially in the argumentation domain.

Suthers (2001), for instance, evaluated the

usefulness of varying Model-View-

Controller (MVC) concepts for data

distribution and coupling in different

versions of Belvedere. Comparing the

centralized architecture (one server holds the

model and all clients are tightly coupled to

it) used in Belvedere v1 and a mixed

replicated / duplicated architecture (a copy

of the model is held on all clients and must

be kept in sync at all time) used in

Belvedere v2, he finally proposed a hybrid

architecture, i.e. a model which is stored on

the server as well as (in form of a duplicate)

on the clients. This way, users are able to

choose a view on the data which fits best on

their needs without losing the possibility for

collaboration with others that use a different

view, i.e. a model-level coupling is used.

Other existing software design approaches

applicable to argumentation are either

general software design patterns or mainly

focused on ITS (Intelligent Tutoring System)

design. Wenger (1987), for instance,

proposed an architecture based on four

software modules (expert, student, tutor and

communication), and Harrer, Pinkwart,

McLaren and Scheuer (2008) as well as

Harrer and Devedzic (2002; Devedzic and

Harrer 2005) identified recurring patterns in

ITS. Examples for the latter are the

KnowledgeModel-View pattern which

manages multiple models and views (similar

to the MVC pattern for one model and view)

or the ICSCL pattern, which allows adapting

learning materials separately for individuals

and groups at the same time. Even though

primarily designed for general-purpose ITSs,

these patterns can be used for the specific task

of developing argumentation (ITS) systems as

well. Nevertheless there are – to our

knowledge – no design patterns especially

designed for argumentation systems.

REQUIREMENTS

In addition to the open challenges listed

above, there are a couple of successfully

applied practices in existing argumentation

systems. In this section we present practices

and propose a software architecture that is

capable to support them on the technology

level. All identified requirements are

summarized in Table 1.

General

On the general side, a generic framework

should be easily maintainable ( Req. 1) to

simplify application use in educational school

General

(1) Maintainability

(2) Avoid installation and firewall problems on the client side

(3) Flexibility & extensibility

(4) Must scale up for a fair amount of users

Collaboration

(5) Support for synchronous and asynchronous collaboration

(6) Users have to be aware of other users„ actions

(7) Communication via different channels: text, audio or video chats

(8) Concurrency control to avoid the loss of data

(9) Scripting support to define collaboration and learning settings

(10) Definition of roles and rights

Analysis & Feedback
(11) Multiple analysis and feedback engines must be supported

(12) Highlighting of elements to give feedback

Ontology

(13) Underlying ontology should be flexible, i.e. an ontology can be defined for

each argumentation separately

(14) Support to embed external resources

(15) Micro-references to parts of resources should be supported

Visualization (16) Multiple views on the data set, e.g. graphs or matrices

Logging

(17) Action-based logging

(18) State-based logging

(19) Support for replays

Table 1: Requirements of a general argumentation system

settings with no professional admin present.

Especially on the client side, there should be

no installation required to avoid conflicts

with access rights or firewalls ( Req. 2) as

reported, for instance, in (Ravenscroft,

McAlister and Sagar, 2009). Flexibility with

respect to the integration of additional tools

to model arguments or to analyze arguments

should be supported ( Req. 3). One way to

do this could be plug-ins, i.e. the core

module of the framework will be extended

by external components which make use of

a pre-defined interface to the core system (a

similar approach is described for instance in

(De Chiara et al., 2010, in this book). This

would result in a loose coupling of system

components, i.e. all components can be

added or removed on-the-fly. To allow for a

fluent collaboration, the system must scale

up also for a larger number of users ( Req.

4).

Collaboration

As mentioned before, argumentation (and

especially argumentation learning) often

benefits from group discussions. Due to this

fact, we classified the existing systems with

respect to their support for collaboration.

Here we found out that the support functions

present in existing systems (which have

been shown to be effective in different

settings) vary. It may thus be beneficial to

be able to switch between various

collaboration settings ( Req. 5) to fit the

needs of the respective application scenario.

Examples for different successful

collaboration strategies are – on the one

hand - Academic Talk and its successor

Interloc (Ravenscroft et al., 2009) which

have been used in a synchronous fashion in

classroom, and – on the other hand –

HERMES (Karacapilidis and Papadias,

2001), an asynchronous forum-like system

that has been used to decide medical cases.

Also, adequate awareness and

communication support are required, i.e.

each user must be made aware of the actions

of others ( Req. 6), and there should be

communication facilities like text, audio or

video chat ( Req. 7), especially in settings

where the participants are in different places

and cannot talk to their partners directly.

Connected to this point is a sophisticated

concurrency control, i.e. parallel actions from

different users must be processed avoiding

data loss ensuring consistency. An acceptable

solution should also avoid locks, which could

cause frustration among learners which are not

able to work on argument parts when another

one is working on the same part ( Req. 8).

To improve the learning effects, it should be

possible to construct typical argumentation

scenarios - e.g., simulated dialectic arguments

in a courtroom setting may be more effective

than argumentation exercises without this

simulated setting. These scenarios could be

specified by means of scripts (Suthers, Toth

and Weiner, 1997; Kobbe et al., 2007);

written for instance in IMS-LD
1
 ( Req. 9) as

done for instance in CoFFEE (Belgiorno, De

Chiara, Manno and Scarano, 2008). To

implement these scripts, one should be able to

assign roles and rights ( Req. 10) to

different groups of users as is possible for

instance in Digalo. To extend the trial

example: Imagine one group acting as

plaintiff, while another group acts as

defendant. These roles could be emphasized

by means of different rights, e.g. each group is

only able to manipulate their own arguments.

Analysis & Feedback

On the ITS side, a general framework should

provide support for integrating multiple

analysis techniques, including machine

learning techniques as well as rule or grammar

based approaches and peer-to-peer reviewing

approaches, to face the ill-definedness (Lynch,

Ashley, Aleven and Pinkwart, 2006) of

argumentation which may require advanced

techniques to analyze arguments and give

feedback. Machine learning techniques can try

to identify possible lacks in argumentation

based on pattern learned from earlier

experiences (De Groot et al., 2007; McLaren

1
 http://www.imsglobal.org/learningdesign/

http://www.imsglobal.org/learningdesign/

et al., 2010). Grammar based approaches are

able to analyze and compare the structure of

the argument to pre-defined rules (Suthers et

al., 1997; Pinkwart et al., 2006). An

example here may be a circular argument

that should be avoided. In peer-to-peer

reviewing approaches, the quality of a part

of the argument is evaluated by other users

working on a similar part of the argument

(Pinkwart et al., 2006; Loll and Pinkwart,

2009). While these methods have been

shown to be effective on their own, a

combination of multiple techniques may be

even more effective ( Req. 11). Of course,

the results of these methods must be shown

to the users in an adequate way, e.g. by

highlighting the elements under critique (

Req. 12) (De Groot et al., 2007; McLaren et

al., 2010).

Ontology

To avoid a restriction of the framework to

pre-defined domains, the underlying

ontology must be flexible, i.e. the

framework must allow for different

configurations (pre-defined like Toulmin

(1958) or Wigmore (1931) as well as

customized ones) for multiple argumentation

domains ( Req. 13) as possible, e.g., in

Digalo. This approach should be beneficial

compared to other approaches that try to

achieve universality or expressiveness by a

large set of elements since it avoids

overwhelming the user with a “plethora of

choices“(Suthers, 2003, p. 8) as Suthers

noted during the iterative refinement of the

Belvedere system, which comes with a more

detailed ontology in the first versions than

present in the latest one.

As part of the ontology, embedding links to

external resources into arguments ( Req.

14) (done for example in Belvedere) should be

allowed, including micro-references to parts

of it ( Req. 15). An example here is an

article on the web or an inline transcript of a

trial which could be linked line-wise to

argument elements (as used in LARGO, for

example). Based on these ontologies, multiple

visualizations like graphs, matrices, frames or

linear and threaded text are imaginable and

should be supported ( Req. 16). These

different visualizations may be beneficial in

different situations to improve the

argumentation. Suthers (2003) for instance,

showed that the use of different visualizations

would scaffold different actions. While a

graph-style visualization could be beneficial to

get a common understanding of the problem, a

matrix, for instance, highlights missing

relation.

Logging

Another important factor – for researchers as

well as for teachers and tutors – is the support

of adequate logging mechanisms. Here action-

based ( Req. 17) and state-based logging

( Req. 18) should be supported. While the

former is beneficial for replay functions, e.g.,

when a tutor tries to reconstruct an

argumentation step-wise, ( Req. 19) to give

feedback to the learners (as done for instance

by means of the Common Format in Digalo

and ARGUNAUT), the latter is important for

performance reasons: when a new user joins

an ongoing argumentation, it is beneficial for

the overall system performance not to provide

him with all single actions – instead, he or she

should receive the current document state

immediately to avoid unnecessary processing

steps on the client.

Figure 5: The LASAD Framework - Architecture

THE LASAD ARCHITECTURE

Based on the challenges and requirements

identified above, we propose the architecture

shown in Figure 5 as the foundation of our

LASAD framework. It uses a classic layered

architecture, i.e. the software is structured

into layers where each layer is only capable

of communicating with its neighbor layers.

The main advantage is that each layer works

more or less independently from the others.

The communication takes place via

interfaces that enable a transparent use of

the whole layer. Hence, the internal structure

of the layers can be easily exchanged. That

is, the whole system is loosely coupled. The

(exchangeable) technologies currently used

in the framework are marked with a star *.

CLIENT LAYER

On the client side, different types of

applications are possible. On the one hand,

there is the user client (UC). It provides a

graphical interface for each user to create and

manipulate arguments as well as

communication tools ( Req. 7:

Communication via different channels: text,

audio or video chats). The graphical interface

comprises different views ( Req. 16:

Multiple views on the data set, e.g. graphs or

matrices), for instance, a graph, forum or

matrix visualization, presenting the same

underlying data. Thus, the user client is the

main tool to interact with (a) other users and

(b) the system.

On the other hand, there are analysis &

feedback clients (AFCs). Their main purpose

is to automatically analyze the arguments

created by the learners. The analysis can be

done by multiple clients ( Req. 11: Multiple

analysis and feedback engines must be

supported) with different methods (cf.

(Scheuer, McLaren, Loll and Pinkwart, 2010)

in this book) at the same time. Based on this

Figure 6: Server processing

analysis, the AFCs give feedback to the

learners or to a teacher or moderator to

either highlight possible weaknesses of the

created argument ( Req. 12: Highlighting

of elements to give feedback) or to assist the

tutor to help learners. To communicate with

the UCs, the AFCs are provided with the

same technical interface as the UCs. The

server differentiated between AFCs and UCs

via different roles and rights for different

clients ( Req. 10: Definition of roles and

rights, see below).

To avoid possible firewall and installation

problems ( Req. 2: Avoid installation and

firewall problems on the client side), the

clients can be web-based. Our prototype

client for instance uses Google Web Toolkit

(GWT) which provides a Java-to-JavaScript

compiler. Thus, it is possible to use a high-

level programming language (Java in our

case) including their established

development tools that accelerates the whole

argumentation process and, at the same time,

to benefit from the possibilities of a

scripting language like JavaScript. By means

of JavaScript it is possible to run the whole

application in a completely platform

independent way in a web browser. This

eliminates installation requirements, since

all modern web browsers support JavaScript.

SERVER LAYER

Following the established layer architecture

design pattern, all data processed by the

clients is sent to the server layer (Figure 6,

step 1). Here, multiple checks are performed

before the client gets notified whether the

action is allowed or not, and the data is

processed to the data layer as well as

distributed to all other client with adequate

awareness information ( Req. 6: Users

have to be aware of other users‟ actions) to

enable collaboration ( Req. 5: Support for

synchronous and asynchronous

collaboration). The checks comprise (a) the

concurrency control ( Req. 8:

Concurrency control to avoid the loss of

data) and (b) the access control ( Req. 10:

Definition of roles and rights). During the

concurrency control, the action is stored in a

queue with all other incoming actions to

guarantee the processing of actions in a

consistent manner without data loss.

Once an element of the list passes through to

the next step (Figure 6, step 2), a check is

done whether the user is allowed to do the

action, i.e. the access control takes place by

verifying the user rights with help of the data

layer (Figure 6, step 3). For instance, a user of

group A may want to delete an argument

stated by group B. This may be forbidden in

the rights management of the corresponding

group. Since the application logic is located

on the server side, the client can send a

command requesting to delete the box, but this

request will then be denied by the server.

Otherwise, if the action is allowed, it will be

confirmed and stored persistently in the data

layer (Figure 6, step 4).

In addition to these control mechanisms, the

server acts as mediator between the data and

the client layer, i.e. all information stored in

the data layer is only accessible through the

server.

Figure 7: Possible scenario defined by scripts

DATA LAYER

The key to achieving flexibility is the data

layer. Here, one is able to configure the

whole platform to fulfill domain-specific

needs. The configuration consists of three

parts: (1) The definition of roles and rights

( Req. 10), (2) the definition of

collaboration and learning scripts ( Req.

9: Scripting support to define collaboration

and learning settings), and (3) the definition

of the underlying argumentation ontology

( Req. 13: Underlying ontology should be

flexible, i.e. an ontology can be defined for

each argumentation separately). In the first

step, different user roles will be specified.

Typical roles in general educational

argumentation are learner, teacher or

moderator. In more specific argumentation

scenarios like the law, other roles are

possible, e.g. defendant and plaintiff. After

defining different roles, there is the

possibility of assigning different rights to

different user groups: While learners are

able to create and manipulate the argument

structure, it might be beneficial if a

moderator is also allowed to highlight parts

of the argument to guide further

argumentation (De Groot et al., 2007). A

similar situation is possible for the AFCs

(each AFC belongs to a user group as well).

This way it is possible to define more or less

complex scenarios. On the one hand, there

may be a scenario with the roles student and

teacher. Here all students will have the same

role and rights, i.e. each participant is able to

add elements to the argument, while only the

teacher is able to highlight elements to

scaffold the discussion. On the other hand,

even more complex scenarios are possible:

There may be two parties, one pro and one

con for the discussed question (for instance:

“Should taxes be reduced to increase the

economic growth?”). Here one could define

two different roles so that each party is only

able to edit its own contributions, and not the

contributions of the other party.

Also multiple AFCs may be used, each of

them with different rights: Whereas one

automatic analyzer may only be able to give

hints via highlighting of elements, another

may have the additional right to delete

rebutted points. To define these scenarios, in

more detail, scripts can be specified. Via

scripts it is possible to define and guide the

whole argumentation process. For instance, it

is possible to define different phases, like

brainstorming, argument building and

argument discussion. These different phases

can be supported with different ontologies

(see below) and collaboration settings. As

shown in Figure 7, an early brainstorming

phase, for instance, may use synchronous

collaboration in connection with a graph-

based visualization of only one node and one

relation type. In the next argumentation phase,

there might be asynchronous collaboration

with an ontology that supports different types

of nodes and relations to structure the

argumentation in more detail, based on the

results from the brainstorming session. Even

though the support of different collaboration

styles is independent from the graphical

representation, there will be different

manners of support needed for synchronous

and asynchronous collaborative system

usage. While in asynchronous collaboration

it will be enough information to know who

created which element and when he or she

did it, it may be beneficial for synchronous

collaboration to provide additional

information, for instance, who is currently

working at which part of the argument.

Finally, in the discussion phase, the

arguments may be shown as list and a chat

window will serve as primary

communication channel. Together with the

roles and rights specified before, a variety of

other settings are possible. For instance

there can be two parties which are arguing

against each other, while each user has

access to different information that is

designed to help him or her argue. Thus, it

will be possible, e.g., to simulate a trial in

the legal domain or scientific argumentation,

for instance when an observable

phenomenon can be explained by different

theories.

Achieving flexibility is largely a function of

the underlying argumentation ontology. An

ontology, i.e. the explicit specification of a

conceptualization (Gruber, 1993), provides

the foundation of an argumentation system.

Here one may differentiate between systems

that make their ontology explicit and others

which provide an implicit ontology. It

describes the available elements, including

their contributions, relations, possible

modifiers and other components such as

given texts etc. to create an argument.

Typical examples of contributions are

hypotheses or evidences. Those can be

connected by means of relations like pro or

con. In addition, modifiers like believability

or relevance scores can be added to both

contributions and relations - these are used

to analyze the conclusiveness of an

argument (for instance by an AI engine, cf.

(Scheuer et al., 2010) in this book). An

important point is that different

argumentation domains require different

ontologies to create meaningful arguments. At

the same time, the ontology‟s aim is to make

the users of the argument system aware of the

conceptual components of the task domain,

i.e., an ontology may guide users (Suthers,

2003). Another part of the ontological

specification is the possibility to add external

resources such as text on web pages or

external applets ( Req. 14: Support to

embed external resources). These external

references may be used in an argumentation

process, either by having learners point to the

whole resource or by just referencing a part of

it ( Req. 15: Micro-references to parts of

resources should be supported). We will

provide an example of how to configure an

ontology in the LASAD framework in the next

section.

Apart from the definition of different settings,

the data layer is responsible for the consistent

and persistent storage of the whole data

resulting from the argumentation, including

user actions, the argument structure and

additional meta-data like creation date or a

user assessment. Here, two types of logging

are done in parallel: (1) state-based logging

( Req. 18) and (2) action-based logging (

Req. 17). During the state-based logging, all

incoming actions are applied to the current

revision of the argument. Once a new client

connects to the argumentation, only the

current state needs to be transferred.

Compared to action-based logging, this results

in improved network performance. The

action-based logging, however, stores all

single actions separately. This is beneficial

because one may want to undo a step or to

replay an entire argument stepwise ( Req.

19: Support for replays), which is especially

important for teachers and researchers who

want to understand how and why the argument

evolves over time. If one used state-based

logging here, it could result in poor

performance since the whole argument would

have to be sent to all participants every time

an action occurs. Together with the concept of

the layered architecture and open interfaces to

plug in new components ( Req. 3:

Flexibility & extensibility), the framework

scales up well ( Req. 4: Must scale up for

a fair amount of users) and at the same time

is easily maintainable ( Req. 1:

Maintainability), because all components are

independent from each other.

ONTOLOGY CONFIGURATION

After the underlying architecture of the

framework has been described, we will now

discuss how the configuration mechanisms

of the LASAD framework work in detail. In

this section we focus on the configuration of

the ontology. For this purpose, we rebuilt

the argument modeling part of the Belvedere

system (or, more specifically, the evidence

mode of this tool) as well as the argument

modeling part of LARGO system by means

of ontology configurations of the LASAD

system. Illustrative parts of the configuration

are shown in Listing 1 (see Appendix A) and

Listing 2 (see Appendix B). An overview of

all (currently) available XML tags to define

the ontology is given in Table 2. Please note

that we did not rebuilt the analysis and

feedback parts of the systems yet, even

though it would be possible based on the

LASAD architecture.

As mentioned before, the Belvedere

ontology, on the one hand, consists of three

contribution types (data, hypothesis, and

unspecified) and three relations (pro, con,

and unspecified). Each contribution and

relation comprises as child elements a text, a

URL, notes, the author‟s name, the name of

the modifier, and a strength modifier.

The LARGO ontology, on the other hand,

consists of three contributions (hypothetical,

test, and fact) and five relations (modified to,

distinguished from, analogized to, leads to,

and general). Compared to Belvedere, the

contributions comprise different child

elements. While a fact only has a simple text

area, a hypothetical has an optional labeled

text field (outcome, see Figures 2 and 4) as

well. Even more detailed is the test, since it

comprises at least the labeled if and then text

fields, but may also include a set of other

labeled fields, e.g. and or even though. The

relations, however, do not have any child-

elements or at most comprise a text area (see

comment relation in Figure 1 and 3).

To map these ontologies into an XML

configuration of the LASAD framework, the

following structure is used: Each ontology has

a root tag <ontology> which defines the name

(type) of the ontology, i.e. in these cases

“Belvedere” and “LARGO”. Inside of this, the

elements (contributions, relations, and - in the

LARGO case – a transcript) are defined

(<element>). Each element has got a type and

an id. While the former defines via keywords

(e.g., contribution, relation, transcript,

tutorial) what the client is expected to show,

the later uses keywords to tell an AFC to

which category this may belong. For instance,

a set of contributions is defined. To

differentiate between multiple contributions,

each contribution has a unique name. This

way an AFC is able to differentiate between

them. Typically, the id would be the name that

can be found in the element‟s label, but other

names are possible too.

Each element has additional options

(<options>) and style information

(<uisettings>) defined by different attributes.

Inside of the element options, additional

information is given, including the name of

the element (heading). Within the user

interface settings (<uisettings>), preferred

style settings are defined including the

element‟s colors (background-color, font-

color), the element‟s size (width, height) and

whether it should be resizable (resizable), and

its border (border, possible properties here

are, e.g. standard, dashed, round, etc.). The

definition of the relations is similar to the

definition of the contribution. In addition to

the contributions, a relation has further style

information attributes such as line-color, line-

width and directed, which define the

appearance of the relation in more detail. All

user interface attributes are optional, i.e. if

there is no attribute specified, the framework

will use a standard setting. Finally, each top

level element, i.e. relation, contribution and

transcript, may have child elements. Typical

children are textboxes with and without labels,

hyperlinks to external resources, awareness

information panels, or rating elements. In

addition to the top-level elements, each child

has a quantity, which defines how many

instances of the element are present when its

parent is created. This quantity can be

changed during runtime so that the overall

number of instances is between the min-

quantity and the max-quantity. An example

for these quantities is the test contribution in

the LARGO ontology. Here, there is only an

if and a then text field (defined via

quantity=”1” in the ontology, cf. Listing 2

in Appendix B). If one would like to extend

the box with an and or an even though text

field, this could be done during runtime (by

clicking on the plus button in the header of

the contribution). Then it is checked whether

the max-quantity is already obtained and the

quantity gets updated. Compared to the

Belvedere ontology, the LARGO ontology

does have an additional element: the

transcript, which is defined in analogy to the

other relation and contribution elements.

The transcript is specified analogously to the

other elements and its concrete content, i.e.

the lines which are readable in the transcript

can be defined in a concrete instance of a map

using this ontology (see Figure 6 and 7, left

side). To allow the linking between parts of

the transcript with a contribution, each

contribution must have another child-element

of the type transcript-link (see Listing 2 in

Appendix B for details). An example for such

a link can be found in Figures 6 and 7 in the

lower left test contribution.

Based on these definitions each client is able

to work on the data. On the side of the AFCs,

the ontology data can be analyzed to reveal

possible weaknesses in learner‟s arguments

using pre-defined rules or machine learning

techniques. For example, an AFC may know

that an unconnected item is not helpful for the

argumentation process or that a hypothesis

object must be supported or rebutted by a data

object. This is analog to one of the Belvedere

coaches (Suthers, 2003), which examines the

structure of the argument based on general

rules like “multiple lines of evidence

converging on a hypothesis is better than one

consistent datum“(Suthers, 2003, p. 4). The

second Belvedere coach, which compares the

argument created by a learner to an argument

Tag Properties Parent Function

<ontology> type - The root element

<element>

id

contribution

quantity

min-quantity

max-quantity

<ontology>
Defines an ontology element. Examples are:

contribution, relation, and transcript

<childelements> - <element>
Container to store elements that belong to one parent

element

<uisettings>

width

height

min-height

max-height

resizable

border

background-color

font-color

line-width

line-color

<element>
Provides additional information for the clients‟

visualization; optional

<options>

label

texttype

score

min-score

max-score

<element>

Provides additional information for an element like, for

instance, the value which is set on start up (for a rating

element) or if the text-container has multiple lines or not

Table 2: Overview of XML tags to define an ontology in LASAD

of an expert, could also be implemented by

means of another AFC. On the side of the

human user client, however, the data is used

as basis for the visualization. Here it is

important to know that each client that

works on the data is allowed to have its own

visualization or even multiple visualizations

to choose from at runtime. While our

Google Web Toolkit client makes use of a

graph-style visualization (see Figures 5 and

7), another client may use a threaded

discussion visualization. Here, it is

important to know that the use of multiple

visualizations may result in pieces of

information which are hidden. An example

for such a case is the presentation of a cyclic

argument structure (which is easy to

represent in a graph) in a threaded

discussion (where cycles cannot be

expressed): the threaded discussion

visualization should make the users aware of

the fact that there is additional information

available which could not be shown in their

current visualization. The key for

exchangeability and cooperation is the

common ontology, i.e. all connected clients

provide their users with the same elements

available but may differ in their

visualization. Our ontology definition

contains visualization information to some

degree, but this can be ignored by clients

which use a visualization that does not

support this style information.

CONCLUSION

This chapter highlights the importance of

tools to assists teachers in teaching

argumentation. We summarized the basic

approaches of modern argumentation

systems, including their strengths and

weaknesses. Based on a review of 49

existing argumentation systems and methods

we collected technology requirements for a

generic argumentation system and proposed

an architecture which is able to deal with all

the identified requirements. As a next step,

we described the LASAD framework, which

is based on the proposed architecture. The

framework can be used to simplify the

development of new argumentation tools by

means of detailed and flexible configuration

mechanisms. We exemplified this point by

configuring the LASAD tool to emulate parts

of the argumentation systems Belvedere and

LARGO.

In future work, we plan to develop support for

additional visualization styles on the client

layer and improve the XML configuration

mechanisms by separating more clearly

between ontology and visualization parts that

can be reused in different contexts. To

simplify the creation of the XML ontology,

we also plan to develop an authoring tool,

which guides the system‟s users through the

creation of an ontology.

ACKNOWLEDGEMENTS

This work is supported by the German

Research Foundation (DFG) under the grant

“Learning to Argue: Generalized Support

Across Domains” (LASAD).

REFERENCES

Belgiorno, F., De Chiara, R, Manno, I. and Scarano, V. (2008). A

flexible and tailorable architecture for scripts in F2F

collaboration. Times of Convergence. Technologies Across
Learning Contexts, LNCS, Proceedings of the 3rd European

Conference on Technology Enhanced Learning.

Bell, P. (1997). Using argument representations to make thinking
visible for individuals and groups. In R. Hall, N. Miyake, N.

Enyedy (Eds.), Proceedings of the 2nd International Conference

on Computer Support for Collaborative Learning (pp. 10-19).
Bell, P. and Linn, M. C. (2000). Scientific arguments as learning

artifacts: Designing for learning from the web with KIE.

International Journal of Science Education, 22(8), 797-817.
Bloom, B. S. (1984). The 2 sigma problem: The search for methods

of group instruction as effective as one-to-one tutoring.

Educational Researcher, 13(6), 3-16.
De Chiara, R., Manno, I. and Scarano, V. (2010). CoFFEE: an

expandable and rich platform for computer-mediated, face-to-

face argumentation in classroom. In N. Pinkwart, B. M.
McLaren (Eds.) Educational Technologies for Teaching

Argumentation Skills. Bentham.

De Groot, R., Drachman, R., Hever, R., Schwarz, B., Hoppe, U.,
Harrer, A., De Laat, M., Wegerif, R., McLaren, B. M. and

Baurens, B. (2007). Computer supported moderation of e-

discussions: the ARGUNAUT approach. C. Chinn , G. Erkens,
S. Puntambekar (Eds.), Proceedings of the 8th International

Conference on Computer-Supported Collaborative Learning

(pp. 165-167).
Devedzic, V. and Harrer, A. (2005). Software patterns in ITS

architectures. Intl. Journal of AI in Education, 15(2), 63-95.

Dimitracopoulou, A. (2005). Designing collaborative learning
systems: current trends & future research agenda. Proceedings

of the 2005 Conference on Computer Support for Collaborative

Learning (pp. 115-124).
Gardner, A. (1987). An Artificial Intelligence Approach to Legal

Reasoning. Cambridge, MA: MIT Press.

Gruber, T. R. (1993). A translation approach to portable ontology

specification. Knowledge Acquisition, 5(2), 199-220.
Harrer A and Devedzic V (2002). Design and analysis patterns in

ITS architectures. Proceedings of the Intl. Conf. on

Computers in Education, (pp. 523-527).
Harrer, A., Pinkwart, N., McLaren, B.M. and Scheuer, O. (2008).

The scalable adapter design pattern: Enabling interoperability

between educational software tools. IEEE Transactions on
Learning Technologies, 1(2), 131-143.

Karacapilidis, N. and Papadias, D. (2001). Computer supported

argumentation and collaborative decision making: the
Hermes system. Information Systems, 26(4), 259-277.

Kirschner P. A., Buckingham Shum S. J. and Carr C. S. (2003).

Visualizing argumentation. Software tools for collaborative
and educational sense-making. London: Springer.

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A.,

Hämäläinen, R., Häkkinen, P. and Fischer, F. (2007).
Specifying computer-supported collaboration scripts.

International Journal of Computer-Supported Collaborative

Learning, 2(2). 211-224.
Kuhn, D. (1991). The skills of argument. Cambridge, Cambridge

Kulik C. C. and Kulik J. A. (1991). Effectiveness of computer-

based instruction: An updated analysis. Computers in Human
Behavior, 7, 75-95.

Loll, F. and Pinkwart, N. (2009). Using collaborative filtering

Algorithms as eLearning Tools. In R. H. Sprague (Ed.),
Proceedings of the 42nd Hawaii International Conference on

System Sciences. Los Alamitos, CA: IEEE Computer Society
Press.

Lonchamp, J. (2006). Supporting synchronous collaborative

learning: a generic, multi-dimensional model. International
Journal of Computer-Supported Collaborative Learning,

2(1), 247-276, Springer.

Lynch, C., Ashley, K. D., Aleven, V. and Pinkwart, N. (2006).
Defining ill-defined domains: A literature survey. In V.

Aleven, K. D. Ashley, C. Lynch, N. Pinkwart (Eds.)

Proceedings of the Workshop on Intelligent Tutoring Systems
for Ill-Defined Domains at the 8th Intl. Conf. on Intelligent

Tutoring Systems (pp. 1-10). Jhongli, Taiwan: National

Central University.
McAlister, S., Ravenscroft, A. and Scanlon, E. (2004). Combining

interaction and context design to support collaborative

argumentation using a tool for synchronous CMC. Journal of
Computer Assisted Learning: Special Issue: Developing

Dialogue for Learning, 20(3), 194-204.

McLaren, B. M., Scheuer, O. and Mikšátko, J. (2010). Supporting
collaborative learning and e-discussions using artificial

intelligence techniques. Intl. Journal of Artificial Intelligence

in Education, 20(1), 1-46.
Pinkwart, N., Aleven, V., Ashley, K. D. and Lynch, C. (2006).

Toward legal argument instruction with graph grammars and

collaborative filtering techniques. Lecture Notes in Computer
Science Vol. 4053 (pp. 227-236). Berlin: Springer.

Ravenscroft, A., McAlister, S. and Sagar, M. (2009). Digital

dialogue games: JISC Final Project Report London
Metropolitan University, Learning Technology Research

Institute.

Reed, C. and Rowe, G. (2004). Araucaria: Software for argument
analysis, diagramming and representation. International

Journal of AI Tools, 14(3-4), 961-980.

Rolf, B. and Magnusson, C. (2002). Developing the art of
argumentation. A software approach. Proceedings of the 5th

Intl. Conf. on Argumentation. Intl. Soc. for the Study of

Argumentation.
Schank, P. and Ranney, M. (1995). Improved reasoning with

Convince Me. In Human Factors in Computing Systems

CHI’95 Conf. Companion (pp. 276-277). New York:
Association for Computing Machinery.

Scheuer, O., Loll, F., Pinkwart, N. and McLaren, B. M. (2010).

Computer-supported argumentation: A review of the state-of-
the-art. International Journal on Computer Supported

Collaborative Learning, 5(1), 43-102. Springer.

Scheuer, O., McLaren, B. M., Loll, F and Pinkwart, N. (2010).
Automated analysis and feedback techniques to support

argumentation: a survey. In N. Pinkwart, B. M. McLaren (Eds.),

Educational Technologies for Teaching Argumentation Skills.
Bentram.

Schwarz, B. B. and Glassner, A. (2007). The role of floor control and

of ontology in argumentative activities with discussion-based
tools. International Journal of Computer-Supported

Collaborative Learning, 2(4), 449–478. Springer.

Siegel, M. A. (1999). Changes in student decisions with Convince
Me: Using evidence and making tradeoffs. Proceedings of the

21st Annual Conf. of the Cognitive Science Soc. (pp. 671-676).

Mahwah: Erlbaum.
Slagter, R., Biemans, M. and Ter Hofte, H. (2001). Evolution in use

of groupware: Facilitating tailoring to the extreme. Proceedings

of the 7th International Workshop on Groupware.
Suthers, D. D. (2001). Architectures for computer supported

collaborative learning. Proceedings of the IEEE Intl. Conf. on

Advanced Learning Technologies.
Suthers, D. D. (2003). Representational guidance for collaborative

inquiry. In J. Andriessen, M. Baker, D. D. Suthers (Eds.),

Arguing to Learn, Computer-Support Collaborative Learning
Series, Vol. 1 (pp. 27-46). Springer.

Suthers, D. D., Toth, E. E. and Weiner, A. (1997). An integrated

approach to implementing collaborative inquiry in the
classroom. Proceedings of the 2nd International Conference on

Computer Support for Collaborative Learning (pp. 272-279).

Suthers, D. D., Weiner, A., Connelly, J. and Paolucci, M. (1995).
Belvedere: Engaging students in critical discussion of science

and public policy issues. Proceedings of the 7th World
Conference on Artificial Intelligence in Education (pp. 266-

273).

Toulmin, S. E. (1958). The Uses of Argument.
Van Gelder, T. (2003). Enhancing deliberation through computer

supported argument mapping. In P. A. Kirschner, S. J.

Buckingham Shum, C. S. Carr (Eds.) Visualizing argumentation.
Software tools for collaborative and educational sense-making

(pp. 97-115). London: Springer.

Weinberger, A., Fischer, F. and Stegmann, K. (2005). Computer-
supported collaborative learning in higher education: Scripts for

argumentative knowledge construction in distributed groups.

Proceedings of CSCL 2005.
Wenger, E. (1987). Artificial intelligence and tutoring systems. Los

Altos: Morgan Kaufmann.

Wigmore, J. H. (1931). The Principles of Judicial Proof (2nd Edition).
Little, Brown & Co.

APPENDIX A

<ontology type="Belvedere">

<element id="data" type="contribution" quantity="" min-quantity="" max-quantity="">

<options heading="Data" />

<uisettings width="200" height="250" resizable="true" border="standard" background-

color="#C4FFC4" font-color="#000000" />

<childelements>

<element id="text" type="text" quantity="1" min-quantity="1" max-quantity="1">

<options texttype="textarea" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="40"/>

</element>

<element id="notes" type="text" quantity="1" min-quantity="1" max-quantity="1">

<options texttype="textarea" label="Notes" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="40"/>

</element>

<element id="externalreference" type="url" quantity="0" min-quantity="0" max-

quantity="1">

<options />

<uisettings background-color="#FFFFFF" font-color="#CCCCFF" min-height="16"/>

</element>

<element id="strength" type="rating" quantity="1" min-quantity="1" max-quantity="1">

<options score="3" min-score="1" max-score="5" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="16"/>

</element>

<element id="awareness" type="awareness" quantity="1" min-quantity="1" max-quantity="1">

<options />

<uisettings background-color="#FFFFFF" font-color="#A9A9A9" min-height="16"/>

</element>

</childelements>

</element>

…

<element id="for" type="relation" quantity="" min-quantity="" max-quantity="">

<options heading="For" endings="true" />

<uisettings width="100" height="120" resizable="false" border="" background-color="#5FC977"

font-color="#000000" line-width="2px" line-color="#5FC977" />

<childelements>

<element id="strength" type="rating" quantity="1" min-quantity="1" max-quantity="1">

<options score="3" min-score="1" max-score="5" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="16"/>

</element>

<element id="awareness" type="awareness" quantity="1" min-quantity="1" max-quantity="1">

<options />

<uisettings background-color="#FFFFFF" font-color="#A9A9A9" min-height="16"/>

</element>

</childelements>

</element>

…

</ontology>

Listing 1: Parts of the XML definition of the Belvedere ontology in LASAD

APPENDIX B

<ontology type="LARGO">

…

<element id="test" type="contribution" quantity="" min-quantity="" max-quantity="">

<options heading="Test" />

<uisettings width="180" height="160" resizable="true" border="standard" background-

color="#55C3FF" font-color="#000000" />

<childelements>

<element id="if" type="text" quantity="1" min-quantity="1" max-quantity="1">

<options texttype="textfield" label="IF" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="16"/>

</element>

<element id="and" type="text" quantity="0" min-quantity="0" max-quantity="5">

<options texttype="textfield" label="AND" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="16"/>

</element>

<element id="eventhough" type="text" quantity="0" min-quantity="0" max-quantity="5">

<options texttype="textfield" label="EVEN THOUGH" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="16"/>

</element>

<element id="then" type="text" quantity="1" min-quantity="1" max-quantity="1">

<options texttype="textfield" label="THEN" />

<uisettings background-color="#FFFFFF" font-color="#000000" min-height="16"/>

</element>

<element id="transcriptlink" type="transcript-link" quantity="0" min-quantity="0" max-

quantity="1">

<options />

<uisettings min-height="16" max-height="16"/>

</element>

</childelements>

</element>

…

<element id="transcript" type="transcript" quantity="1" min-quantity="1" max-quantity="1">

<options />

<uisettings width="" height="" resizable="true" border="" background-color="#FFFFFF" font-

color="#000000" />

</element>

…

</ontology>

<maptemplate ontology="LARGO" title="Carney - Petitioner">

<mapdetails>

<description> … </description>

<options> … </options>

<transcript>

<lines>

<line number="3" text="CALIFORNIA, Petitioner, v. CHARLES B. CARNEY, RESPONDENT">

 …

</lines>

</transcript>

</mapdetails>

</maptemplate>

Listing 2: Parts of the XML definition of the LARGO ontology and parts of the concrete map in LASAD

