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Abstract: This paper describes the development and evaluation of a Bayesian network 
model of student misconceptions in the domain of decimals. The Bayesian model supports a 
remote adaptation service for an intelligent tutoring system within a project focused on 
adaptively presenting erroneous examples to students. We have evaluated the accuracy of 
the student model by comparing its predictions to the outcomes of the interactions of 255 
students with the software. Students’ logs were used for retrospective training of the 
Bayesian network parameters. The accuracy of the student model was evaluated from three 
different perspectives: its ability to predict the outcome of an individual student’s answer, 
the correctness of the answer, and the presence of a particular misconception. The results 
show that the model is capable of producing predictions of high accuracy (up to 87%). 
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Introduction 
 
The quality of an adaptive educational system (AES) strongly depends on the quality of its 
student modeling. The system might implement a solid adaptation strategy and provide 
students with well-designed learning content, but if its estimation of students’ knowledge is 
incorrect, the adaptive interventions it produces are unlikely to be effective. In recent years, 
significant efforts have been expended to develop a methodology for layered evaluation of 
AES that allows examining student modeling components in isolation [4, 14]. Various 
approaches have been used for measuring the goodness of a particular student modeling 
mechanism [15], guiding the improvement of a student model (SM) [10] or selecting the 
best SM configuration among several alternatives [17]. All these evaluation studies have 
been based on rigorous analyses of students’ logs generated by the systems. 

In this paper, we describe the development of a Bayesian network (BN) SM and a data 
mining study aimed at validating its quality. The model represents students’ misconceptions 
in the domain of decimals. It was designed within the framework of the AdaptErrEx project 
(http://www.cs.cmu.edu/~bmclaren/projects/AdaptErrEx/), which focuses on presenting 
and adapting erroneous examples  (step-by-step solutions to decimal math problems in 
which at least one step is incorrect) to remediate students’ misconceptions. Besides a 
general concern for the quality of adaptation, there are at least two other reasons for a 
thorough validation of the AdaptErrEx SM: 

− The novel modeling approach of the project, as compared to other Bayesian SMs of 
decimal misconceptions. Since the student modeling approach of this project is 
somewhat atypical, it is especially critical that it be carefully verified. 

− The on-going experimental studies of the project, in which the system has and will be 
evaluated for subtle learning effects on students. Since different strategies for 
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presenting erroneous examples will be tried, it must be clear that the model is 
working as expected. 

The evaluation of the model was done based on the data logs of 255 middle school (6th 
through 8th

1. predicting the exact answer to the next problem tackled by a student; 

 grade) students working with test problems in the domain of decimals. Data 
from 70% of the students was used for training model parameters. The remaining 30% of the 
data was used to compute three different metrics, estimating how well the model can make 
predictions about the student’s state from the following perspectives: 

2. predicting the correctness of the next answer provided by a student; and 
3. predicting the presence of a misconception the student has. 
In order to compute these metrics, we compared the predictions of the individual SMs 

with the students’ results on the posttest. Although the values achieved for all three metrics 
could potentially be improved, they by far exceed the baseline of a random prediction. 
These results support our belief that the model is capable of accurate adaptation and 
encourage us to continue investigating ways to improve it. 
 
1. Modeling Students’ Misconceptions in AdaptErrEx 
 
BNs are well-established tools for representing and reasoning about uncertainty in student 
models [2, 5, 11, 12]. Perhaps the closest example to the BN-based SM developed for 
AdaptErrEx is the SM of the DCT tutor that helped students learn decimal comparisons 
[16]. In the DCT’s model, the misconceptions were represented as mutually exclusive 
alternatives of two probabilistic nodes identifying the “coarse” and the “fine” class of 
misconceptions. The “coarse” class represents the basic judgments that a student uses when 
comparing decimals (e.g. “longer decimals are larger”) and the “fine” class represents 
possible misconceived reasons for such judgments (e.g. “because longer integers are 
larger”). The causal relation between the two nodes is modeled as a set of conditional 
probabilities defining the chance a student will come up with a basic judgment if she has a 
particular finer-grained misconception. The evidence nodes representing learning tasks are 
conditionally dependent on both misconception nodes. 

A different approach to domain and student modeling with the help of BNs is described 
in [6]. The domain model here is represented as a hierarchy of skills, where the probability 
of mastering a super-skill is conditionally dependent on mastery of the sub-skills. The 
bottom-level skills are probabilistically connected with the evidence nodes, which are test 
questions. 

In AdaptErrEx we have followed an approach that is a combination of these two prior 
approaches. Based on the results of an extensive literature review of students’ learning of 
decimals, we identified the most frequently occurring decimal misconceptions. Then, we 
organized these misconceptions into a taxonomy based on their differences and similarities 
[7]. The resultant taxonomy attempts to structure the rationale behind the students’ incorrect 
responses to decimal problems and, thereby, provides a means for diagnosing students’ 
learning difficulties. 

In order to account for dependencies between misconceptions, a BN was built, where 
each misconception is represented by a probabilistic node with two possible alternatives 
(present/absent). The taxonomic relations between the nodes are accompanied by tables of 
conditional probabilities. These conditional/hierarchical links mean that if a misconception 
M2 is a sub-node of a misconception M1, the probability of a student having M1 depends on 
whether she has M2. Figure 1 shows a fragment of the AdaptErrEx’s BN. It presents two 
misconception nodes, Regz and Megz, connected with a taxonomic relation, and several 
problem nodes linked to them. Regz represents the misconception “decimals treated as 
regular numbers”; having such a misconception can lead to solutions like this: 0.09 > 0.1 
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(ignore leading zeros, as with “regular” integer numbers). Megz represents the 
misconception “longer decimals are larger”; this misconception can lead to solutions like 
this: 0.123 > 0.45. According to this representation, if a student thinks that decimals are the 
same as integers, she is more likely to believe that longer decimals are always larger. 

 
Fig. 1. Bayesian network of students’ misconceptions in AdaptErrEx 

 
Another node type in the network is the evidence nodes representing problems (bottom 

nodes in the taxonomy such as Easy-Regz-T1 and Megz-T2). They can be connected to one 
or more misconceptions. The evidence nodes contain several alternatives, where each 
alternative corresponds to a possible answer the student might give to the problem. Every 
evidence node alternative is probabilistically connected to the corresponding misconception 
node alternatives. This means that presence/absence of a misconception influences the 
likelihood of a student giving a certain answer to the problem. Consider, for example, the 
problem Megz-T6 (Fig. 2). If a student chooses the second option as an answer she produces 
evidence of having the misconception Megz described above (i.e., thinking that 0.37 > 0.5 
because 0.37 is longer than 0.5), whereas the third alternative is evidence for a different 
misconception – Segz, which is present when a student thinks that shorter decimals are 
larger (e.g., thinking that 0.5 > 0.713 because 0.5 is shorter than 0.713). The node alternative 
labeled as Correct represents the correct answer and contributes negatively to the presence 
of all the misconceptions, connected to the given problem. Finally, the node labeled as 
Other represents any incorrect answer not known to be connected to any misconception. It is 
important to mention that the relations between the alternatives of the evidence nodes and 
the alternatives of the misconception nodes are not deterministic. Multiple misconceptions 
can be responsible for a student choosing a particular incorrect answer, or the student may 
have had a slip.  This is similar to what mathematics education literature has shown: Often 
students have multiple interacting misconceptions. 

The problems connected to the BN are clustered in 4 types: 
- open questions where students input their answers freely (e.g. 1.4 + 0.7 = ?), 
- ordering decimals by moving them in a list of numbers or on a number line, 
- multiple choice with a story context (such as shown in Figure 2), and 
- multiple choice without a story context (e.g., Which is the greatest number?  0.237  

0.56  0.9). 
These problems were developed based on the analysis of the mathematical educational 

literature [8]. In particular, we created/selected problems that: (a) have been shown to be 
difficult to solve in prior studies; (b) received students’ answers indicating evidence of 
misconceptions from the designed taxonomy; (c) require more than procedural knowledge 
to answer correctly.  
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Fig. 2. An example of a problem on decimal arithmetic (Megz-T6 from Figure 1) 

 
Overall, the developed network contains twelve misconception nodes, where seven 

nodes represent the most typical decimal misconceptions (such as Megz and Regz) and the 
five nodes serve as aggregation nodes. The concrete misconception nodes are connected to 
126 evidence nodes representing problems. These problems are divided into three 
isomorphic problem sets (set A, set B and set C), each set containing 42 problems. 

In order to ensure that the results are not driven by subtle differences in the problems, 
the roles of problem sets A, B and C were counterbalanced across student groups. Each of 
the problem sets was used either as a pretest, an immediate posttest, or a delayed posttest. In 
total, there are six possible combinations of the problem sets (ABC, ACB, BAC, BCA, CAB 
and CBA) depending on the role each set plays for each student. Consequently, students 
were randomly assigned to one of the six groups, facing one of the six possible sequences of 
tests. 
 
2. Evaluating The Accuracy of Model’s Predictions 
 
This section summarizes our approach to evaluating the capability of the designed BN to 
predict the effective state of student’s learning. The approach consists of three steps: 

- training the domain model: the initial BN parameters were trained based on the 
pretest data from the 70% of users; the resulting BN represents the initial 
probabilities of decimal misconceptions for a student from the target population. 

- learning student models: the logs of students from the testing set (the remaining 
30%) were used to update the domain model; the obtained collection of BNs 
represent individual SMs each reflecting the assumptions of the system about the 
misconceptions of the corresponding student from the testing set; 

- evaluating the accuracy of the model’s predictions: based on the individual SMs 
populated on the second step, three different metrics are computed and evaluated (1) 
predicting students’ next answer; (2) predicting the correctness of the answers; (3) 
predicting students’ misconceptions; each metric evaluates the capability of the 
model to make a particular prediction. 

The rest of this section describes these steps in more details. 
 
2.1 Training the Domain Model 
 
Parameter estimation is a well-known challenge in the field of BNs. In our case, these 
parameters include prior probabilities for misconception nodes and conditional probability 
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tables for links between the nodes. For completing this task, we have applied a conventional 
approach. We supplied the initial estimations of network parameters, following the logical 
choice of values. For example, if an alternative of a problem node is witnessing an 
occurrence of a misconception, the conditional probability between this alternative and the 
“present” alternative of a misconception is high. Then the training algorithm was applied to 
refine the parameters. In presence of a sufficient amount of training data, the initial 
estimations of network parameters should not play a significant role for their final values. 

For the training set we randomly selected 70% of the students participating in the study. 
Based on the pretest logs of these students, the prior probabilities for misconception nodes 
and the conditional probabilities for evidence nodes of all three problem sets A, B and C are 
computed. Our selection also ensured that (random) representatives of each of the six 
constellations of tests/problem sets are uniformly distributed in the training data. As our 
goal was to obtain the domain model, we used only the results of the pretest to train the 
network. In this way, the resulting BN represents the initial state of knowledge of decimals 
(more specifically, the state of misconceptions) for a typical student from the target 
population. The prior probabilities of misconception nodes quantify how likely such an 
average student is to have a particular misconception. The conditional probabilities encode 
the strength of a causal relation among misconceptions and between the misconceptions and 
the problems.  
 
2.2 Learning Student Models for the Testing Set 
 
After the initial training/calibration, the BN was ready to learn the models of individual 
students. In order to do this, we fed the activity logs of the remaining 30% of the students to 
the network. Only their answers to the pretest and immediate posttest were used on this step. 
This evidence back-propagated to the relevant misconception nodes and updated their 
posterior probabilities, thus individualizing the networks. The resulting collection of BNs 
contained individual misconception models of every student in the testing set. Each 
resulting individual SM took into account both the collective traits of the target population 
and the history of idiosyncratic behavior of the corresponding student. 
 
2.3 Estimating Predictive Validity of the Student Model 
 
The BNs obtained in Step 2 can be used to make individual predictions about students. 
Those can be predictions of a student having a misconception, or a student answering a 
problem in a certain way. Based on such predictions, an AES could control the individual 
learning experiences of its students. We identified three types of these predictions and tried 
to verify their average accuracy. In order to do so, we compared the predictions made by the 
individually trained BNs of the students from the training set with their results on the 
delayed posttest. The three prediction types were: predicting the actual student answer, 
predicting the correctness of the student answer, and predicting the presence of a student 
misconception. The notion of accuracy in these three cases was defined as follows: 
I. A prediction of the actual student answer is accurate (inaccurate otherwise) if the 

alternative chosen by a student for a posttest problem had the highest probability in the 
BN trained for this student in Step 2. The corresponding metric is computed as a 
percentage of accurate predictions. 

II. A prediction of the correctness of the student’s answer is accurate in any of the cases 
(inaccurate otherwise) if: 
− the student gives the correct answer to a delayed posttest problem and the probability 

of the correct alternative for this problem’s node is maximum in the BN trained for this 
student in Step 2; 
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− the student gives an incorrect answer to a delayed posttest problem and the probability 
of the correct alternative for this problem’s node is less than the sum of probabilities of 
incorrect alternatives in the BN trained for this student in Step 2. 

The corresponding metric is computed as a percentage of accurate predictions. 
III. A prediction of the presence of a misconception is defined as follows. Based on the 

state of a misconception node, the student is believed to have a corresponding 
misconception if its probability is greater than 0.5. This prediction is considered 
accurate if during the delayed posttest the student has shown more evidence of having 
the misconception than not having it (and vice-versa). The evidence is quantified as an 
average rate of misconception occurrence in the students’ answers in the delayed 
posttest. The average rate of misconception occurrence is computed in the following 
way: 

− The occurrence of the answer option that represents evidence for the given 
misconception contributes positively to the occurrence of the misconception; 

− The correct answer to the problem whose answer options represent evidence for the 
misconception contributes negatively to the occurrence of the misconception; 

− Incorrect answers not connected to the given misconception do not contribute to the 
diagnosis. 

Let P(M) be the probability of the presence of a misconception M in a Bayesian model, 
Npos(M) – the number of student’s answers that provide evidence for the misconception M, 
Nneg(M) – the number of correct answers to the problems that can diagnose M, and N(M) – 
the total number of problems that address this misconception. Then, the model prediction is 
said to be accurate if and only if:  

 
Note that although it is in general difficult to verify that the student has a misconception  by 
analyzing his answers to problems, the exercises in this experiment are designed 
specifically for this purpose, so that the answer options have a high diagnostic value and 
hence the average occurrence rate defined above provides a realistic estimate.  
 
3. Experiment Settings and Evaluation Results 
 
The data for the evaluation came from a classroom empirical study conducted in a 
Pittsburgh, PA (U.S.A.) middle school during the fall of 2010. Overall, 255 students from 
6th-8th

MathTutor logs all students’ interactions, as well as diagnostic information in the PSLC 
DataShop storage [9]. After cleaning the DataShop logs (e.g. removing the data of the 
students who did not complete all tests) and filtering events generated by the system, we 
obtained the data that served as a basis for our evaluation. In total, we analyzed 31,049 
student interaction events which resulted from each of the 255 students solving up to 126 
problems. Each of these events contained several parameters, such as an identifier of the 
user and the problem tackled, as well as the user input and the diagnosis, i.e., the correctness 
of the answer or an evidence for a particular misconception.  

 grades participated in the study. The study had several sessions, in which the students 
took a pretest, solved the treatment problems, took an immediate posttest, and (one week 
later) a delayed posttest. As explained in section 1, the 126 test problems were split into 3 
isomorphic problem sets (A, B, and C) and the roles of these problem sets being pretest, 
posttest or delayed posttest were counterbalanced across student groups. The learning 
materials came from the domain of decimals. The MathTutor web-based system was used to 
deliver the materials to the participants [1]. Students took 4 to 5 sessions to complete all of 
the materials. 
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As specified in section 2.2, the accuracy values were calculated for the testing set, 
comprising 30% of students randomly chosen from the total of 255 students (77 students; 
data from these students was not used in the training phase). Using the metrics defined in 
Section 2.3, we evaluated the accuracy of the predictions of our SM. The average 
accuracies for predicting concrete answers, and the correctness of students’ answers were 
computed in the following way: 
− the list of prediction accuracies for all problems was computed for each student, where 

each accuracy is computed using the corresponding algorithm,  described in Section 
2.3; 

− an average accuracy of predictions for each student was computed by dividing the sum 
of individual accuracies by the number of problems solved by the student; 

− the list of average accuracies for all students has been averaged again by the number of 
students. 

As the result of the calculation, the average accuracy of predicting the actual answer of 
the students in the delayed posttest was 60%, whereas the average accuracy of predicting 
the answer correctness was 69%.  

The accuracy of predicting the occurrence of (evidence for) misconceptions was 
computed as follows: 

− for each student and each misconception an average accuracy of predicting the 
evidence occurrence for this misconception is computed using the algorithm 
described in Section 2.3; 

− the list of average occurrences of misconceptions is stored for each student; 
− for each misconception, we compute the final average value by taking  the average 

of the values for all students; 
− finally, an average of averages for all misconceptions is taken.  
 The average accuracy of predicting misconceptions was 87%. The accuracy of 

predictions of each misconception separately does not significantly vary from the total 
average.  

Similar studies on evaluating the accuracy of predictions of a BN student model of the 
DCT tutor [13], have shown 80-90% accuracy for predicting misconceptions. For 
comparison,  each misconception in our model is represented as a separate node whereas in 
DCT tutor there are only two nodes for the coarse and fine classes of student 
misconceptions. Therefore, our model has much less evidence nodes for each 
misconception which might result into lower precision of predictions.  
 
4. Conclusions and Future Work 
 
We have presented the development and evaluation of a Bayesian approach to modeling 
student misconceptions. We have computed three different metrics estimating how well the 
model can make predictions about the student’s knowledge state, in particular his 
misconceptions. The results of this evaluation show that for all three metrics the student 
model predictions are reasonably high and accurate, yet leaving room for improvement. 

Future work is planned in two main directions: improving the structure of the Bayesian 
model, and enhancing the methods of evaluation of the model validity. We plan to 
experiment with different configurations of BNs, derived from the original one, such as 
dynamic BNs, and the networks with soft evidence nodes. 

When adjusting the evaluation method we could experiment with additional parameters 
of the students such as gender, grade, or general math skills. Difficulty of the problems 
could be used here as well as an additional parameter in the computation of the accuracy 
metrics. For example, if the problem is very easy, the student is likely to solve it correctly 
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even if the probability of having a misconception is high, and the other way round, difficult 
problems can be solved incorrectly even if the probabilities of misconceptions are low. 
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