Methods for Discovering Genetic Associations

02-410/710 Computational Genomics
April 17, 2017
Ben Lengerich
Mutations

• A natural process that changes a DNA sequence
• As a cell copies its DNA before dividing, a "typo" occurs every 10^9 basepair*year
• “Germline” mutations are inherited by the offsprings, “somatic” otherwise
• Some mutations are benign, others can be deleterious

http://learn.genetics.utah.edu/content/variation/mutation/
Mutations Create Genetic Diversity

Ancestral population

Offsprings

Mutation

Modern chromosomes (Mosaic of ancestral chromosomes)

After many generations?

Genetic polymorphism
Other Types of Genetic Polymorphisms

- Structural variants
 - insertions/deletions, duplications, copy number variations
What Can We Learn from Genetic Variation?

- **Population Evolution**: the majority of human sequence variation is due to substitutions that have occurred once in the history of mankind at individual base pairs
 - There can be big differences between populations!

- **Markers for pinpointing a disease**: certain polymorphisms are linked to disease phenotypes
 - Association study: check for differences in SNP patterns between cases and controls

- **Forensic analysis**: the polymorphisms provide individual and familiar signatures
Single Nucleotide Polymorphisms (SNPs)

Involves a flip of a single nucleotide

```
...cagttaccgtgcatgatagctagcaactctagcactatgtgattgagacgtatcc...
```
Why SNPs?

• Abundance: high frequency on the genome
 – About 40 million or more SNPs exist in human populations
• SNPs account for around 90% of human genomic variation
 – More than 5 million common SNPs each with frequency 10-50% account for the bulk of human DNA sequence difference
• Position: throughout the genome
 – Coding region, intron region, promoter site
 – It is estimated that ~60,000 SNPs occur within exons; 85% of exons are within 5 kb of the nearest SNP
• Ease of genotyping (high-throughput genotyping)
Affymetrix GeneChip Probe Array

GeneChip® Probe Array

Hybridized Probe Feature

Single stranded, fluorescently labeled DNA target
Oligonucleotide probe

Each probe feature contains millions of copies of a specific oligonucleotide probe

Over 200,000 different probes complementary to genetic information of interest

Image of Hybridized Probe Array

1.28 cm
24 µm
SNP Genotyping with SNP Array

• The SNP chip’s basic design is similar to that of expression arrays
 – An array of 25 bp oligonucleotide sequences (features) is laid across the surface of the chip.
 – The sample’s DNA is amplified, and hybridized to the array.
 – The array is scanned to quantify the relative amount of sample bound to each probe for different alleles.

• For SNPs, there is a pair of probes: one for each of the alleles.
Mendel’s two laws

• Modern genetics began with Mendel’s experiments on garden peas. He studied seven contrasting pairs of characters, including:
 – The form of ripe seeds: round, wrinkled
 – The color of the seed albumen: yellow, green
 – The length of the stem: long, short

• **Mendel’s first law**: Characteristics are controlled by pairs of genes which separate during the formation of the reproductive cells (meiosis)
Mendel’s two laws

• **Mendel’s second law**: When two or more pairs of genes segregate simultaneously, they do so independently.
Recombination

• Inheritance of genetic material without recombination

Mother
Father

Offspring

• Inheritance of genetic material with recombination

Mother
Father

Offspring
Recombination

• *Parental types:* AaBb, aabb
• *Recombinants:* Aabb, aaBb
 – The proportion of recombinants between the two genes (or characters) is called the *recombination fraction* between these two genes.
• *Recombination fraction* It is usually denoted by r or θ.

If $r < 1/2$: two genes are said to be *linked*.
If $r = 1/2$: independent segregation (Mendel’s second law).
Recombination “Breaks” Long Haplotype Over Time!

Ancestral population

Offsprings

Modern chromosomes
(Mosaic of ancestral chromosomes)

After many generations?

Haplotype Inference in the presence/absence of recombinations?
Linkage Disequilibrium (LD)

- LD reflects the relationship between alleles at different loci.
 - Linkage equilibrium: alleles at different loci are NOT linked and inherited to offspring independently
 - Linkage disequilibrium: alleles at different loci ARE LINKED. LD is an allelic association measure
Linkage Disequilibrium in HapMap Data

- r^2 in HapMap Data

Two different populations in upper/lower diagonal
Linkage Disequilibrium in Gene Mapping

- LD is the non-random association of alleles at different loci
- Genetic recombination breaks down LD
How can we identify the genetic loci responsible for determining phenotypes?

- Linkage Analysis
- Genome-wide Association Studies

Strachan & Read, Human Molecular Genetics, 2001
Linkage Analysis

- Goal: Identify the unknown disease locus
- Idea: Given pedigree data and a map of genetic markers, let’s look for the markers that are linked to the unknown disease locus (i.e. linkage between the disease locus and the marker locus)

![Diagram showing linkage analysis with disease locus, markers near and far from the disease locus, and a map of genetic markers.]

Marker near the disease locus ($r<<0.5$)
Markers far from the disease locus ($r=0.5$)
Linkage Analysis

• Data are collected for family members
 – Difficult to collect data on a large number of families
• Effective for rare diseases
• Low resolution on the genomes due to only few recombinations => Large region of linkage
Genome-Wide Association Studies (GWAS)

- Data are collected for unrelated individuals
 - Easier to find a large number of affected individuals
- Effective for common diseases, compared to family-based method
- Relatively high resolution for pinpointing the locus linked to the phenotype
Genome-Wide Association Studies (GWAS)

• **Statistical methods for testing genotype/phenotype associations**
 • Discrete-valued phenotype: case/control study
 • Continuous-valued phenotype: quantitative traits
 • Sparse regression method for considering all of the SNP markers
 • Multimarker association test

• **Issues arising in GWAS**
 • Genotype imputation
 • From common to rare variants
 • Epistasis for multiple interacting loci
 • Correcting for population structure
Population Genotype/Phenotype Data

Phenotype data

\[y = \begin{bmatrix} y^1 \\ \vdots \\ y^N \end{bmatrix} \]

\(N \) individuals

Genotype data

\[X = \begin{bmatrix} x^1_1 & \cdots & x^1_j \\ \vdots & \ddots & \vdots \\ x^N_1 & \cdots & x^N_j \end{bmatrix} \]

\(J \) Loci
\(N \) individuals

- 0 or 1 for case/control studies
 - e.g., healthy/diabetic
- Real-valued phenotypes
 - e.g., cholesterol level
Single SNP Association Test: Case/Control Study

- For each marker locus, find the 3x2 contingency table containing the counts of three genotypes

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>$N_{\text{case,AA}}$</td>
<td>$N_{\text{control,AA}}$</td>
</tr>
<tr>
<td>Aa</td>
<td>$N_{\text{case,Aa}}$</td>
<td>$N_{\text{control,Aa}}$</td>
</tr>
<tr>
<td>aa</td>
<td>$N_{\text{case,aa}}$</td>
<td>$N_{\text{control,aa}}$</td>
</tr>
<tr>
<td>Total</td>
<td>N_{case}</td>
<td>N_{control}</td>
</tr>
</tbody>
</table>

- χ^2 test with 2 df under the null hypothesis of no association

Genotype score = the number of minor alleles
Single SNP Association Analysis: Case/Control Study

- Alternatively, assume the heterozygote risk is approximately between the two homozygotes
- Form a 2x2 contingency table. Each individual contributes twice from each of the two chromosomes.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$G_{\text{case},A}$</td>
<td>$G_{\text{control},A}$</td>
</tr>
<tr>
<td>a</td>
<td>$G_{\text{case},a}$</td>
<td>$G_{\text{control},a}$</td>
</tr>
<tr>
<td>Total</td>
<td>$2xN_{\text{case}}$</td>
<td>$2xN_{\text{control}}$</td>
</tr>
</tbody>
</table>

- χ^2 test with 1df
Manhattan Plot of p-values from Breast Cancer GWAS

- Analysis of 582,886 SNPs for 3,659 cases with family history and 4,897 controls

Often $-\log_{10}(p\text{-value})$ is plotted instead of p-value.

High association

Nature Genetics 42, 504-507 (2010)
Single SNP Association Test: Continuous-valued Traits

- Continuous-valued traits
 - Also called quantitative traits
 - Ex: Cholesterol level, blood pressure
- Fit a linear regression at each locus
- t-test with null hypothesis “No associations, i.e., $\beta = 0$”
Correcting for Multiple Testing

• What happens when we scan the genome of 1 million genetic markers for association with $\alpha = 0.05$?
 – 50,000 ($=1\ \text{million} \times 0.05$) SNPs are expected to be found significant just by chance
 – We need to be more conservative when we decide a given marker is significantly associated with the trait.

• Correction methods
 – Bonferroni correction
 – Permutation test
Vector/Matrix Representation

• Sparse regression method to evaluate the effect of each SNP in the context of all other SNPs

\[y = X \beta + \varepsilon \]

- Phenotype data
- Genotype data

- Augmented input feature corresponding to \(\beta_i \)

• Sparsity constraint: Few SNPs are influencing the given phenotype and the rest of the SNPs have effect size 0
L1 Regularization (Lasso)

Solves the optimization problem:

$$\arg\min_\beta (y - X\beta)^2 + \lambda |\beta|$$

Traits (n x 1) SNPs (n x p) Effect sizes (p x 1)

Sparse effect sizes
L1 Regularization (Lasso)

Selects variables on the corners of the polytope:
Overview

• Statistical methods for testing genotype/phenotype associations
 • Discrete-valued phenotype: case/control study
 • Continuous-valued phenotype: quantitative traits
 • Sparse regression method for considering all of the SNP markers
 • Multimarker association test

• Issues arising in GWAS
 • Genotype imputation
 • From common to rare variants
 • Epistasis for multiple interacting loci
 • Population structure
Causal Mutations and Genetic Markers

Unknown
Causal Mutation
Known (genotyped)
SNP Marker

Linkage
Disequilibrium

What happens when SNP density increases?
Common Variants vs. Rare Variants

- First-generation genome-wide association study (GWAS): common variant common disease hypothesis
- Common variants with minor allele frequency (MAF)>5%
 - dbGap: ~11 million SNPs
 - HapMap: 3.5 million SNPs
 - A successful GWAS requires a more complete catalogue of genetic variations
- Rare variants (MAF<0.5%), low-frequency variants (MAF:0.5%~5%)
 - Captured by sequencing with next-generation sequencing technology
 - Possibly significant contributors to the genetic architecture of disease
 - Causal variants are subject to negative selection
Associations to Rare Variants

• Often GWAS are underpowered for functional rare variants

<table>
<thead>
<tr>
<th>Common Variant Association</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele a</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Allele A</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rare Variant Association</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele a</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Allele A</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

• Common variant GWA approaches are appropriate only for common variants
Feasibility of Identifying Disease Loci

- **Rare alleles causing Mendelian disease**
 - High effect size
- **Low-frequency variants with intermediate effect**
- **Common variants implicated in common disease by GWA**
 - Few examples of high-effect common variants influencing common disease

- **Rare variants of small effect**
 - Very hard to identify by genetic means

Effect size
- High
- Intermediate
- Modest
- Low

Allele frequency
- Very rare
- Rare
- Low frequency
- Common
Many types of structure in genomic data

Epistasis
Population Structure
Linkage Disequilibrium
Phenotype Structure
Epistasis

• Definition: The effect of one locus depends on the genotype of another locus
 – Epistatic effects vs. marginal effects
Epistasis for Mendelian Traits

Dominant epistasis (Mendelian)

<table>
<thead>
<tr>
<th>Dominant white genotype (K/T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)</td>
</tr>
<tr>
<td>(ii)</td>
</tr>
<tr>
<td>(ii)</td>
</tr>
</tbody>
</table>

\(EE \) \(Ee \) \(ee \)

Extension genotype (MC1R)

Carlborg & Haley, Nature Reviews Genetics 2004
Epistatic and Individual QTLs
Detecting Epistasis

• Epistatic effects of SNPs can often be detected only if the interacting SNPs are considered jointly
 – The number of candidate SNP interactions is very large
 • For J SNPs, $J \times J$ SNP pairs need to be considered for epistasis
 • In general for J SNPs and K-way interactions, there are $O(J^K)$ candidate interactions
 • Computationally expensive to consider all possible groups of interacting SNPs
 • For a reliable detection of K-way interactions, a large sample size is required
 – Multiple testing problem
Population Structure

- A set of individuals characterized by some measure of genetic distinction
- A “population” is usually characterized by a distinct distribution over genotypes
- Example:

Genotypes

- aa
- aA
- AA

Population 1
Population 2
Population Structure and Association Analysis

- Population structure in data causes false positives
 - Samples in the case population are usually more related
 - Any SNPs more prevalent in the case population will be found significantly associated with the trait.
Accounting for Population Structure in Association Analysis

• Need to account for population structure in association mapping.

• Careful study design with each population represented in case/control groups in a balanced way.
 – Can be hard to control for population structure during data collection
 – Cryptic population structure

• Statistical Methods
 – Trace Lasso
 – Precision Lasso