Parallel Algorithms and
Big Data Für Alle

Guy Blelloch,
and lots of others

Carnegie Mellon University
Why Parallelism?

Amd Opteron (sixteen-core) Model 6274
by AMD

Be the first to review this item | Like (0)

Price: $792.99

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock—order soon.

4 new from $714.03
64 core blade servers ($6K)
(shared memory)

Amd Opteron (sixteen-core) Model 6274
by AMD

Be the first to review this item | 0 Likes

Price: $792.99

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

4 new from $714.03

\[\times 4 = \]
4992 "cuda" cores

Nvidia Tesla K80 24GB GPU Accelerator passive cooling 2x Kepler GK210 900-22080-0000-000

by NVIDIA

Price: $4,295.95 + $11.55 shipping

Note: Not eligible for Amazon Prime.

In Stock.
Ships from and sold by eServer PRO.

Estimated Delivery Date: Aug. 27 - Sept. 1 when you choose Expedited at checkout.

- Nvidia Tesla K80 GPU: 2x Kepler GK210
- Memory size (GDDR5): 24GB (12GB per GPU)
- CUDA cores: 4992 (2496 per GPU)
- Memory bandwidth: 480 GB/sec (240 GB/sec per GPU)
- 2.91 Tflops double precision performance with NVIDIA GPU Boost - See more at http://www.nvidia.com/object/tesla-servers.html#sthash.lF5LVwFq.dpuf

4 new from $4,135.00

Roll over image to zoom in

Upgrading to a Solid-State Drive?
Learn how to install an SSD with Amazon Tech Shorts. Learn more
Up to 300K servers
Samsung Galaxy S IV to feature Exynos 28nm quad-core processor?

Written by Andre Yoskowitz @ 01 Nov 2012 18:02

It has been a few weeks but there is a new rumor regarding the upcoming Samsung Galaxy S IV.

According to reports, Samsung will pack next year's flagship device with its "Adonis" Exynos processor, a quad-core ARM 15 beast that uses efficient 28nm tech.

Samsung is supposedly still testing the application processor, but mass production is scheduled for the Q1 2013 barring any delays.

Forget Quad-Core: Intel Working on 48-Core Smartphone and Tablet Processors

By Todd Haselton on October 31, 2012 in Hardware
UDOO : Quad Core
Parallel machines have replaced sequential machines, but parallel algorithms have not yet replaced sequential algorithms. Why?

It is not because they are not efficient or cost effective.
32 Cores off the shelf machine

![Bar chart showing performance comparison between T1/T32 and Tseq/T32 for various algorithms.](chart.png)
Parallel machines have replaced sequential machines, but parallel algorithms have not yet replaced sequential algorithms. Why?

More likely because Parallel Algorithms are viewed as hard, messy, and theory does not match practice.
Why are Sequential Algorithms so Successful?

• exactly predict runtimes?
• are good for highly tuning optimized codes?
• will impress our friends? Maybe
Why are Sequential Algorithms so Successful?

1. Well defined and simple cost model which is “good enough” for asymptotic comparisons
2. Simple pseudocode and small step to real code that can be easily compiled and run to get reasonably efficient code.
3. Good for explaining core ideas, and why they are useful
4. Sequential algorithms are elegant
procedure QUICKSORT(S):
 if S contains at most one element then return S
 else
 begin
 choose an element a randomly from S;
 let S₁, S₂ and S₃ be the sequences of elements in S less than, equal to, and greater than a, respectively;
 return (QUICKSORT(S₁) followed by S₂ followed by QUICKSORT(S₃))
 end
My Focus

Parallel algorithms should be equally elegant, simple, efficient in practice, and efficient in theory.

• Our core algorithms-complexity course at CMU taught to all Sophomores now uses parallelism from the start.
Quicksort (Nesl)

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];
Quicksort (nested parallelism)

• Analyze in terms of Work (W) and Depth (D)

Depth = \(O(\lg^2 n)\)

Work = \(O(n \lg n)\)

Parallelism = \(W/D = O(n/ \lg n)\)

Time = \(W/P + D\)

\(P = \# \text{ processors}\)
Rest of Talk

- Sequential Iterative Algorithms
- Ligra: A graph processing framework
Sequential Iterative Algorithms

for i from 1 to n
do something;

Work from SPAA13, SODA15
Sequential Iterative Algorithms

for i from 1 to n
 a[i] = b[i] + 1;

Is this parallel?

parallelFor i from 1 to n
 a[i] = b[i] + 1;
Sequential Iterative Algorithms

for i from 1 to n
 swap(A[rand(i)], A[i])

Is this parallel?
Sequential Iterative Algorithms

for i from 1 to n
 swap($A[\text{rand}(i)], A[i]$)

for i from 1 to n
 SearchTreeInsert($T, A[i]$)

$S[1..n] = 0$

for i from 1 to n
 if for all u in $N(V[i])$, $S[u] = 0$
 then $S[v] = 1$
Sequential Iterative Algorithms

for i from 1 to m
 u = F.find(E[i].u)
 v = F.find(E[i].v)
 if (u != v) F.union(u,v)

Others:
 • List contraction
 • Tree contraction
 • Maximal Matching
Sequential Iterative Algorithms

Why do we care if parallel?
- Simple parallel code
- Perhaps fast algorithms
- Intellectual curiosity
- Determinism

How do we analyze?
Iteration Dependence Graph

Sequential iterative algorithm

for i in \{0,\ldots,n-1\}
do something;

- Each iterate is a vertex
- \(i \rightarrow j\) means iterate \(i\) must execute before iterate \(j\)
- Can execute in parallel if respecting dependencies
- Graph is dependent on input data
Iteration Dependence Graph

Sequential iterative algorithm

for i from 1 to n
do something;

1. what is depth of the graph?
2. can we easily detect dependences?
Random Permutation [Durstenfeld, Knuth]

for \(i \) from \(n \) to 1
\[
H[i] = \text{rand}(i)
\]
for \(i \) from \(n \) to 1
\[
\text{swap}(A[H(i)], A[i])
\]

<table>
<thead>
<tr>
<th>Iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H =)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(A =)</td>
<td>f</td>
<td>a</td>
<td>e</td>
<td>g</td>
<td>h</td>
<td>c</td>
<td>d</td>
<td>b</td>
</tr>
</tbody>
</table>
Is this parallel?

\[
\begin{array}{cccccccc}
\text{Iterate} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
H = & 0 & 0 & 1 & 3 & 1 & 2 & 3 & 1 \\
A = & a & b & c & d & e & f & g & h \\
\end{array}
\]
Is this parallel?

<table>
<thead>
<tr>
<th>Iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>H =</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

| A = | a | b | c | d | e | f | g | h |

- “Swap chains” have sequential dependence
Is this parallel?

<table>
<thead>
<tr>
<th>Iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

A =

```
| a | b | c | d | e | f | g | h |
```

- “Swap chains” have sequential dependence
- Each location that is the target of multiple swaps has sequential dependence
- Can execute multiple iterates in parallel as long as dependencies are respected
Random Permutation Iteration Depth

<table>
<thead>
<tr>
<th>Iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>H =</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>A =</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
</tbody>
</table>

Dominance Forest

Dependence Forest

Linked Dependence Tree

1 Oct 15

KIT 2015
Random Permutation Iteration Depth

<table>
<thead>
<tr>
<th>Iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>A</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
</tr>
</tbody>
</table>

- Each value of H[8] corresponds to a unique location in binary tree
- All possible locations equally likely
- Corresponds to construction of a random binary search tree!
Iteration Depth

• Height of a random binary search tree on n nodes is $\Theta(\log n)$ w.h.p. [Devroye ‘86]

• Therefore, iteration depth of random permutation is $O(\log n)$ w.h.p.

• Can also show that linear work, even if every node tries on every step

• Not best: $O(\log^* n)$ depth w.h.p. [Hagerup ‘91]
for i from 1 to n
 H[i] = rand(i)
parallelFor i from 1 to n
 R[H(i)] = i; R[i] = i;
 if R[H(i)] == i and R[i] == i
then swap(A[H(i)],A[i])
else “try again”
Performance

Times for random permutation on 1 billion elements

3x slower on 1 core
9x faster on 40 cores
Maximal Independent Set

Sequential algorithm:

for i in 1 to n : S[i] = Undecided
for i in 1 to n
 if for all j in N(V[i]), v < u, S[j] = Out
 then S[j] = In
 else S[j] = Out
Maximal Independent Set

Sequential algorithm:

```python
for i in 1 to n : S[i] = Undecided
for i in 1 to n
    if for all j in N(V[i]), v < u, S[j] = Out
    then S[j] = In
    else S[j] = Out
```

Very efficient: most edges not even visited, simple loops

About 7x faster than sorting m edges
Maximal Independent Set

Same algorithm: with parallel speculation

for i in 1 to n : S[i] = Undecided
for i in 1 to n
 if for all j in N(V[i]), v < u, S[j] = Out
 then S[j] = In
 else S[j] = Out

1 Oct 15

KITZ2015
Iteration Depth/Performance

- For random ordering of vertices: $O(\log^2 n)$
 - Non trivial, for arbitrary degree
 - $O(\log n)$ for constant degree
- Work is $O(m)$ if using prefixes
- Dependences easy to detect.
- 12x speedup on 40 cores over sequential algorithm
struct MISStep {
 bool reserve(int i) {
 int d = V[i].degree;
 flag = IN;
 for (int j = 0; j < d; j++) {
 int ngh = V[i].Neighbors[j];
 if (ngh < i) {
 if (Fl[ngh] == IN) { flag = OUT; return 1;}
 else if (Fl[ngh] == LIVE) flag = LIVE; }
 return 1; }

 bool commit(int i) { return (Fl[i] = flag) != LIVE;}
 }

 void MIS(FlType* Fl, vertex* V, int n, int psize) {
 speculative_for(MISStep(Fl, V), 0, n, psize);
 }
Maximal Independent Set

Costs:

- Span = $O(\log^3 n)$
 Expected case over all initial permutations
- Work = $O(m)$
 if prefix size = $O(n/d_{\text{max}})$

Deterministic:

- result only depends on initial permutation of vertices
Part 2: Ligra

A Graph Processing Framework
- For shared memory
- Best for frontier-based algorithms
- Space and Time efficient
- Programming efficiency
- Asymptotic bounds can be analyzed
Breadth-first Search (BFS)

• Compute a BFS tree rooted at source \(r \) containing all vertices reachable from \(r \)

Frontier

• Can process each frontier in parallel
 • Race conditions, load balancing
BFS Abstractly: Frontier Based

1. Operate on a subset of vertices
2. Map computation over subset of edges in parallel
3. Return new subset of vertices
4. (Map computation over subset of vertices in parallel)

BFS visits every vertex once, but in general can visit many times. Synchronous.

- Breadth-first search
- Betweenness centrality
- Connected components
- Delta stepping
- Bellman-Ford shortest paths
- Graph eccentricity estimation
- PageRank
- Diameter estimation

Can we build an abstraction for these types of algorithms?
Ligra

- Operate on a subset of vertices
- Map computation over subset of edges \textit{in parallel} and return new subset of vertices
- (Map computation over subset of vertices \textit{in parallel})

Other graph processing frameworks: Pregel/Giraph, GraphLab, Pegasus, Knowledge Discovery Toolbox, GraphChi, Parallel BGL, and many others...
Ligra Framework

```cpp
bool f(v){
    data[v] = data[v] + 1;
    return (data[v] == 1);
}
```
Ligra Framework

Why edge based?
- Parallel over the edges
- Sparse/dense (discussed later)
Breadth-first Search in Ligra

parents = {-1, ..., -1}; // -1 indicates “unvisited”

procedure UPDATE(s, d):
 return compare_and_swap(parents[d], -1, s);

procedure COND(i):
 return parents[i] == -1; // checks if “unvisited”

procedure BFS(G, r):
 parents[r] = r;
 frontier = {r}; // VertexSubset
 while (size(frontier) > 0):
 frontier = EDGEMAP(G, frontier, UPDATE, COND);
procedure $\text{EDGEMAP}(G, \text{frontier}, \text{Update}, \text{Cond})$:
 if ($|\text{frontier}| + \text{sum of out-degrees} > \text{threshold}$) then:
 return $\text{EDGEMAP_DENSE}(G, \text{frontier}, \text{Update}, \text{Cond})$;
 else:
 return $\text{EDGEMAP_SPARSE}(G, \text{frontier}, \text{Update}, \text{Cond})$;

Loop through outgoing edges of frontier vertices in parallel

Loop through incoming edges of “unexplored” vertices (in parallel), breaking early if possible

• First used by Beemer for BFS, but Ligra shows that useful for a wide variety of algorithms
Frontier Plots

(a) BFS

(b) Betweenness Centrality

(c) Radii Estimation

(d) Connected Components

(e) PageRank-Delta

(f) Bellman-Ford
Benefit of Sparse/Dense Traversal

Twitter graph (41M vertices, 1.5B edges)

40-core running time (seconds)

- BFS
- Betweenness Centrality
- Connected Components
- Eccentricity Estimation

Sparse vs. Sparse/Dense
• Ligra performance close to **hand-written** code
• Faster than distributed-memory on per-core basis
• Several shared-memory graph processing systems subsequently developed: Galois [SOSP ‘13], X-stream [SOSP ‘13], PRISM [SPAA ‘14], Polymer [PPoPP ‘15], Ringo [SIGMOD ‘15]
• Cost of decoding on-the-fly?
• Memory bottleneck a bigger issue as graph algorithms are memory-bound