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Memory Hierarchies 
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What about in Parallel 
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Observation 
!   Many “parallel” algorithms have natural 

“sequential” locality 
!   Can we take advantage of this on a parallel 

machine.   In particular can we describe/
program/analyze such algorithms in a high-
level way, but still understand performance 
on various cache architectures. 
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Sequential Locality 
!   Assume unbounded memory and an ideal 

cache with a capacity of Z words and cache-
lines of L words each. 
!  Q(C; Z, L) – number of cache misses 

!   An algorithm is  
cache-oblivious if it  
does not use these  
parameters (Z and L) 
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Quicksort 
function quicksort(S) = 
if (#S <= 1) then S 
else let 
  a = S[rand(#S)]; 
  S1 = {e in S | e < a}; 
  S2 = {e in S | e = a}; 
  S3 = {e in S | e > a}; 
  R = {quicksort(v) : v in [S1, S3]}; 
in R[0] ++ S2 ++ R[1]; 

Cache Oblivious with: Q(n;Z,L) = O(n/L log n/Z) w.h.p 
{} indicates parallelism 

NESL code 



Nested parallelism 
!   Standard programming model with fork-join 

parallelism and no synchronization among tasks. 
!  No notion of processors (processor oblivious). 
!  Cost calculated using: 

!  Work (W) : sum over parallel calls 
!   Span (D) : take maximum over parallel calls 

!   ID, NESL, Cilk++, X10, Open MP, Microsoft TPL 
!  Typically much more parallelism than processors 
!  Lots of flexibility for scheduler 

MPI, 2010 10 



MPI, 2010 11 

Qsort Complexity 

Span = O(lg2 n) 

Parallel partition 
Parallel calls 

Work = O(n log n) 

A good parallel algorithm 

Span = O(lg n) 

Parallelism = O(n/log n) 
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Greedy Schedules 
Greedy schedule: a processor cannot sit idle if 

there is work to do: 
For any greedy schedule ([EZL, 1989]): 

What about: 
•  Space usage 
•  Scheduling overheads 
•  Locality € 
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Matrix Multiplication 
Fun A*B { 
  if #A < k then baseCase.. 
  C11 = A11*B11 + A12*B21 
  C12 = A11*B12 + A12*B22 
  C21 = A21*B11 + A22*B21 
  C22 = A21*B12 + A22*B22 
  return C 
} 
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Matrix Inversion 
fun invert(M) { 
  if small baseCase 
  D-1 = invert(D)  
  S  = A – BD-1C 
  S-1 = invert(S) 
  E = S-1 
  F = S-1BD-1   
  G = -D-1CS-1 
  H = D-1 + D-1CS-1BD-1} 
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Summary of Results 

Scan Memory, prefix sums, merge, median, 
matrix transpose:  

Matrix Multiply 
Matrix Inversion: 
FFT: 

Mergesort, Quicksort, NNs, KD-trees: 

Funnel Sort: 
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Summary of Results 

Scan Memory, prefix sums, merge, median, 
matrix transpose:  

Matrix Multiply 
Matrix Inversion: 
FFT: 

Mergesort, Quicksort, NNs, KD-trees: 

Funnel Sort:   Blocked Sample Sort: 
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Some Basic Results 
!   Scan memory: D(n) = O(log n) 

!   Matrix transpose (divide-and-conquer):  
D(n) = O(log n) 

!   Simple matrix multiply (divide-and-conquer): 
D(n) = O(log2 n) 

!   Quicksort and Mergesort:  
D(n) = O(log2 n) 

!   Funnel sort: D(n) = O(n) 
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Depth-first (sequential) schedule 
Depth-First ordering.   
Same as sequential execution 
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Greedy Schedulers 
!   Work stealing ([B+96,ABB00])  

QP(C;Z,L) = Q1(C;Z,L) +O(PDZ/L) 
private cache 

!   P-DFS [BG02] 
QP(C;Z+PDL,L) = Q1(C;Z,L) 
shared cache 

Eg. Matrix multiply 
Qp(n;Z,L) = O(n3/2/LZ1/2 + PZ log n/L) 
QP(n;Z+PL log n,L) = O(n3/2/LZ1/2) 
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Work Stealing  

!   push new jobs on “new” end 
!   pop jobs from “new” end 
!   If processor runs out of work, then “steal” from 

another “old” end  
Each processor tends to execute a sequential part of 

the computation. 

P1 P2 P3 P4 
old 

new 
Local 
work queues 
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Work Stealing 
Tends to schedule “sequential blocks” of tasks 

= steal 

#steals = O(PD)    [BL98] 
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Parallel Depth First Schedules (P-DFS) 
List scheduling based on Depth-First ordering 
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“Premature task” in P-DFS 
A running task is premature if there is an earlier 

sequential task that is not complete 
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What problems remain? 
!   What about sorting? 

O(log2n) span version of sample sort [BGV09] 
!   Other algorithms? (e.g. geometry, dynamic data 

structures) 
!   What about high-span algorithms 

Work-efficient Matrix inversion has span O(n1/2)  
!   What about hierarchical caches??? 

!   Idea 1: modify definition of QP 

!   Idea 2: balance space and work  
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Depth-first (sequential) schedule 
Depth-First ordering.   
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Idea 1: A variant of the CO model 
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Idea 1: If a task fits in cache, 
then any ordered access to 
the same location will be a 
cache hit, otherwise an 
access is a miss  
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1 miss All algorithms we have studied 
are not asymptotically affected  
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Idea 2 

!   Note that processing power is tied to space.  
We need to somehow balance space and work. 
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Idea 2: Effective Cache Complexity 

Where s(x) is the space taken by x. 
Parallelism is bounded by s(a)α 

α= 0, is sequential execution. 
For all algorithms we considered top term 

dominates whenα< 1 

MPI, 2010 28 

€ 

Q*(a ||b) =max
Q*(a) +Q*(b)

s(a ||b)α ×max Q*(a)
s(a)α

,Q
*(b)
s(b)α

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎧ 

⎨ 
⎪ 

⎩ ⎪ 



Main Result 

For an l-level cache: (C0,Z0,L0,P0), … , (Cl,Zl,Ll,Pl) 
P0 = Z0 = L0 = 1  (operations on registers) 
P = P1 x … x Pl 

With condition (approx): Pi < (Zi/Z(i-1)) α 

*Requires space annotations on tasks 

MPI, 2010 29 

€ 

T(n) = CiQ
*(n;Zi,Li)

i= 0

l

∑ /P
A scheduler such that: 

L2 
Memory 

Z2 

P P 

Z1 

P P 

Z1 
L1 L1 



MPI, 2010 30 

Conclusions 
1.  Can model locality at a high level 
2.  Many cache-oblivious algorithms are 

naturally parallel, and cache-oblivious nature 
can be used on hierarchical caches. 

3.  Many open problems. 


