Algorithms for Parallel Cache Hierarchies

Guy Blelloch
Carnegie Mellon University
Parallelism is here... And Growing!

Parallelism for the Masses
"Opportunities and Challenges"

Andrew Chien, 2008
Memory Hierarchies

- **Private cache**
 - Memory
 - L
 - Z
 - P
 - P
 - P
 - Shared cache
 - Memory
 - L
 - Z
 - P
 - P
 - P

- **Hierarchical cache**
 - Memory
 - L2
 - Z2
 - L1
 - Z1
 - P
 - P
 - P
 - P
 - P
L2 cache tiles: 7.1 mm² / 7 MB
L3 cache tiles: 3.7 mm² / 7 MB (excl. tags)
Die size 246 mm² (incl. test circ. 265 mm²)

AMD Quad Core Shanghai
L2 cache tiles: 7.5 mm2/MB, L3 cache tiles: 7.5 mm2/MB (excl. tags)

Die size 243 mm2 (incl. test circ.263 mm2)
What about in Parallel

- Private cache
- Shared cache

Hierarchical cache (e.g. Valiant, 08)
Observation

Many “parallel” algorithms have natural “sequential” locality

Can we take advantage of this on a parallel machine. In particular can we describe/program/analyze such algorithms in a high-level way, but still understand performance on various cache architectures.
Sequential Locality

Assume unbounded memory and an ideal cache with a capacity of Z words and cache-lines of L words each.

- $Q(C; Z, L)$ – number of cache misses

An algorithm is **cache-oblivious** if it does not use these parameters (Z and L)
Quicksort

function quicksort(S) =
 if (#S <= 1) then S
 else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
 in R[0] ++ S2 ++ R[1];

Cache Oblivious with: \(Q(n;Z,L) = O(n/L \log n/Z) \) w.h.p

{} indicates parallelism
Nested parallelism

- Standard programming model with fork-join parallelism and no synchronization among tasks.
 - No notion of processors (processor oblivious).
 - Cost calculated using:
 - Work (W) : sum over parallel calls
 - Span (D) : take maximum over parallel calls
- ID, NESL, Cilk++, X10, Open MP, Microsoft TPL
- Typically much more parallelism than processors
- Lots of flexibility for scheduler

MPI, 2010
Qsort Complexity

Parallel partition
Parallel calls

Span = $O(\lg n)$

Work = $O(n \log n)$

Span = $O(\lg^2 n)$

A good parallel algorithm
Parallelism = $O(n/\log n)$
Greedy Schedules

Greedy schedule: a processor cannot sit idle if there is work to do:

For any greedy schedule ([EZL, 1989]):

$$\max\left(\frac{W}{P}, D\right) \leq T_P \leq \frac{W}{P} + D$$

What about:

- Space usage
- Scheduling overheads
- **Locality**
Matrix Multiplication

Fun A*B {
 if #A < k then baseCase..
 C_{11} = A_{11} * B_{11} + A_{12} * B_{21}
 C_{12} = A_{11} * B_{12} + A_{12} * B_{22}
 C_{21} = A_{21} * B_{11} + A_{22} * B_{21}
 C_{22} = A_{21} * B_{12} + A_{22} * B_{22}
 return C
}

A = \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix}

B = \begin{bmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{bmatrix}

W_*(n) = 8W(n/2) + O(n^2) = O(n^3)

D(n) = D(n/2) + O(1) = O(\log n)

Parallelism = \frac{W}{D} = O\left(\frac{n^3}{\log n}\right)

Q(n; Z, L) = O\left(\frac{n^{1.5}}{LZ^{2.5}}\right)
Matrix Inversion

```
fun invert(M) {
    if small baseCase
    D⁻¹ = invert(D)
    S = A - BD⁻¹C
    S⁻¹ = invert(S)
    E = S⁻¹
    F = S⁻¹BD⁻¹
    G = -D⁻¹CS⁻¹
    H = D⁻¹ + D⁻¹CS⁻¹BD⁻¹}

M = \[ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]

M⁻¹ = \[ \begin{bmatrix} E & F \\ G & H \end{bmatrix} \]

W(n) = 2W(n/2) + 6W*(n/2) = O(n³)

D(n) = 2D(n/2) + 6D*(n/2) = O(n)

Parallelism = \( \frac{W}{D} \) = O(n²)
Summary of Results

\[ Q(n;Z,L) = \]

Scan Memory, prefix sums, merge, median, matrix transpose: \( O\left(\frac{n}{L}\right) \)

Matrix Multiply: \( O\left(\frac{n^{1.5}}{LZ^{0.5}}\right) \)

Matrix Inversion: \( O\left(\frac{n}{L} \log Z n\right) \)

FFT: \( O\left(\frac{n}{L} \log_2 (n/Z)\right) \)

Mergesort, Quicksort, NNs, KD-trees: \( O\left(\frac{n}{L} \log_2 (n/Z)\right) \)

Funnel Sort: \( O\left(\frac{n}{L} \log_Z n\right) \)
Summary of Results

\[ D(n) = \]

Scan Memory, prefix sums, merge, median, matrix transpose: \( O(\log n) \)
Matrix Multiply \( O(\log n) \)
Matrix Inversion: \( O(\sqrt{n}) \)
FFT: \( O(\log^2 n) \)

Mergesort, Quicksort, NNs, KD-trees: \( O(\log^2 n) \)

Funnel Sort: \( \text{Blocked Sample Sort: } O(\log^2 n) \)
Some Basic Results

- **Scan memory**: $D(n) = O(\log n)$
- **Matrix transpose** (divide-and-conquer):
  $D(n) = O(\log n)$
- **Simple matrix multiply** (divide-and-conquer):
  $D(n) = O(\log^2 n)$
- **Quicksort and Mergesort**:
  $D(n) = O(\log^2 n)$
- **Funnel sort**: $D(n) = O(n)$
Depth-first (sequential) schedule

Depth-First ordering.
Same as sequential execution

$Q_1(C;Z,L)$ – cache complexity for DFS order.
Greedy Schedulers

Work stealing ([B+96, ABB00])
\[ Q_p(C; Z, L) = Q_1(C; Z, L) + O(PDZ/L) \]
private cache

P-DFS [BG02]
\[ Q_p(C; Z+PDL, L) = Q_1(C; Z, L) \]
shared cache

Eg. Matrix multiply
\[ Q_p(n; Z, L) = O(n^{3/2}/LZ^{1/2} + PZ \log n/L) \]
\[ Q_p(n; Z+PL \log n, L) = O(n^{3/2}/LZ^{1/2}) \]
Work Stealing

- Push new jobs on “new” end
- Pop jobs from “new” end
- If processor runs out of work, then “steal” from another “old” end

Each processor tends to execute a sequential part of the computation.
Work Stealing

Tends to schedule “sequential blocks” of tasks

\[ \text{#steals} = O(\text{PD}) \quad [BL98] \]
Parallel Depth First Schedules (P-DFS)

List scheduling based on Depth-First ordering

For strict computations a shared stack implements a P-DFS

2 processor schedule

1
2, 6
3, 4
5, 7
8
9
10
“Premature task” in P-DFS

A running task is premature if there is an earlier sequential task that is not complete

2 processor schedule

1
2, 6
3, 4
5, 7
8
9
10

= premature

#premature nodes = O(PD)
What problems remain?

- What about sorting?
  \( O(\log^2 n) \) span version of sample sort [BGV09]

- Other algorithms? (e.g. geometry, dynamic data structures)

- What about high-span algorithms
  Work-efficient Matrix inversion has span \( O(n^{1/2}) \)

- What about hierarchical caches???
  - Idea 1: modify definition of \( Q_p \)
  - Idea 2: balance space and work
Depth-first (sequential) schedule

Depth-First ordering.

Q₁(C;Z,L) – cache complexity for DFS order.

Captures artificial locality
Idea 1: A variant of the CO model

Idea 1: If a task fits in cache, then any ordered access to the same location will be a cache hit, otherwise an access is a miss.

2 misses

1 miss

26
Note that processing power is tied to space. We need to somehow balance space and work.
Idea 2: Effective Cache Complexity

\[ Q^*(a \parallel b) = \max \left\{ \frac{Q^*(a) + Q^*(b)}{s(a \parallel b)^\alpha \times \max \left\{ \frac{Q^*(a)}{s(a)^\alpha}, \frac{Q^*(b)}{s(b)^\alpha} \right\}} \right\} \]

Where \( s(x) \) is the space taken by \( x \).
Parallelism is bounded by \( s(a)^\alpha \)
\( \alpha = 0 \), is sequential execution.
For all algorithms we considered top term dominates when \( \alpha < 1 \)
Main Result

A scheduler such that:

\[ T(n) = \sum_{i=0}^{l} C_i Q^*(n; Z_i, L_i) / P \]

For an \( l \)-level cache: \((C_0, Z_0, L_0, P_0), \ldots, (C_l, Z_l, L_l, P_l)\)
\(P_0 = Z_0 = L_0 = 1\) (operations on registers)
\(P = P_1 \times \ldots \times P_l\)

With condition (approx): \( P_i < (Z_i/Z_{(i-1)})^\alpha \)

*Requires space annotations on tasks*
Conclusions

1. Can model locality at a high level
2. Many cache-oblivious algorithms are naturally parallel, and cache-oblivious nature can be used on hierarchical caches.
3. Many open problems.