
MPI, 2010 1

Algorithms for Parallel
Cache Hierarchies

Guy Blelloch
Carnegie Mellon University

MPI, 2010 2
Andrew Chien, 2008

Memory Hierarchies

MPI, 2010 3

Z

P

L
Z

P

L
Z

P

L
Z

P

L
Memory

P P P P

L
Memory

Z

Private cache

Shared cache
Hierarchical cache

L2
Memory

Z2

P P

Z1

P P

Z1
L1 L1

MPI, 2010 4

MPI, 2010 5

What about in Parallel

MPI, 2010 6

Z

P

L
Z

P

L
Z

P

L
Z

P

L
Memory

P P P P

L
Memory

Z

Private cache

Shared cache
Hierarchical cache
(e.g. Valiant, 08)

L2
Memory

Z2

P P

Z1

P P

Z1
L1 L1

Observation
!   Many “parallel” algorithms have natural

“sequential” locality
!   Can we take advantage of this on a parallel

machine. In particular can we describe/
program/analyze such algorithms in a high-
level way, but still understand performance
on various cache architectures.

MPI, 2010 7

Sequential Locality
!   Assume unbounded memory and an ideal

cache with a capacity of Z words and cache-
lines of L words each.
!  Q(C; Z, L) – number of cache misses

!   An algorithm is
cache-oblivious if it
does not use these
parameters (Z and L)

MPI, 2010 8

Cache (Z)

Memory

P

L

MPI, 2010 9

Quicksort
function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];

Cache Oblivious with: Q(n;Z,L) = O(n/L log n/Z) w.h.p
{} indicates parallelism

NESL code

Nested parallelism
!   Standard programming model with fork-join

parallelism and no synchronization among tasks.
!  No notion of processors (processor oblivious).
!  Cost calculated using:

!  Work (W) : sum over parallel calls
!   Span (D) : take maximum over parallel calls

!   ID, NESL, Cilk++, X10, Open MP, Microsoft TPL
!  Typically much more parallelism than processors
!  Lots of flexibility for scheduler

MPI, 2010 10

MPI, 2010 11

Qsort Complexity

Span = O(lg2 n)

Parallel partition
Parallel calls

Work = O(n log n)

A good parallel algorithm

Span = O(lg n)

Parallelism = O(n/log n)

MPI, 2010 12

Greedy Schedules
Greedy schedule: a processor cannot sit idle if

there is work to do:
For any greedy schedule ([EZL, 1989]):

What about:
•  Space usage
•  Scheduling overheads
•  Locality €

max W
P
,D

⎛

⎝
⎜

⎞

⎠
⎟ ≤ TP ≤

W
P

+ D

Matrix Multiplication
Fun A*B {
 if #A < k then baseCase..
 C11 = A11*B11 + A12*B21
 C12 = A11*B12 + A12*B22
 C21 = A21*B11 + A22*B21
 C22 = A21*B12 + A22*B22
 return C
}

MPI, 2010 13

€

A =
A11 A12
A21 A22

⎡

⎣
⎢

⎤

⎦
⎥

€

W*(n) = 8W (n /2) +O(n2)
= O(n3)

€

D(n) = D(n /2) +O(1)
= O(logn)€

B =
B11 B12
B21 B22

⎡

⎣
⎢

⎤

⎦
⎥

€

Parallelism =
W
D

=O n3

logn
⎛

⎝
⎜

⎞

⎠
⎟

€

Q(n;Z,L) =O n1.5

LZ .5
⎛

⎝
⎜

⎞

⎠
⎟

Matrix Inversion
fun invert(M) {
 if small baseCase
 D-1 = invert(D)
 S = A – BD-1C
 S-1 = invert(S)
 E = S-1
 F = S-1BD-1
 G = -D-1CS-1
 H = D-1 + D-1CS-1BD-1}

MPI, 2010 14

€

M =
A B
C D
⎡

⎣
⎢

⎤

⎦
⎥

€

M−1 =
E F
G H
⎡

⎣
⎢

⎤

⎦
⎥

€

W (n) = 2W (n /2) + 6W*(n /2)
= O(n3)

€

D(n) = 2D(n /2) + 6D*(n /2)
= O(n)

€

Parallelism =
W
D

=O n2()

Summary of Results

Scan Memory, prefix sums, merge, median,
matrix transpose:

Matrix Multiply
Matrix Inversion:
FFT:

Mergesort, Quicksort, NNs, KD-trees:

Funnel Sort:

MPI, 2010 15

€

O n1.5

LZ .5
⎛

⎝
⎜

⎞

⎠
⎟ €

Q(n;Z,L) =

€

O n
L
⎛

⎝
⎜
⎞

⎠
⎟

€

O n
L
logZ n

⎛

⎝
⎜

⎞

⎠
⎟

€

O n
L
log2(n /Z)

⎛

⎝
⎜

⎞

⎠
⎟

€

O n
L
logZ n

⎛

⎝
⎜

⎞

⎠
⎟

Summary of Results

Scan Memory, prefix sums, merge, median,
matrix transpose:

Matrix Multiply
Matrix Inversion:
FFT:

Mergesort, Quicksort, NNs, KD-trees:

Funnel Sort: Blocked Sample Sort:

MPI, 2010 16

€

O logn()€

D(n) =

€

O logn()

€

O n()

€

O log2 n()

€

O log2 n()

€

O log2 n()

Some Basic Results
!   Scan memory: D(n) = O(log n)

!   Matrix transpose (divide-and-conquer):
D(n) = O(log n)

!   Simple matrix multiply (divide-and-conquer):
D(n) = O(log2 n)

!   Quicksort and Mergesort:
D(n) = O(log2 n)

!   Funnel sort: D(n) = O(n)

MPI, 2010 17

MPI, 2010 18

Depth-first (sequential) schedule
Depth-First ordering.
Same as sequential execution

1

2

3 4

5

6

7 8

9

10

Q1(C;Z,L) – cache
complexity for
DFS order.

Greedy Schedulers
!   Work stealing ([B+96,ABB00])

QP(C;Z,L) = Q1(C;Z,L) +O(PDZ/L)
private cache

!   P-DFS [BG02]
QP(C;Z+PDL,L) = Q1(C;Z,L)
shared cache

Eg. Matrix multiply
Qp(n;Z,L) = O(n3/2/LZ1/2 + PZ log n/L)
QP(n;Z+PL log n,L) = O(n3/2/LZ1/2)

MPI, 2010 19

Z

P

Z

P

Z

P

Z

P

Memory

P P P P

Memory

Z

MPI, 2010 20

Work Stealing

!   push new jobs on “new” end
!   pop jobs from “new” end
!   If processor runs out of work, then “steal” from

another “old” end
Each processor tends to execute a sequential part of

the computation.

P1 P2 P3 P4
old

new
Local
work queues

MPI, 2010 21

Work Stealing
Tends to schedule “sequential blocks” of tasks

= steal

#steals = O(PD) [BL98]

MPI, 2010 22

Parallel Depth First Schedules (P-DFS)
List scheduling based on Depth-First ordering

1

2

3 4

5

6

7 8

9

10

1
2, 6
3, 4
5, 7
8
9
10

2 processor
schedule

For strict computations a shared stack
implements a P-DFS

MPI, 2010 23

“Premature task” in P-DFS
A running task is premature if there is an earlier

sequential task that is not complete

1

2

3 4

5

6

7 8

9

10

1
2, 6
3, 4
5, 7
8
9
10

2 processor
schedule 1

2

3 4

5

6

7 8

9

10

= premature #premature nodes = O(PD)

What problems remain?
!   What about sorting?

O(log2n) span version of sample sort [BGV09]
!   Other algorithms? (e.g. geometry, dynamic data

structures)
!   What about high-span algorithms

Work-efficient Matrix inversion has span O(n1/2)
!   What about hierarchical caches???

!   Idea 1: modify definition of QP

!   Idea 2: balance space and work

MPI, 2010 24

MPI, 2010 25

Depth-first (sequential) schedule
Depth-First ordering.

1

2

3 4

5

6

7 8

9

10

Q1(C;Z,L) – cache
complexity for
DFS order.

Captures artificial locality

Idea 1: A variant of the CO model

MPI, 2010 26

a

a

a a

b

b

a a

c

c

Idea 1: If a task fits in cache,
then any ordered access to
the same location will be a
cache hit, otherwise an
access is a miss

2 misses

1 miss All algorithms we have studied
are not asymptotically affected

miss

Idea 2

!   Note that processing power is tied to space.
We need to somehow balance space and work.

MPI, 2010 27

L2
Memory

Z2

P P

Z1

P P

Z1
L1 L1

S = Z1
W = Z1

S = Z1
W = (Z1)2

Idea 2: Effective Cache Complexity

Where s(x) is the space taken by x.
Parallelism is bounded by s(a)α

α= 0, is sequential execution.
For all algorithms we considered top term

dominates whenα< 1

MPI, 2010 28

€

Q*(a ||b) =max
Q*(a) +Q*(b)

s(a ||b)α ×max Q*(a)
s(a)α

,Q
*(b)
s(b)α

⎧
⎨
⎩

⎫
⎬
⎭

⎧

⎨
⎪

⎩ ⎪

Main Result

For an l-level cache: (C0,Z0,L0,P0), … , (Cl,Zl,Ll,Pl)
P0 = Z0 = L0 = 1 (operations on registers)
P = P1 x … x Pl

With condition (approx): Pi < (Zi/Z(i-1)) α

*Requires space annotations on tasks

MPI, 2010 29

€

T(n) = CiQ
*(n;Zi,Li)

i= 0

l

∑ /P
A scheduler such that:

L2
Memory

Z2

P P

Z1

P P

Z1
L1 L1

MPI, 2010 30

Conclusions
1.  Can model locality at a high level
2.  Many cache-oblivious algorithms are

naturally parallel, and cache-oblivious nature
can be used on hierarchical caches.

3.  Many open problems.

