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Abstract 

Modern astronomical and cosmological datasets are getting larger and larger, including billions 

of astronomical objects and taking up terabytes of disk space. However, many classical 

astrophysics applications do not scale to such data volumes, which raise the question: Can we 

use modern computer science techniques to help astrophysicists analyze large datasets? 

In order to answer the question, we have applied distributed computing techniques and 

developed algorithms to provide fast scalable solutions. In this report we introduce our initial 

works on three astrophysics applications: 

 We have developed a distributed version of the Friends-of-Friends technique, which is a 

standard astronomical application for analyzing clusters of galaxies. The distributed 

procedure can process tens of billions of objects, which makes it sufficiently powerful for 

modern astronomical datasets and cosmological simulations. 

 The computation of correlation functions is a standard cosmological application for 

analyzing the distribution of matter in the universe. We have studied several approaches 

to this problem and developed an approximation procedure based on a combination of 

these approaches, which scales to massive datasets. 

 When astronomers analyze telescope images, they match the observed objects to the 

catalog. We have developed a matching procedure that maintains a catalog with billions 

of objects and processes millions of observed objects per second. 

I propose to extend our existing solutions, as well as address several new problems.  
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1. Introduction 

Massive scientific datasets have recently become available, which enable a data-driven 

perspective for scientists to conduct research. Those datasets in astrophysics, bioinformatics, 

seismology and many other fields can be in terabytes and sometimes even petabytes. In 

astrophysics, digital surveys such as Sloan Digital Sky Survey [Abazajian et al., 09] as well as 

multiple cosmological simulations such as [Heitmann et al., 08] and [DiMatteo et al., 08], 

produce datasets with billions of objects, and the processing of these data require development of 

new scalable algorithms. 

The purpose of this thesis work is to help astrophysicists analyze the available massive data, by 

creating better algorithms and applying distributed computing technique. Current solutions to 

some astrophysical problems cannot process big datasets. For instance, in order to solve the 

Friends-of-Friends problem (FoF) [Huchra and Geller, 82], which is one of the standard 

astrophysics tools for analyzing the structure of the universe, existing sequential programs would 

require impractically large memory, which goes beyond the capacity of modern desktops and 

even most supercomputers. We make use of modern distributed computing architectures and 

software, such as Map-Reduce [Dean and Ghemawat, 04] and BigTable [Chang et al., 06] to 

develop fast and scalable solutions. 

In Section 3, we describe our initial work on three astronomical problems: in Section 3.1, we 

provide a distributed algorithm for identifying clusters of galaxies, i.e. the Friends-of-Friends 

problem; next in Section 3.2, we describe our work on Correlation Functions, which is a 

measurement to examine the distances between astronomical objects, for which we give an 

efficient approximation algorithm; in Section 3.3, we describe a catalog of astronomical objects 

that supports indexing and fast retrieval of objects in spherical coordinates. 

We have developed and tested these three applications. While they are efficient and scalable, 

there are still opportunities for several major extensions. For example, we can extend the 

Friends-of-Friends algorithm to a more general tool, which will consider not only the positions 

of astronomical objects but also their masses and velocities, which will the first part of the 

proposed dissertation research (Section 4.1). The second part of the proposed work is to solve 

several other astrophysics problems. Two of them are described in Section 4.2: Quasar Detection 

is a specific machine learning problem and I will apply multiple machine learning techniques 

into it; Object History Tracking is a large-scale data processing application that requires 

distributed database techniques. 
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2. Literature Review 

Friends-of-Friends: 

The Friends-of-Friends (FoF) problem [Huchra and Geller, 82] is a basic technique used to 

analyze large-scale astronomical structures, such as clusters and superclusters of galaxies. 

Researchers have developed multiple sequential FoF algorithms, including FOF from the 

University of Washington (http://www-hpcc.astro.washington.edu/tools/fof.html) 

There are also parallel FoF algorithms, including pHOP [Liu et al., 03], Ntropy [Gardner et al., 

06], HaloWorld [Pfitzer and Salmon, 96] and Amiga Halo Finder (AHF) [Gill et al., 04]. All 

these techniques use Message Passing Interface [MPI, 93] or communication between machines. 

However, they are designed for parallel distributed memory machines with low-latency network. 

They further require the whole dataset to fit into memory, which severely limits their scalability 

and make them inapplicable to modern datasets with billions of objects. 

Recently, Kwon et al. [Kwon et al., 09] proposed a distributed technique based on Dryad [Isard 

et al., 07], an infrastructure for parallel and distributed programming from Microsoft Research. 

They have reported the results for datasets with up to 1 billion objects using a computer cluster 

with sixty-four cores. 

Correlation Functions: 

[Peebles, 80] gives the following definition: Given a random galaxy in a location, the 

correlation function describes the probability that another galaxy will be found within a given 

distance. It provides a method to test models with different settings about the universe, thus very 

important for theoretical cosmology. 

A number of computer scientists have studied this problem. For instance, Gray and Moore [Gray 

and Moore, 00] used kd-tree to speed up the computation, which is slightly faster than the brute-

force approach (O(N
5/3

) vs. O(N
2
), where N is the number of objects). However, it is still 

impractically slow for massive datasets. Belussi and Faloutsos [Belussi and Faloutsos, 95] 

applied Fractal method to compute a rough approximate the related distribution. While their 

algorithm runs in linear time, it does not provide sufficient accuracy of most astronomical 

applications. 

Distant Quasar Detection 

The detection of quasars from multicolor imaging data dates back to Sandage and Wyndham 

[Sandage and Wyndham, 65]. Richards et al. identifies quasars in five color bands (U, G, R, I 

and Z). Using Non-Parametric Bayesian Classification together with fast Kernel Density 

Estimation [Gray and More, 03], their algorithms achieve 65-95% precisions and 70-95% recalls, 

varying on different datasets [Richards et al., 02] [Richards et al., 04] [Richards et al., 09]. 
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Despite the high precision, their solution is less powerful to identify extra-bright objects (due to 

interlopers like white dwarfs and faint low-metallicity F-stars) and objects with high redshifts 

(below 50% precision to objects with z>2.2, where z stands for redshift) [Richards et al., 09]. 

3. Initial Results 

We present the three techniques we have developed, which include identification of galaxy 

clusters (Section 3.1) analysis of distances between galaxies (Section 3.2) and indexing of 

astronomical objects (Section 3.3).  

3.1 DiscFinder: Identification of Galaxy Clusters 

3.1.1 Background 

Astrophysicists use sky surveys and cosmological simulations to analyze large-scale 

astronomical structures. One of the standard steps is to find clusters of astronomical objects, such 

as galaxy groups, clusters and superclusters. We consider a basic problem, called Friends-of-

Friends (FoF), which uses a simple criterion (only positions of astronomical objects) to 

determine whether they are gravitationally bound. It has proved effective in identifying galaxy 

clusters and has been widely used by astrophysicists. 

The FoF algorithm takes one parameter: a linking length, denoted τ. Its input is a set of 

astronomical objects, where each object i is represented by its coordinates (xi, yi, zi) in three-

dimensional Cartesian coordinate space.  

 

Figure 1. Example of Friends-of-Friends clusters and DiscFinder partition. In this example with 

eight objects, two clusters (p1, p2) and (p3, p4, p5, p6) are identified. Partition results provided 

by a kd-tree is also shown, where the space is divided into four regions. Shaded area represents 

the “shells” of regions, where each region is extended by τ/2 on each side. 
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Two objects are considered “friends” if the distance between them is no greater than the linking 

length. The friendship between objects defines an undirected graph, and its connected 

components correspond to clusters of objects (Figure 1). For each object i, the FoF algorithm 

outputs the identifier of the cluster containing it. 

3.1.2 Distributed algorithm 

Sequential FoF procedures are inapplicable to the analysis of massive datasets because they 

require impractically time and memory. To improve the scalability of the FoF tools, we have 

developed a distributed version, called DiscFinder [Bin et al., 10a], which is a Map-Reduce 

[Dean and Ghemawat, 04] wrapper that makes use of existing sequential FoF algorithms.  

The underlying idea is to split an input dataset into several spatial regions, apply a sequential 

FoF algorithm to each region, and then merge the results from individual regions. DiscFinder 

manages these steps, including the load balancing in splitting phase and the merging phase.  

 

Figure 2. DiscFinder Pipeline 

Figure 2 shows the DiscFinder pipeline. We use three Map-Reduce procedures (Sampling, 

Partitioning/Clustering, and Relabeling) to implement this distributed algorithm. Next we outline 

each step: 

Sampling (parallel implementation, first MapReduce procedure) and Splitting (sequential): 

Astrophysics datasets are seldom uniformly distributed, so a naïve partition would cause load 

balancing problem, where each region has disparate number of objects. Although kd-tree data 

structure can create perfect partitions where each region contains exactly the same number of 

objects, it requires impractically memory (linear to the number of objects). So we first sample a 

small proportion of objects (typically 0.1% of all objects) in sampling phase, and construct a kd-

tree using the sampled objects in splitting phase. This fast procedure results in a fairly balanced 

partition.  

Partitioning (parallel, Map phase of the second MapReduce procedure): The kd-tree provides a 

spatial partitioning for the domain, which determines the region of each object. In order to 

handle the objects near region boundary, each region is extended by τ/2 on each side. As a result, 

each region has a “shell” around it, which contains objects in its adjacent regions (see Figure 1).  

Input 

Splitting Local Clusters 

Merging 

  Sampling 

  Partitioning 
  Clustering 

  Relabeling 

Final Clusters 
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Clustering (parallel, Reduce phase of the second MapReduce procedure): A sequential FoF 

procedure is invoked for each extended region. DiscFinder allows plugging in any sequential 

FoF implementations, such as FOF (http://www-hpcc.astro.washington.edu/tools/fof.html) or AFOF 

(http://www-hpcc.astro.washington.edu/tools/afof.html) from University of Washington. Cluster 

membership information of each object is outputted for each region. We refer these clusters as 

local clusters. 

Merging (sequential): Output of the clustering step (object identifiers and their local cluster 

identifiers) is split into two separate sets: one for objects inside shells, one for other objects 

(Figure 3).  Each in-shell object belongs to several regions, and thus it may be assigned to 

multiple local clusters within different regions. The purpose of merging is to combine the local 

clusters from different partitions that contain common objects. 

It is achieved by the Union-Find procedure [Galler and Fisher, 64], which merges local clusters 

that have common objects. The time and space complexity of the Union-Find procedure are both 

near-linear. In our experiments the merging step takes only a small fraction (around 4%) of the 

total running time. 

Relabeling (parallel, third MapReduce procedure): Since some local clusters are combined 

together in the merging phase, we use this step to reflect this effect. Relabeling step is a single 

pass over the output of the clustering step, where object from the combined clusters are relabeled 

to the same cluster. 

 

Figure 3. MapReduce framework for the partitioning and clustering phases in DiscFinder. 

Results of clustering phase are split to two parts: information of in-shell objects and the other 

objects (which formulate sub-domain clusters).  

3.1.3 Data Sources and Computing Cluster 

Data sources: For the experiments, we have used three cosmology simulation datasets provided 

by our astrophysicist collaborators: BHCosmo [DiMatteo et al., 08], Coyote Universe [Heitmann 
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et al., 08] and DMKraken from McWilliams Center for Cosmology at Carnegie Mellon 

University. Each dataset has multiple “snapshots”, which describe the simulated universe at 

different moments of time. These datasets are in the GADGET-2 format [Springel, 05], which is 

a binary format that represents multiple properties of cosmological objects including positions, 

velocities, accelerations and masses. 

Name of the 

dataset 

Num. object 

(millions) 

Data size of each 

snapshot (GByte) 

Number of 

snapshots 

Total data size 

(GByte) 

BHCosmo 20 1 22 22 

Coyote Universe 1,100 32 20 640 

DMKraken 14,700 500 28 14,000 

Table 1. Data sources 

Computing cluster: We have used a data-intensive cluster built in 2009 at Carnegie Mellon, 

called DISC/CLOUD
 
(http://www2.pdl.cmu.edu/~twiki/cgi-bin/view/OpenCloud), which consists of 

64 nodes. Each node has eight 2.8GHz CPU cores, 16GB memory and four 1TB SATA disks. 

The nodes are connected by a 10GigE network using Arista switches and QLogic adapters at the 

hosts. The cluster is configured with Linux (2.6.31), Hadoop (0.19.1) and Java (1.6). 

3.1.4 Evaluation 

Scalability 

We have conducted a series of scalability experiments to determine how DiscFinder performs 

with different setups. The experiments have confirmed that it is effective for processing massive 

data, and can handle datasets much larger than the overall available memory.   

In Figure 4, we show the results of strong scalability and weak scalability experiments. In the 

strong scalability experiments, the input size is constant while we gradually add computing 

resources. Figure 4(a) shows the dependency of the running time on the number of cores, both on 

logarithmic scale. The curves correspond to input sizes of 0.5, 1 and 14.7 billion objects. Linear 

scalability behaves a straight line with slope -1, indicating that running time decreases 

proportional to the number of cores. Our experiments show that, with small number of cores, 

running time actually suffers since each node takes on too much computing tasks; on the other 

side, with a large number of cores, each core performs too little work so framework overhead 

stands out. 
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       (a)                                                                    (b) 

Figure 4. Strong scalability (a) and weak scalability (b) 

In the weak scalability tests, each node is assigned the same amount of work; that is, the overall 

input size is proportional to the number of cores. In Figure 4(b), we plot the running time versus 

the number of cores. The two curves correspond to 4 and 8 million objects per core. Here only 

the horizontal axis is in logarithmic scale. In our experiments, both curves increase slightly, 

which is reasonable due to the framework overhead introduced by input/output and data 

movement. 

Hadoop Performance 

The original implementation of DiscFinder is very intuitive, but its running time far exceeds the 

initial expectation, because the framework spends significant time for data processing and other 

auxiliary processes. We have implemented a series of Hadoop-specific optimizations, which has 

resulted in an overall speedup by the factor of three in the experiment with 14.7 billion objects. 

Specifically, we have reduced the processing time from 16,609 seconds to 3,810 seconds. 

3.2 DISC-Distance: Analysis of Distances between Galaxies 

3.2.1 Background 

In astrophysics, Correlation Functions (CF) is a measurement of the distribution of pairwise 

distances between astronomical objects. In this report, CF is defined as follows: 

Given a set of object P = {p1,p2…,pN} and a series of distance ranges {q1,q2…,qM}: 

q1 = (d0, d1) 

q2 = (d1, d2) 
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.. 

qM = (dM-1, dM) 

di R, i = 0,1,...,M 

We want to calculate the number of pairs of objects whose distances fall in each of qi = (di-1, di), 

i=1,2,…,M: 

CF((di-1, di)) = #(pu, pv)   P,  s.t. di-1 ≤ d(pu, pv) ≤ di 

Where d( ) represents the Euclidean distance between two objects. 

In Figure 5, we show the correlation functions calculated on a dataset with 4.5 million object 

datasets, which is provided by our collaborators from McWilliams Center for Cosmology:  

 

Figure 5. Correlation functions for a dataset with 4.5 million objects 

3.2.2 Existing algorithms 

To compute correlation functions, researchers have developed several exact and approximation 

algorithms. However, the existing exact algorithms are still impractically slow for large datasets, 

while the approximation techniques are impractically inaccurate [Bin et al., 10b].  

3.2.3 Proposed hybrid algorithms 

We have proposed a hybrid algorithm to approximate correlation functions in [Bin et al., 10b], 

by combining the kd-tree algorithm and a new sampling algorithm. The sampling algorithm 

randomly samples several subsets from the original dataset, and uses the sampled sets to 

approximate true results. 
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Our hybrid method combines the advantages of the kd-tree algorithm and the sampling algorithm. 

It applies kd-tree calculation at small and large range distances, because kd-tree is fast at both 

ends (Figure 6(a)); for range distances in the middle, sampling algorithm is invoked, where its 

approximation error is very small (Figure 6(b)).   

In Figure 7 we plot the running time of the brute-force algorithm, the kd-tree algorithm and our 

hybrid algorithm on the dataset with 4.5 million objects. The experiments are conducted on a 

single computer with two 2.66 GHz processors and 2GB memory. The hybrid method is an 

approximation algorithm. It takes an approximation error bound as input, which affects its 

running time. As shown in Figure 7, the hybrid method is faster than the existing exact 

algorithms, even when we require a very low error (0.1%). 

 

Sampling algorithm 

Input: p1, p2, …, pN 

q1, q2, …, qM 

Number of sample objects S 

Output: Mean and Standard Deviation of c1‟, c2‟, …, cM‟ 

ck‟ is the estimated number of object-pair falling in qk  

T = 30;  //T is the number of sampling iteration 

Create a two dimensional array auv, u = 1, 2, …, M;  v=1, 2, …, T 

for i = 1 to M 

    for j = i + 1 to T 

        aij = 0; 

for t = 1 to T 

    Randomly select S objects u1, u2, …, uS from p1, p2, …, pN 

    for i = 1 to S-1 

        for j = i + 1 to S 

         Find qk that d(ui, uj) belongs to  

         akt ++; 

    for k = 1 to M 

        akt = akt   (N/S)
2
; 

for k=1 to M 

    µ(ck‟) = (ak1 + ak2 +…+ akT) / T 

σ(ck‟)
2 

= ((ak1 - µ(ck‟))
2 

+ (ak2 - µ(ck‟))
2 

+ … + (akT - µ(ck‟))
2
) / (T(T - 1)) 
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   (a) The running time. 

                            

(b) The approximation error. 

 

(c) Hybrid approach. 

Figure 6. The performance of the correlation functions computation. All experiments are 

conducted on an Intel Core2 Desktop with 2.66GHz CPU and 2GB memory. We show the 

running time of the kd-tree computation (a) as well as the approximation error of the sampling 

algorithm (b). The hybrid approach (c) is based on switching between the two algorithms based 

on the distance. 

Sampling 

0 d2 d1 

kd-tree kd-tree 
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Figure 7. The time of computing the correlation functions on the dataset with 4.5 million object. 

We compare the performance of the hybrid algorithm (left) and that of the two exact algorithms 

(right). 

 

3.3 SkyMap: Indexing of Astronomical Objects 

3.3.1 Background 

When astronomers analyze telescope images, they check whether newly observed objects appear 

in the catalog of known objects. Since positions of objects may change slightly due to 

atmospheric and optical distortions, astronomers need to retrieve close approximate matches. 

The current astronomical catalogs, e.g. Sloan Digital Sky Survey, contain about 230 million 

objects, and a straightforward linear matching would be impractically slow. We have developed 

a technique for indexing massive catalogs and fast matching of newly observed objects without 

the use of supercomputers. 

3.3.2 Problem 

The astronomers describe the observed position of a celestial object by two values, which define 

its equatorial coordinates on the sky, called Right Ascension and Declination, which are similar 

to the longitude and latitude. Note that the catalogs usually do not include the data about the 

distance to an object, since it is not a directly observable value. 

We have already acquired a catalog of the sky, which contains a list of objects observed 

previously. We have also obtained a number of newly arrived images. An image is typically a 

rectangular region of the sky, whose size is about 2.5×2.5 square degrees, with sides parallel to 

the celestial coordinate axes. An image may contain from a few hundred to a few tens of 

thousands objects, depending on the image size and telescope resolution. For each observed 

object p, we need to find a matching catalog object q, such that: 
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 p is the nearest object to q among the observed objects; 

 q is the nearest object to p among the catalog objects; and 

 The distance between p and q in two-dimensional spherical coordinates is at most 1 arc 

second, that is, 1/3600 degrees.  

Since the modern catalogs are far too large for the memory of desktop computers, we have 

developed a technique for indexing catalogs on disk, which requires loading only a small 

contiguous part of the catalog into memory when processing a single image. 

      

(a)                                                                     (b) 

Figure 8. (a) The location of an object is defined by its right ascension and declination. (b) An 

example to demonstrate the retrieval problem, which includes two newly observed objects that 

should be matched to two catalog objects. 

3.3.3 Our solution 

The developed system consists of two procedures: indexing procedure, which organized data on 

disk, and retrieval procedure, which identified the part of the catalog relevant to a given image, 

loads it into memory, and finds matches for all objects in the image. 

Indexing: 

Along the direction of right ascension, we divide the celestial sphere into strips, where each strip 

is 2 arcseconds wide, thus obtaining (3600/2) ×180 = 324,000 strips. The objects within each 

strip are sorted by their right ascension. For each strip, we sort the list of its sorted objects as a 

separate file, thus obtaining 324,000 files. 
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                                           (a)                                                                  (b) 

Figure 9. (a) Partition of the sky in equatorial coordinates. (b) Given an image, we first find its 

bounding box and identify the strip segments that cover the extended bounding box. 

Retrieval: 

Given an image, the first step is to calculate its bounding box. In order to find approximate 

matches, the bounding box needs to be extended by one arcsecond in each direction. We then 

retrieve the strip segments of the catalog that cover the extended box, by first identifying the 

related strips, and then finding the related strip segments. To select the related strips, we 

determine the declination range of the extended bounding box, and retrieve all strips that cover 

this range. Afterwards, since catalog objects are already sorted by their right ascension within 

each strip, we conduct binary search within each strip to locate a segment that covers the 

bounding box. 

Consequently, for each image, only the relevant strip segments are retrieved and loaded to the 

memory. Typical image is small enough for a single computer to accommodate this information.  

Finally, once necessary catalog objects available in memory, a simple and fast approximate 

matching procedure will be conducted to find match to each image object. 

3.3.4 Experiments 

We have conducted two sets of experiments to evaluate the running time of the retrieval 

procedure on a catalog of two billion objects. Experimental results come from desktop with 

2.83GHz CPU and 16GB memory. 

The first set of experiments, summarized in Figure 10(a), measures the time of loading the 

relevant part of the catalog into memory. For instance, if the image is 6 square degrees, which is 

a typical size of telescope images, the loading time is about half-minute. The running time grows 

linearly with the image size. 
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In the second set of experiments, we have evaluated the time to find the catalog match for each 

object in the image. In Figure 10(b), it is clear that this step is particularly fast. For instance, it 

takes less than one second to find matches for ten thousand objects in an image. 

  

      (a)                                                       (b) 

Figure 10. (a) The time of identifying the relevant part of the catalog and loading it into memory. 

(b) The time of finding matches after loading the catalog. 

4. Proposed Work 

I will now describe the proposed future work. In Section 4.1, I will discuss some potential 

extensions to each of my initial results. In Section 4.2, I will propose new astrophysics 

applications, which will be part of my thesis research. 

4.1 Major Extensions 

4.1.1 Identification of Galaxy Clusters  

We have shown in Section 3.1 that DiscFinder scales to datasets with billions of objects; 

however, there are several open problems not addressed in the initial work, and we now propose 

to address these problems and make DiscFinder a more general tool. 

In particular, the current version of DiscFinder is less efficient for a large linking length (τ). Each 

region is extended by τ/2, which causes the drop in efficiency for large τ. Another problem of 

using a large linking length is the increase in the number of in-shell objects. Consequently the 

merging step may be a bottleneck: although the current Union-Find implementation has linear 

complexity, it is still a sequential algorithm with limitation at both time and memory. Currently 

in our experiments the linking length is typically set to 0.02% of the length of the diameter of the 
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overall simulated universe, which is the typical value used by astronomers. We plan to extend 

the algorithm to allow significantly larger values without the loss of efficiency. 

Also, current DiscFinder framework only works for FoF algorithms. There are more complex 

group finding algorithms that consider not only the positions of objects, but also their other 

attributes, such as mass and velocity. We plan to extend DiscFinder to support a distributed 

version of those algorithms. 

4.1.2 Analysis of Distances between Galaxies 

The problem in Section 3.2 is called Two-Point Correlation Functions (2PCF) because we 

examine distances between pairs of points. A related more challenging problem is Three-Point 

Correlation Functions (3PCF), where we examine distances among triples of points. A 3PCF 

takes on three distance ranges as input: (xi, xi+1), (yj, yj+1) and (zk, zk+1). Given a set of point P = 

{p1,p2,..., pN}: 

3PCF((xi, xi+1), (yj, yj+1), (zk, zk+1)) = #(pu, pv, pw   P), s.t. 

xi ≤ d(pu, pv) ≤ xi+1, yj ≤ d(pu, pw) ≤ yj+1 and zk ≤ d(pv, pw) ≤ zk+1 

The amount of computation required for 3PCF is much greater than that for 2PCF. I plan to 

extend the developed hybrid algorithm to address the 3PCF problem. 

Another direction is to improve the precision of the hybrid algorithm. Astrophysicists are in very 

accurate results, with the error below 0.1% 

4.1.3 Indexing of Astronomical Objects 

Although the running time of the developed matching algorithm is low, an even larger catalog 

and more massive image data may require further performance improvements. To address this 

problem, I propose to develop a distributed version of the matching algorithm. We will study the 

following two approaches to distributed matching. 

 Image Partition. We may keep a copy of the whole catalog on multiple nodes and 

process different images on different nodes. This approach requires more data movement 

between nodes, but it can easily handle the load balancing. 

 Catalog Partition. Alternatively, we may divide the catalog among nodes. Given a new 

image, the system will identify the related parts of the catalog and send it to the 

respective nodes. This approach will help to reduce data movement, but it may not 

always provide appropriate load balancing.  

4.2 Other Problems 

4.2.1 Distant Quasar Detection 
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We now describe another astrophysics problem, specifically, detection of distant quasars. We 

plan to apply various machine learning techniques into this problem. 

Problem 

A quasar is an unusually bright galaxy, which is visible from very large distances. Astronomers 

and cosmologists are interested in the properties of distant quasars because they provide 

information about remote regions of the universe, thus enables the study of the universe 

expansion. 

An accurate identification of distant quasars is hard, because regular telescopes do not explicitly 

provide the distance information for an object, and quasars look similar to stars and regular 

galaxies. We will help astrophysicists better classify distant quasars. Specifically, given a dataset 

of astronomical objects, where only a small amount of them are labeled, we need to identify 

distant quasars in the unlabeled objects. 

 

Figure 11. Distribution of quasars (black) and non-quasars (grey) in the space of five color bands 

(U, G, R, I and Z) on the sample dataset with 8,200 objects. 
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We will describe an astronomical object by five numeric values, which represent its brightness 

levels in five different color bands. In Figure 11, we show the distribution of objects on a sample 

dataset with 8,200 objects. 

Proposed solutions 

We propose to apply three machine learning techniques to this problem. 

Supervised Learning: This is the base and simple case, where only labeled data is used to train 

a classifier. We will experiment with a variety of machine learning algorithms, including 

decision trees, support vector machines, k-means clustering, and nearest neighbors.  

Semi-Supervised Learning: In this approach, a large amount of unlabeled data is used for 

training. [Zhu, 05] has shown that unlabeled data usually helps improve the classification 

precision. We will evaluate several semi-supervised algorithms, including self-training and 

Multiview training. 

Active Learning: While we can request astronomers to acquire additional labels, it is a costly 

process. Specifically, the labeling of an astronomical object requires additional measurements, 

which cost several dollars per object. Active learning is used to handle this kind of situations: 

assuming user can provide a small amount of additional labels, active learning algorithm select 

appropriate objects of labeling [Settles, 10]. We plan to apply several active learning algorithms, 

such as uncertain sampling and query-by-committee algorithm. 

4.2.2 Object History Tracking 

Modern cosmological simulations generate massive data. For example, our collaborators from 

McWilliams Center for Cosmology produce a 3 terabytes per snapshot, with 27 snapshots per 

simulation. We propose to address an object history tracking problem: how to keep track of 

objects across snapshots. I will apply modern distributed database techniques, such as HBase 

[Chang et al., 06], to store all 80 terabytes data and support fast and flexible query operations. 

I will leave this as an optional task and consider working on it after finishing other proposed 

tasks.  
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4.3 Timeline 

I plan to complete the proposed works according to the following tentative timeline. 

 December 2010: Thesis proposal. 

 January – April 2011: Distant quasar detection.  

 May – August 2011: Improvements to the indexing of astronomical objects. 

 September – December 2011: Improvements to the identification of galaxy clusters. 

 January – April 2012: Improvements to the analysis of distances between objects. 

 May – August 2012: Object history tracking. 

 September – November 2012: Write the thesis. 

 December 2012: Thesis defense. 
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