
Covert Two-Party Computation
Luis von Ahn1, Nicholas J. Hopper2, and John Langford3

1 Carnegie Mellon University (biglou@cs.cmu.edu)
2 University of Minnesota (hopper@cs.umn.edu)

3 Toyota Technological Institute (jl@tti-c.org)

Abstract. We introduce covert two-party computation, a stronger notion of security than standard secure two-
party computation. Like standard secure two-party computation, covert two-party computation allows Alice and
Bob, with secret inputs xA and xB respectively, to compute a function f(xA, xB) without leaking any additional
information about their inputs. In addition, covert two-party computation guarantees that even the existence of a
computation is hidden from all protocol participants unless the value of the function mandates otherwise. This
allows the construction of protocols that return f(xA, xB) only when it equals a certain value of interest (such
as “Yes, we are romantically interested in each other”) but for which neither party can determine whether the
other even ran the protocol whenever f(xA, xB) is not a value of interest. Since existing techniques for secure
function evaluation always reveal that both parties participate in the computation, covert computation requires the
introduction of new techniques based on provably secure steganography. We introduce security definitions for covert
two-party computation and show that this surprising notion can be achieved by a protocol given the Decisional
Diffie-Hellman assumption in the “honest but curious” model. Using this protocol as a subroutine, we present
another protocol which is fair and secure against malicious adversaries in the Random Oracle Model — unlike
most other protocols against malicious adversaries, this protocol does not rely on zero-knowledge proofs (or similar
cut-and-choose techniques), because they inherently reveal that a computation took place. We remark that all our
protocols are of comparable efficiency to protocols for standard secure two-party computation.

1 Introduction
Secure two-party computation (or SFE, for secure function evaluation) allows Alice and Bob to evaluate
a function of their secret inputs so that neither learns anything other than the output of the function. A
real-world example often used to illustrate the applications of this primitive is when Alice and Bob wish to
determine if they are romantically interested in each other. Secure two-party computation allows them to do
so without revealing their true feelings unless they are both attracted. By securely evaluating the AND of
the bits representing whether each is attracted to the other, both parties can learn if there is a match without
risking embarrassment: if Bob is not interested in Alice, for instance, the protocol does not reveal whether
Alice is interested in him.

However, although often used to illustrate the concept, this example is not entirely logical. The very use
of two-party computation already reveals possible interest from one party: “would you like to determine if
we are both attracted to each other?”

A similar limitation occurs in a variety of other applications where the very use of the primitive raises
enough suspicion to defeat its purpose. To overcome this limitation we introduce covert two-party compu-
tation, which, unless the output of the function is favorable to both parties, hides the fact that a computation
even took place. The computation is hidden in that each party cannot determine if the other went along
with the computation or simply was communicating as they normally do. More specifically, for a given
set Y of interesting values, covert two-party computation guarantees the following (in addition to leaking
no additional knowledge about the individual inputs): (A) no outside eavesdropper can determine whether
the two parties are performing the computation or simply communicating as they normally do; (B) When
f(xA, xB) ∈ Y , the result of the computation is revealed; but (C) neither party can determine whether the
other even ran the protocol whenever f(xA, xB) /∈ Y . Thus whether or not a computation took place is
revealed based on the output of the function.

1.1 Some Applications

Among the many applications of covert two-party computation we mention the following as examples:

– Covert Authentication. Imagine that Alex works for the CIA and Bob works for Mossad (the Israeli
intelligence agency). Both have infiltrated a single terrorist cell but neither knows that the other is also
an undercover agent. If they can discover their “mutual interest” they could pool their efforts; thus both
should be looking for potential collaborators. On the other hand, suggesting something out of the ordi-
nary is happening to a normal member of the cell would likely be fatal. Running a covert computation in

1

which both parties’ inputs are their signed credentials and the result is revealed only if they are allies will
allow Alex and Bob to authenticate each other. If Bob is NOT an ally, he will not know that Alex was
even asking for authentication, and vice-versa. Furthermore, the authentication would happen without
anybody else being able to notice that something out of the ordinary happened.
It is important that the existence of the computation is revealed only after the parties are mutually
authenticated, since asking Charlie, a terrorist, to execute any SFE protocol could result in Alex being
killed. (Similar situations occur in, e.g., planning a coup d’etat or constructing a zombie network.)

– Dating. As hinted above, covert two-party computation can be used to properly determine if two people
are romantically interested in each other. It allows a person to approach another and perform a compu-
tation hidden in their normal-looking messages such that: (1) if both are romantically interested in each
other, they both find out; (2) if none or only one of them is interested in the other, neither will be able to
determine that a computation even took place.
Of course, ordinary social interactions do not require such discretion1 . But if the computation further
involves comparing some “unusual” dating preferences or if one of the parties is already involved with
somebody else, it could be embarrassing or detrimental to reveal the need to run the protocol at all.
To prevent one party from lying to determine if the other is interested, Alice and Bob could use a function
which outputs a non-repudiable “certificate” of mutual interest; but even in this case it is important to
guarantee that both obtain the result. If one of the parties can get the result while ensuring that the
other one doesn’t, this party would be able to learn the other’s input by pretending he is romantically
interested; there would be no harm for him in doing so since the other would never see the result. Two-
party computation protocols in which either both parties get the result at roughly the same time or neither
of them does are called “fair.” We will present a protocol for fair covert two-party computation.

– Cooperation between competitors. Imagine that Alice and Bob are competing online retailers and
both are being compromised by a sophisticated hacker. Imagine also that because of the volume of their
logs, neither Alice nor Bob can draw a reliable inference about the location of the hacker, and statistical
analysis indicates that about twice as many attack events are required to isolate the hacker. Thus if Alice
and Bob were to compare their logs, they could solve their problem. But if Alice admits she is being
hacked and Bob is not, he will certainly use this information to overtake her customers, and vice-versa.
Using covert computation to perform the log analysis online can break this impasse.
If Alice is concerned that Bob might fabricate data to try and learn something from her logs, the com-
putation could be modified so that when an attacker is identified, the output is both an attacker and a
signed contract stating that Alice is due a prohibitively large fine (for instance, $1 Billion US) if she can
determine that Bob falsified his log, and vice-versa.
Similar situations occur whenever cooperation might benefit mutually distrustful competitors. For ex-
ample: negotiations for a merger, contract negotiations including terms which are illegal, etc.

– Cheating in card games. Suppose two parties playing a card game want to determine whether they
should cheat. Each of them is self-interested, so cheating should not occur unless both players can
benefit from it. Using covert two-party computation with both players’ hands as input allows them to
compute if they have an opportunity to benefit from cheating while guaranteeing that: (1) neither player
finds out whether the other attempted to cheat unless they can both benefit from it; (2) none of the other
players can determine if the two are secretly planning to collude.
Hiding the desire to cheat (i.e., hiding that the function is being evaluated) is especially useful because
such desire is greatest when a player has a weak hand, so even revealing this desire already reveals
something about the player’s input.

This list of “colorful” applications is not intended to be exhaustive; we assume that the reader can see the
potential benefit of this new primitive.

1.2 Synchronization

A natural question to ask about covert computation is, “Don’t the parties have to reveal that they want to
use a covert protocol anyway?” This, however, is not the case: a protocol specification can include a public

1 except for the very shy

2

and well-known method for how and when to initiate the protocol. An example of such “synchronization”
information could be: “if we will determine whether we both like each other, the computation will start with
the first message exchanged after 5pm.” Since such details are published as part of the protocol specification,
there is no need for either party to indicate that they wish to compute anything at all: if Alice is interested in
computing with Bob, she starts the protocol with her first message after 5pm.

Who knows what? Given the guarantees that covert computation offers, it is important to clarify what the
parties know and what they don’t. We assume that both parties know a common circuit for the function that
they wish to evaluate, that they know which role they will play in the evaluation, and that they know when to
start evaluating the circuit if the computation is going to occur. Finally, we assume adversarial parties know
all such details of the protocols we construct.

1.3 Contributions and Organization

The primary contribution of this paper is to introduce a new cryptographic primitive, covert computation,
and to show that this primitive is feasible by giving a construction which can covertly realize any func-
tionality. The existence of such a primitive is in itself surprising — you could be computing something
without knowing if the other party is going along with the computation — and cannot be accomplished
using standard techniques. We outline the technical obstacles in this section.

Hiding the Computation vs. Hiding the Function. Notice that covert computation is not about hiding
what function Alice and Bob are interested in computing, which could be accomplished via standard SFE
techniques. Covert computation hides the fact that Alice and Bob are interested in computing a function at
all. This point is vital in the case of, e.g., covert authentication, where expressing a desire to do anything out
of the ordinary could result in the death of one of the parties. In fact, we assume that the specific function
to be computed (if any) is known to all parties. This is analogous to the difference in security goals between
steganography (where the adversary is assumed to know which message, if any, is hidden and simply has
to determine whether such a hidden message exists) and encryption, where the adversary is trying to decide
what the hidden message is.

Can covert two-party computation be achieved by trivial composition of SFE protocols with steganog-
raphy? No. Steganographically encoding all messages of a standard secure computation protocol would
yield a protocol for which no outside observer can determine whether it is being run, but would not guar-
antee that the participating parties themselves cannot tell that the protocol is being run. Covert two-party
computation guarantees that the computation remains hidden from the participating parties (except for cer-
tain output values of the function being computed). Provably secure steganography [17], however, is an
important step towards making covert two-party computation conceivable.

Security against malicious adversaries without Zero Knowledge. Our basic protocol uses Yao’s “gar-
bled circuit” construction for SFE as a subroutine. Unfortunately Yao’s protocol is either inherently unfair
(only one party can obtain the result) or insecure against malicious adversaries (because the functionality
of the circuit is concealed). Previous techniques for simultaneously obtaining security against malicious ad-
versaries and fairness rely on zero-knowledge proofs (or similar cut-and-choose techniques) to prove that
the “garbled” circuit computes the agreed-upon function. Such techniques cannot be applied in the case of
covert computation, because they inherently reveal the computation.

Our solution uses a form of “reactive computation” in which the basic, unfair protocol is invoked many
times as a subroutine; each time it gives an output which appears random but carries state forward to the
next invocation. Since our final protocol is fair, this technique may be of independent interest; in some
situations it is more efficient than any previous fair protocol for general SFE. In particular, suppose that k
is a security parameter, n is the size of the inputs, cf (n) is the size of a circuit to evaluate the function f ,
ch(k, n) is the size of a circuit to evaluate a cryptographic hash function on max{k, n} bits, and cot(k, l)
is the communication complexity of OT 2

1 with l-bit strings and security parameter k. Then Yao’s (unfair)
protocol has communication complexity O(kcf (n) + ncot(k, k)); our solution can be implemented with

3

communication complexity O(kcf (n)+k2ch(k, n)+(k2 +n)cot(k, k)); and the most efficient protocol for
fair secure two-party computation known prior to our work has complexity O(k2cf (n) + ncot(k, k2)) [21]
(we remark, however, that this protocol is secure in the standard model whereas our security proof is in the
random oracle model).

Roadmap. The high-level view of our presentation is as follows. First, we define “ordinary” or “innocent-
looking” communications. Our protocols will generate messages that are indistinguishable from “ordinary”
communications — so nobody can tell if the parties are performing a computation or just communicating
innocently. The first protocol we present is a modification of Yao’s “garbled circuit” two-party protocol. We
show how to instantiate the encryption and oblivious transfer primitives in Yao’s protocol to yield a complete
protocol for two-party secure function evaluation that generates messages indistinguishable from uniform
random bits. We then use provably secure steganography to transform this into a protocol that generates
messages indistinguishable from “ordinary” communications. The protocol thus constructed, however, is
not secure against malicious adversaries nor is it fair (since neither is Yao’s protocol by itself). We therefore
construct another protocol, which uses our modification of Yao’s protocol as a subroutine, that satisfies
fairness and is secure against malicious adversaries, in the Random Oracle Model.

Related Work. Secure two-party computation was introduced by Yao [22]. Since then, there have been
several papers on the topic and we refer the reader to a survey by Goldreich [12] for further references.
Constructions that yield fairness for two-party computation were introduced by Yao [23], Galil et al. [11],
Brickell et al. [6], and many others (see [21] for a more complete list of such references). The notion of
covert computation, however, is completely new.

Notation. We say a function µ :
�
→ [0, 1] is negligible if for every c > 0, for all sufficiently large k,

µ(k) < 1/kc. We denote the length (in bits) of a string or integer s by |s| and the concatenation of string
s1 and string s2 by s1||s2. We let Uk denote the uniform distribution on k bit strings. If D is a distribu-
tion with finite support X , we define the minimum entropy of D as H∞(D) = minx∈X{log2(1/PrD[x])}.
The statistical distance between two distributions C and D with joint support X is defined by ∆(C,D) =
(1/2)

∑

x∈X |PrD[x] − PrC [x]|. Two sequences of distributions, {Ck}k and {Dk}k, are called compu-
tationally indistinguishable, written C ≈ D, if for any probabilistic polynomial-time A, AdvA

C,D(k) =

|Pr[A(Ck) = 1]− Pr[A(Dk) = 1]| is negligible in k.

2 Bidirectional Channels
We hide the communication patterns of two-party computation protocols in “ordinary” or “innocent-looking”
messages. We define ordinary communication patterns and messages in a manner similar to the channels
used by [17, 2, 9]. The main difference is that our channel is shared among two participants and messages
sent by each participant might depend on previous messages sent by either one of them. To emphasize this
difference, we use the term bidirectional channel.

Messages are drawn from a set D of documents. For simplicity we assume that time proceeds in discrete
timesteps. Each party P ∈ {P0, P1} maintains a history hP , which represents a timestep-ordered list of all
documents sent and received by P . We call the set of well-formed histories H. We associate to each party P
a family of probability distributions BP =

{

BP
h

}

h∈H
on D.

The communication over a bidirectional channel B = (D,H,BP0 ,BP1) proceeds as follows. At each
timestep, each party P receives messages sent to them in the previous timestep, updates hP accordingly,
and draws a document d ← BP

hP
(the draw could result in the empty message ⊥, signifying that no action

should be taken that timestep). The document d is then sent to the other party and hP is updated. We assume
for simplicity that all messages sent at a given timestep are received at the next one. Denote by BP

hP
6=⊥

the distribution BP
hP

conditioned on not drawing ⊥. We will consider families of bidirectional channels
{Bk}k≥0 such that: (1) the length of elements in Dk is polynomially-bounded in k; (2) for each h ∈ Hk

and party P , either Pr[BP
h =⊥] = 1 or Pr[BP

h =⊥] ≤ 1− δ, for constant δ; and (3) there exists a function
`(k) = ω(log k) so that for each h ∈ Hk, H∞((BP

h)k 6=⊥) ≥ `(k) (that is, there is some variability in the
communications).

4

We assume that party P can draw from BP
h for any history h, and that the adversary can draw from

BP
h for every party P and history h. We assume that the ability to draw from these distributions does not

contradict the cryptographic assumptions that our results are based on. In the rest of the paper, all commu-
nications will be assumed to conform to the bidirectional channel structure: parties only communicate by
sending documents from D to each other and parties not running a protocol communicate according to the
distributions specified by B. Parties running a protocol strive to communicate using sequences of documents
that appear to come from B. As a convention, when B is compared to another random variable, we mean
a random variable which draws from the process B the same number of documents as the variable we are
comparing it to.

3 Covert Two-Party Computation Against Semi-Honest Adversaries

We now present a protocol for covert two-party computation that is secure against semi-honest adversaries
in the standard model (without Random Oracles) and assumes that the decisional Diffie-Hellman problem
is hard. The protocol is based on Yao’s well-known function evaluation protocol [22].

We first define covert two-party computation formally, and we then describe Yao’s protocol and the
necessary modifications to turn it into a covert computation protocol. The definition presented in this section
is only against honest-but-curious adversaries and is unfair in that only one of the parties obtains the result. In
Section 4 we will define covert two-party computation against malicious adversaries and present a protocol
that is fair: either both parties obtain the result at roughly the same time or neither of them does. The protocol
in Section 4 uses the honest-but-curious protocol presented in this section as a subroutine.

3.1 Definitions

Formally, a two-party, n-round protocol is a pair Π = (P0, P1) of programs. The computation of Π proceeds
as follows: at each round, P0 is run on its input x0, the security parameter 1k, a state s0, and the (initially
empty) history of messages exchanged so far, to produce a new message m and an internal state s0. The
message m is sent to P1, which is run on its input x1, the security parameter 1k, a state s1, and the history of
messages exchanged so far to produce a message that is sent back to P0, and a state s1 to be used in the next
round. Denote by 〈P0(x0), P1(x1)〉 the transcript of the interaction of P0 with input x0 and P1 with input x1.
This transcript includes all messages exchanged between P0 and P1 along with the timestep in which they
were sent. After n rounds, each party P ∈ {P0, P1} halts with an output, denoted by ΠP (x0, x1) = ΠP (x̄).
We say that Π correctly realizes the functionality f if for at least one P ∈ {P0, P1}, Pr[ΠP (x̄) = f(x̄)] ≥
1− ν(k), where ν is negligible.

For σ ∈ {0, 1}, we denote by V Pσ

Π (x0, x1) the view of party Pσ on input xσ when interacting with P1−σ

on input x1−σ . The view includes Pσ’s input xσ , private random bits, and all messages sent by P0 and P1.
We say Π securely realizes the functionality f if Π correctly realizes f and, for any P ′

σ and x1−σ , there is a

simulator P ′′
σ and an xσ such that P ′′

σ (f(x0, x1)) ≈ V
P ′

σ

Π (x0, x1). Notice that given f(x0, x1), P ′
σ could just

use P ′′
σ to simulate his interaction with P1−σ without actually running Π . Thus if Π securely implements f ,

neither party learns more from the interaction than could be learned from just f(x0, x1).
Define the view of party P interacting in protocol Π up through round j by VP

Π,j(x̄). When party Pσ is
not executing Π but is drawing from B instead, we denote this “protocol” by Π : B σ .

Definition 1. (Covert two-party protocol against honest-but-curious adversaries) We say an n-round, two-
party protocol (P0, P1) covertly realizes the functionality f for bidirectional channel B if it securely realizes
f and if it has the following additional properties:

1. (External covertness): For any input x̄, 〈P0(x0), P1(x1)〉 ≈ B.
2. (Internal covertness): For any input x̄, V P0

Π,n(x̄) ≈ V P0
Π:B1,n(x̄) and V P1

Π,n−1(x̄) ≈ V P1
Π:B0,n−1(x̄).

3. (Final Covertness): For every PPT D there exists a PPT D ′ and a negligible ν such that for any x1 and
any distribution X0, AdvD

V
P1
Π

(X0,x1),V
P1
Π:B0

(X0,x1)
(k) ≤ AdvD′

f(X0 ,x1),Ul
(k) + ν(k).

5

In other words, until the final round, neither party can distinguish between the case that the other is running
the protocol or just drawing from B; and after the final message, P0 still cannot tell, while P1 can only
distinguish the cases if f(x0, x1) and Um are distinguishable.

We will slightly abuse notation and say that a protocol which has messages indistinguishable from
random bits (even given one party’s view) is covert for the uniform channel U .

3.2 Modifying Yao’s Protocol For Two-Party Secure Function Evaluation

Yao’s protocol [22] securely (not covertly) realizes any functionality f that is expressed as a combinatorial
circuit. The protocol is run between two parties, the Input Owner A and the Program Owner B. The input
of A is a value x, and the input of B is a circuit to compute the function f . At the end of the protocol, A
learns f(x) (and nothing else about f) and B learns nothing about x. At a high level view, the protocol and
its modification work as follows (we describe all the details in the Appendix):

– B first produces a “garbled” version of the circuit by assigning to every wire of the circuit two random
k-bit strings to denote the values 0 and 1.

– B then uses a semantically secure encryption scheme to produce a description of the circuit such that
given the garbled input values corresponding to x, A can compute the garbled output.

– A and B then perform |x| executions of 1-out-of-2 oblivious transfer (OT 2
1) in which A learns the

garbled input values corresponding to x and nothing else. In the Appendix, we show how to modify a
OT 2

1 protocol from [19] so that it is covert for the uniform channel:

Lemma 1. Under the Decisional Diffie-Hellman assumption, there exists a protocol which covertly re-
alizes OT 2

1 for the uniform channel.

– Finally, B sends A the encrypted description of the circuit and an interpretation table that allows A to
interpret the garbled output values.

Lemma 2. It is possible to instantiate Yao’s protocol so that the garbled circuit and interpretation table
are indistinguishable from uniform bits

For completeness, we describe the full protocol in the Appendix, where we also prove:

Theorem 1. Any functionality f can be covertly realized for the uniform channel U .

3.3 Steganographic Encoding

We use provably secure steganography to transform the above protocol into a covert two-party protocol for
any bidirectional channel B satisfying the properties mentioned in Section 2. We also use steganography as a
building block for all other covert protocols presented in this paper. For completeness we state a construction
that has appeared in various forms in [7, 17, 2].

Let HASH denote a family of hash functions H : D → {0, 1}c which is pairwise independent. Let D
denote an arbitrary probability distribution on D. The functions in Protocol 1 hide and recover m uniformly-
chosen bits in a distribution indistinguishable from D when H∞(D) = ω(log k) and m = O(log k).

Protocol 1 (Basic steganographic encoding/decoding routines)

Procedure EncodeD:
Input: H ∈ HASH, c ∈ {0, 1}m

Let j = 0
repeat:

sample s← D, increment j
until H(s) = c OR (j > k)
Output: s

Procedure Decode:
Input: H ∈ HASH, s ∈ D
set c = H(s)
Output: c

6

Proposition 1. Let H ← HASH. Then ∆
(

(H,EncodeD(H,Um)), (H,D)
)

≤ 2−(`(k)−m)/2+1 .

The result follows from the Leftover Hash Lemma ([16], Lemma 4.8). Intuitively, it guarantees that Encode(c)
will be (statistically) indistinguishable from the messages exchanged in a bidirectional channel whenever c
is a uniformly chosen bit string. (When we refer to Encode with only a single argument, we implicitly
assume that an appropriate H has been chosen and is publicly accessible to all parties.)

Thus, to guarantee covertness for channel B, we will ensure that all our protocols generate messages that
are indistinguishable from uniformly chosen random bits and then encode these messages with Encode.
Formally, suppose Π = (P0, P1) is an arbitrary two-party protocol which securely realizes the functionality
f . We will construct a protocol ΣΠ = (SP0

0 , SP1
1) which has the property that if V Pb

Π (x̄) is indistinguishable
from uniformly chosen bits (that is, Π covertly realizes f for the uniform channel), then ΣΠ covertly realizes
the functionality f for channel B. We assume that P0, P1 have the property that, given a partial input, they
return the string ε, indicating that more bits of input are needed. Then SPb

b has the following round function
(which simply uses Encode and Decode to encode and decode all messages exchanged by P0 and P1):

Protocol 2 (Transformation to a covert protocol)

Procedure S
Pb

b :
Input: history h ∈ H, state, document s ∈ D

draw d← B
Pb

h

if (state.status = “receiving”) then
set state.msg = state.msg‖Decode(s); set c = Pb(state.msg)
if (c 6= ε) set state.status = “sending”; set state.msg = c

if (state.status = “sending” and d 6=⊥) then

set c, state.msg = state.msg, where |c| = m; set d = Encode
(B

Pb
h

6=⊥)(c)
if state.msg = “” set state.status = “receiving”

Output: message d, state

Theorem 2. If Π covertly realizes the functionality f for the uniform channel, then ΣΠ covertly realizes f
for the bidirectional channel B.

Proof. Let kc be an upper bound on the number of bits in 〈P0(x0), P1(x1)〉. Then ΣΠ transmits at most
2kc/m (non-empty) documents. Suppose there is a distinguisher D for V Sb

Σ (x̄) from V Sb

Σ:B1−b
(x̄) with sig-

nificant advantage ε. Then D can be used to distinguish VPb

Π (x̄) from V Pb

Π:U1−b
(x̄), by simulating each round

as in Σ to produce a transcript T ; If the input is uniform, then ∆(T,B) ≤ (kc/m)22−(`(k)−m)/2 = ν(k),
and if the input is from Π , then T is identical to V Sb

Σ (x̄). Thus D’s advantage in distinguishing Π from
Π : U1−b is at least ε− ν(k).

IMPORTANT: For the remainder of the paper we will present protocols Π that covertly realize f for U .
It is to be understood that the final protocol is meant to be ΣΠ , and that when we state that “Π covertly
realizes the functionality f ” we are referring to Σ Π .

3.4 Combining The Pieces

We can combine Lemma 1 along with Theorem 1 to construct a protocol which covertly realizes any two-
party functionality. The final protocol, which we call COVERT-YAO, is simple: assume that both parties know
a circuit Cf computing the functionality f . Bob first uses the modified Yao’s protocol to create a garbled
circuit for f(·, xB). Alice and Bob perform |xA| modified oblivious transfers for the garbled wire values
corresponding to Alice’s inputs. Bob sends the garbled gates to Alice, along with the information necessary
to de-garble the outputs. Finally, Alice outputs f(xA, xB).

Theorem 3. The COVERT-YAO protocol covertly realizes the functionality f .

7

Notice that as the protocol COVERT-YAO is described, it is necessary that Bob does not learn the output,
because a malicious Bob could give Alice a garbled circuit with different operations in the gates, which could
actually output some constant message giving away Alice’s participation even when the value f(x0, x1)
would not.

4 Fair Covert Two-party Computation Against Malicious Adversaries

The protocol presented in the previous section has two serious weaknesses. First, because Yao’s construction
conceals the function of the circuit, a malicious Bob can garble a circuit that computes some function other
than the result Alice agreed to compute. In particular, the new circuit could give away Alice’s input or output
some distinguished string that allows Bob to determine that Alice is running the protocol. Additionally, the
protocol is unfair: either Alice or Bob does not get the result.

In this section we present a protocol that avoids these problems. In particular, our solution has the
following properties: (1) If both parties follow the protocol, both get the result; (2) If Bob cheats by garbling
an incorrect circuit, neither party can tell whether the other is running the protocol, except with negligible
advantage; and (3) Except with negligible probability, if one party terminates early and computes the result
in time T , the other party can compute the result in time at most O(T). Our protocol is secure in the random
oracle model, under the Decisional Diffie-Hellman assumption. We show at the end of this section, however,
that our protocol can be made to satisfy a slightly weaker security condition without the use of a random
oracle. (We note that the technique used in this section has some similarities to one that appears in [1].)

4.1 Definitions

We assume the existence of a non-interactive bitwise commitment scheme with commitments which are
indistinguishable from random bits. One example is the (well-known) scheme which commits to the bit b by
cmt(b; (r, x)) = r‖π(x)‖(x · r)⊕ b, where π is a one-way permutation on domain {0, 1}k , x · y denotes the
inner-product of x and y over GF (2), and x, r ← Uk. (The integer DDH assumption implies the existence of
π.) Commitment to a multiple-bit string s, CMT (s; ·), can be implemented by committing to the individiual
bits of s.

Let f denote the functionality we wish to compute. We say that f is fair if for every distinguisher Dσ

distinguishing f(X0, X1) from U given Xσ with advantage at least ε, there is a distinguisher D1−σ with
advantage at least ε − ν(k), for a negligible function ν. (That is, if P0 can distinguish f(X0, X1) from
uniform, so can P1.) We say f is strongly fair if (f(X0, X1), X0) ≈ (f(X0, X1), X1).

A n-round, two-party protocol Π = (P0, P1) to compute functionality f is said to be a strongly fair
covert protocol for the bidirectional channel B if the following conditions hold:

– (External covertness): For any input x̄, 〈P0(x0), P1(x1)〉 ≈ B.
– (Strong Internal Covertness): There exists a PPT E (an extractor) such that if PPT D(V) distinguishes

between V Pσ

Π,i(x̄) and V Pσ

Π:B1−σ ,i(x̄) with advantage ε, ED(V Pσ

Π (x̄)) computes f(x̄) with probability at
least ε/poly(k)

– (Strong Fairness): If the functionality f is fair, then for any Cσ running in time T such that Pr[Cσ(V σ
Π,i(x̄)) =

f(x̄)] ≥ ε, there exists a C1−σ running in time O(T) such that Pr[C1−σ(V 1−σ
Π,i (x̄)) = f(x̄)] = Ω(ε).

– (Final Covertness): For every PPT D there exists a PPT D ′ and a negligible ν such that for any xσ and
distribution X1−σ , AdvD

V Pσ
Π

(X1−σ ,xσ),V Pσ
Π:B1−σ

(X1−σ ,xσ)
(k) ≤ AdvD′

f(X1−σ ,xσ),Ul
(k) + ν(k).

Intuitively, the Internal Covertness requirement states that “Alice can’t tell if Bob is running the protocol
until she gets the answer,” while Strong Fairness requires that “Alice can’t get the answer unless Bob can.”
Combined, these requirements imply that neither party has an advantage over the other in predicting whether
the other is running the protocol.

8

4.2 Construction

As before, we have two parties, P0 (Alice) and P1 (Bob), with inputs x0 and x1, respectively, and the
function Alice and Bob wish to compute is f : {0, 1}l0 × {0, 1}l1 → {0, 1}l , presented by the circuit Cf .
The protocol proceeds in three stages: COMMIT, COMPUTE, and REVEAL. In the COMMIT stage, Alice
picks k + 2 strings, r0, and s0[0], . . . , s0[k], each k bits in length. Alice computes commitments to these
values, using a bitwise commitment scheme which is indistinguishable from random bits, and sends the
commitments to Bob. Bob does likewise (picking strings r1, s1[0], . . . , s1[k]).

The next two stages involve the use of a pseudorandom generator G : {0, 1}k → {0, 1}l which we will
model as a random oracle for the security argument only: G itself must have an efficiently computable circuit.
In the COMPUTE stage, Alice and Bob compute two serial runs (“rounds”) of the covert Yao protocol
described in the previous section. If neither party cheats, then at the conclusion of the COMPUTE stage,
Alice knows f(x0, x1)⊕G(r1) and Bob’s value s1[0]; while Bob knows f(x0, x1)⊕G(r0) and Alice’s value
s0[0]. The REVEAL stage consists of k rounds, where each round consists of two runs of the COVERT-YAO

protocol. At the end of each round i, if nobody cheats, Alice learns the i th bit of Bob’s string r1, labeled
r1[i] and also Bob’s value s1[i]. After k rounds in which neither party cheats, Alice thus knows r1 and can
compute f(x0, x1) by computing the exclusive-or of G(r1) with the value she learned in the COMPUTE
stage, and Bob can likewise compute the result.

Each circuit sent by Alice must check that Bob has obeyed the protocol; thus at every round of every
stage, the circuit that Alice sends to Bob takes as input the opening of all of Bob’s commitments, and checks
to see that all of the bits Alice has learned so far are consistent with Bob’s input. The difficulty to overcome
with this approach is that the result of the check cannot be returned to Alice without giving away that Bob is
running the protocol. To solve this problem, Alice’s circuits also take as input the last value s0[i−1] that Bob
learned. If Alice’s circuit ever finds that the bits she has learned are inconsistent with Bob’s input, or that
Bob’s input for s0[i− 1] is not consistent with the actual value of s0[i− 1], the output is a uniformly chosen
string of the appropriate length. Once this happens, all future outputs to Bob will also be independently
and uniformly chosen, because he will have the wrong value for s0[i], which will give him the wrong value
for s0[i + 1], etc. Thus the values s0[1], . . . , s0[k] serve as “state” bits that Bob maintains for Alice. The
analogous statements hold for Bob’s circuits and Alice’s inputs.

Protocol 3 (Fair covert two-party computation)

Inputs and setup. To begin, each party Pσ chooses k + 2 random strings rσ , sσ[0],. . . ,sσ[k] ← Uk. Pσ’s
inputs to the protocol are then Xσ = (xσ , rσ, sσ[0], . . . , sσ[k]).

COMMIT stage. Each party Pσ computes the commitment κσ = CMT (Xσ; ρσ) using randomness ρσ ,
and sends this commitment to the other party. Denote by Kσ the value that Pσ interprets as a commitment
to X1−σ , that is, K0 denotes the value Alice interprets as a commitment to Bob’s input X1.

COMPUTEσ(x1−σ, r, s[0 . . . k], ρ) =
if (Kσ = CMT (x1−σ, r, s; ρ))
then
set F = G(rσ)⊕ f(x0, x1)
set S = sσ[0]

else
draw F ← Ul, S ← Uk .

output F‖S

REVEALi
σ(x1−σ, S1−σ[i−1], r, s1−σ[0 . . . k], ρ) =

Let F = G(r)⊕ f(x0, x1)
if (Kσ = CMT (x1−σ, r, s1−σ; ρ)

and F = Fσ

and Rσ[i− 1] = r[i − 1]
and S1−σ[i− 1] = sσ[i− 1]
and Sσ[i − 1] = s1−σ[i− 1])

then
set R = rσ[i], S = sσ[i]

else
draw R← {0, 1}, S ← Uk

output R‖S

Fig. 1. The circuits COMPUTE and REVEAL.

9

COMPUTE stage. The COMPUTE stage consists of two serial runs of the COVERT-YAO protocol.

1. Bob garbles the circuit COMPUTE1 shown in figure 1, which takes x0, r0, s0[0], . . . ,s0[k], and ρ0 as input
and outputs G(r1) ⊕ f(x0, x1)‖s1[0] if K1 is a commitment to X0. If this check fails, COMPUTE1

outputs a uniformly chosen string, which has no information about f(x0, x1) or s1[0]. Bob and Alice
perform the COVERT-YAO protocol; Alice labels her result F0‖S0[0].

2. Alice garbles the circuit COMPUTE0 shown in figure 1, which takes x1, r1, s1[0],. . . ,s1[k], and ρ1 as
input and outputs G(r0)⊕ f(x0, x1)‖s0[0] if K0 is a commitment to X1. If this check fails, COMPUTE0

outputs a uniformly chosen string, which has no information about f(x0, x1) or s0[0]. Bob and Alice
perform the COVERT-YAO protocol; Bob labels his result F1‖S1[0].

REVEAL stage. The REVEAL stage consists of k rounds, each of which consists of 2 runs of the COVERT-
YAO protocol:

1. In round i, Bob garbles the circuit REVEAL i
1 shown in figure 1, which takes input x0, S0[i−1], r0, s0[0 . . . k], ρ0

and checks that:
– Bob’s result from the COMPUTE stage, F1, is consistent with x0, r0.
– The bit R1[i − 1] which Bob learned in round i − 1 is equal to bit i − 1 of Alice’s secret r0. (By

convention, and for notational uniformity, we will define R0[0] = R1[0] = r0[0] = r1[0] = 0)
– The state S0[i − 1] that Bob’s circuit gave Alice in the previous round was correct. (Meaning Alice

obeyed the protocol up to round i− 1.)
– Finally, that the state S1[i − 1] revealed to Bob in the previous round was the state s0[i − 1] which

Alice committed to in the COMMIT stage.
If all of these checks succeed, Bob’s circuit outputs bit i of r1 and state s1[i]; otherwise the circuit
outputs a uniformly chosen (k +1)-bit string. Alice and Bob perform COVERT-YAO and Alice labels the
result R0[i], S0[i].

2. Alice garbles the circuit REVEAL i
0 depicted in figure 1 which performs the analogous computations to

REVEALi
1, and performs the COVERT-YAO protocol with Bob. Bob labels the result R1[i], S1[i].

After k such rounds, if Alice and Bob have been following the protocol, we have R1 = r0 and R0 = r1 and
both parties can compute the result. The “states” s are what allow Alice and Bob to check that all previous
outputs and key bits (bits of r0 and r1) sent by the other party have been correct, without ever receiving the
results of the checks or revealing that the checks fail or succeed. In Appendix B we prove the following:

Theorem 4. Construction 3 is a strongly fair covert protocol realizing the functionality f

5 Conclusions and Open Questions
We have presented protocols for covert two-party computation that combine steganography with crypto-
graphic protocols whose messages are all indistinguishable from uniformly chosen random bits. Covert
two-party computation can be applied whenever the use of ordinary two-party computation raises enough
suspicion to defeat its intended purpose. Our protocols are secure against semi-honest adversaries under the
decisional Diffie-Hellman assumption and against malicious adversaries in the Random Oracle model.

Our work leaves room for improvement and open problems. For example, given the known theoretical
issues with the random oracle methodology [8, 10, 15, 4], it is an important open problem to remove the RO
assumption from the security proof for Construction 3. In Appendix C we show that a weak form of fair
covert two-party computation can be satisfied in the plain model. It seems at least plausible that construc-
tions based on concrete assumptions such as the “knowledge-of-exponent” assumption or the “generalized
BBS” assumption may allow construction of standard fair covert protocols, yet the obvious applications
always destroy the final covertness property. Another open question is that of improving the efficiency of
the protocols presented here, either by designing protocols for specific goals or through adapting efficient
two-party protocols to provide covertness.

An interesting question is whether the notion of covert two-party computation can be extended in some
natural and implementable way to multiple parties. Such a generalization could have important applications
in the area of anonymous communication, allowing, for instance, the deployment of undetectable anonymous
remailer networks.

10

References

1. G. Aggarwal, N. Mishra and B. Pinkas. Secure computation of the k’th-ranked element In: Advances in Cryptology – Proceed-
ings of Eurocrypt ’04, pages 40–55, 2004.

2. L. von Ahn and N. Hopper. Public-Key Steganography. In: Advances in Cryptology – Proceedings of Eurocrypt ’04, pages
323–341, 2004.

3. M. Backes and C. Cachin. Public-Key Steganography with Active Attacks. To appear in Theory of Cryptography Conference
(TCC), 2005.

4. M. Bellare, A. Boldyreva, and A. Palacio An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem.
In: Advances in Cryptology — Eurocrypt 2004, pages 171–188, 2004.

5. M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. Advances in Cryptology – Proceedings of CRYPTO
’89, pages 547-557, 1990.

6. E. Brickell, D. Chaum, I. Damgärd, J. van de Graaf: Gradual and Verifiable Release of a Secret. Advances in Cryptology –
Proceedings of CRYPTO ’87, pages 156-166, 1987.

7. C. Cachin. An Information-Theoretic Model for Steganography. Information Hiding, 2nd International Workshop, pages 306-
318, 1998.

8. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, revisited. In: Thirtieth Annual ACM Symposium on
Theory of Computing, pages 209–218, 1998.

9. N. Dedic, G. Itkis, L. Reyzin and S. Russell. Upper and Lower Bounds on Black-Box Steganography. To appear in Theory of
Cryptography Conference (TCC), 2005.

10. C. Dwork, M. Naor, O. Reignold, and L. Stockmeyer. Magic Functions. In: Proceedings of the Fortieth IEEE Symposium on
Foundations of Computer Science, pages 523–534 ,1999

11. Z. Galil, S. Haber, M. Yung. Cryptographic Computation: Secure Fault-Tolerant Protocols and the Public-Key Model. Advances
in Cryptology – Proceedings of CRYPTO ’87, pages 135-155, 1987.

12. O. Goldreich. Secure Multi-Party Computation. Unpublished Manuscript. http://philby.ucsd.edu/books.html, 1998.
13. O. Goldreich, S. Goldwasser and S. Micali. How to construct pseudorandom functions. Journal of the ACM, vol 33, 1998.
14. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. Nineteenth Annual ACM Symposium on Theory of

Computing, pages 218-229.
15. S. Goldwasser and Y.T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In: Proceedings of the 44th Annual IEEE

Symposium on Foundations of Computer Science, pages 102–113, 2003.
16. J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on

Computing, 28(4), pages 1364-1396, 1999.
17. N. Hopper, J. Langford and L. Von Ahn. Provably Secure Steganography. Advances in Cryptology – Proceedings of CRYPTO

’02, pages 77-92, 2002.
18. M. Naor. Bit Commitment Using Pseudorandomness. J. Cryptology 4(2): 151-158 (1991)
19. M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In: Proceedings of the 12th Annual ACM/SIAM Symposium on

Discrete Algorithms (SODA 2001), pages 448–457. 2001.
20. M. Naor, B. Pinkas and R. Sumner. Privacy Preserving Auctions and Mechanism Design. Proceedings, 1999 ACM Conference

on Electronic Commerce.
21. B. Pinkas. Fair Secure Two-Party Computation. In: Advances in Cryptology – Eurocrypt ’03, pp 87–105, 2003.
22. A. C. Yao. Protocols for Secure Computation. Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science,

1982, pages 160–164.
23. A. C. Yao. How to Generate and Exchange Secrets. Proceedings of the 27th IEEE Symposium on Foundations of Computer

Science, 1986, pages 162–167.

Appendix A: Yao’s Protocol and Modifications

Yao’s protocol [22] securely (not covertly) realizes any functionality f that is expressed as a combinatorial
circuit. Our description is based on [20]. The protocol is run between two parties, the Input Owner A and
the Program Owner B. The input of A is a value x, and the input of B is a description of a function f . At the
end of the protocol, B learns f(x) (and nothing else about x), and A learns nothing about f . The protocol
requires two cryptographic primitives, pseudorandom functions and oblivious transfer, which we describe
here for completeness.

Pseudorandom Functions. Let {F : {0, 1}k × {0, 1}L(k) → {0, 1}l(k)}k denote a sequence of func-
tion families. Let A be an oracle probabilistic adversary. We define the prf-advantage of A over F as
Advprf

F,A(k) = |PrK [AFK(·)(1k) = 1] − Prg[A
g(1k) = 1]|, where K ← Uk and g is a uniformly cho-

sen function from L(k) bits to l(k) bits. Then F is pseudorandom if Advprf
F,A(k) is negligible in k for all

polynomial-time A. We will write FK(·) as shorthand for F|K|(K, ·) when |K| is known.

11

Oblivious Transfer. 1-out-of-2 oblivious transfer (OT2
1) allows two parties, the sender who knows the

values m0 and m1, and the chooser whose input is σ ∈ {0, 1}, to communicate in such a way that at
the end of the protocol the chooser learns mσ , while learning nothing about m1−σ , and the sender learns
nothing about σ. Formally, let O = (S,C) be a pair of interactive PPT programs. We say that O is correct
if Pr[OC((m0,m1), σ) = mσ] ≥ 1 − ε(k) for negligible ε. We say that O has chooser privacy if for any
PPT S′ and any m0,m1,

∣

∣Pr[S′(〈S′(m0,m1), C(σ)〉) = σ]− 1
2

∣

∣ ≤ ε(k) and O has sender privacy if for
any PPT C ′ there exists a σ and a PPT C ′′ such that C ′′(mσ) ≈ V C′

Π ((m0,m1), σ). We say that O securely
realizes the functionality OT2

1 if O is correct and has chooser and sender privacy.

Yao’s Protocol. Yao’s protocol is based on expressing f as a combinatorial circuit. Starting with the circuit,
the program owner B assigns to each wire i two random k-bit values (W 0

i ,W 1
i) corresponding to the 0 and

1 values of the wire. It also assigns a random permutation πi over {0, 1} to the wire. If a wire has value
bi we say it has “garbled” value (W bi

i , πi(bi)). To each gate g, B assigns a unique identifier Ig and a table
Tg which enables computation of the garbled output of the gate given the garbled inputs. Given the garbled
inputs to g, Tg does not disclose any information about the garbled output of g for any other inputs, nor does
it reveal the actual values of the input bits or the output bit.

Assume g has two input wires (i, j) and one output wire out (gates with higher fan in or fan out can be
accommodated with straightforward modifications). The construction of Tg uses a pseudorandom function
F whose output length is k + 1. The table Tg is as follows:

πi(bi) πj(bj) value

0 0 (W
g(bi,bj)
out , πout(bout))⊕ F

W
bj
j

(Ig, 0) ⊕ F
W

bi
i

(Ig, 0)

0 1 (W
g(bi,bj)
out , πout(bout))⊕ F

W
bj
j

(Ig, 0) ⊕ F
W

bi
i

(Ig, 1)

1 0 (W
g(bi,bj)
out , πout(bout))⊕ F

W
bj
j

(Ig, 1) ⊕ F
W

bi
i

(Ig, 0)

1 1 (W
g(bi,bj)
out , πout(bout))⊕ F

W
bj
j

(Ig, 1) ⊕ F
W

bi
i

(Ig, 1)

To compute f(x), B computes garbled tables Tg for each gate g, and sends the tables to A. Then, for each
circuit input wire i, A and B perform an oblivious transfer, where A plays the role of the chooser (with
σ = bi) and B plays the role of the sender, with m0 = W 0

i ‖πi(0) and m1 = W 1
i ‖πi(1). A computes πj(bj)

for each output wire j of the circuit (by trickling down the garbled inputs using the garbled tables) and sends
these values to B, who applies π−1

j to learn bj . Alternatively, B can send the values πj (for each circuit
output wire j) to A, who then learns the result. Notice that the first two columns of Tg can be implicitly
represented, leaving a “table” which is indistinguishable from uniformly chosen bits.

Covert Oblivious Transfer

As mentioned above, we guarantee the security of our protocols by ensuring that all the messages exchanged
are indistinguishable from uniformly chosen random bits. To this effect, we present a modification of the
protocol in [19] for oblivious transfer that ensures that all messages exchanged are indistinguishable from
uniform when the input messages m0 and m1 are uniformly chosen. Our protocol relies on the well-known
integer decisional Diffie-Hellman assumption:

Integer Decisional Diffie-Hellman. Let P and Q be primes such that Q divides P − 1, let � ∗
P be the

multiplicative group of integers modulo P , and let g ∈ � ∗
P have order Q. Let A be an adversary that takes

as input three elements of � ∗
P and outputs a single bit. Define the DDH advantage of A over (g, P,Q) as:

Advddh
A

(g, P,Q) = |Pra,b,r[Ar(g
a, gb, gab, g, P,Q) = 1]−Pra,b,c,r[Ar(g

a, gb, gc, g, P,Q) = 1]|, where Ar

denotes the adversary A running with random tape r, a, b, c are chosen uniformly at random from � Q and
all the multiplications are over � ∗

P . The Integer Decisional Diffie-Hellman assumption (DDH) states that for
every PPT A, for every sequence {(Pk, Qk, gk)}k satisfying |Pk| = k and |Qk| = Θ(k), Advddh

A
(gk, Pk, Qk)

is negligible in k.

12

Setup. Let p = rq + 1 where 2k < p < 2k+1, q is a large prime, and gcd(r, q) = 1; let g generate � ∗
p and

thus γ = gr generates the unique multiplicative subgroup of order q; let r̂ be the least integer r such that
rr̂ = 1 mod q. Assume |m0| = |m1| < k/2. Let H : {0, 1}2k × � p→ {0, 1}

k/2 be a pairwise-independent
family of hash functions. Define the randomized mapping φ : 〈γ〉 → � ∗

p by φ(h) = hr̂gβq, for a uniformly
chosen β ∈ � r; notice that φ(h)r = h and that for a uniformly chosen h ∈ 〈γ〉, φ(h) is a uniformly chosen
element of � ∗

p. The following protocol is a simple modification of the Naor-Pinkas 2-round oblivious transfer
protocol [19]:

Protocol 4 COT:

1. On input σ ∈ {0, 1}, C chooses uniform a, b ∈ � q, sets cσ = ab mod q and uniformly chooses c1−σ ∈

� q. C sets x = γa, y = γb, z0 = γc0 , z1 = γc1 and sets x′ = φ(x), y′ = φ(y), z′0 = φ(z0), z
′
1 = φ(z1).

If the most significant bits of all of x′, y′, z′0, z
′
1 are 0, C sends the least significant k bits of each to S;

otherwise C picks new a, b, c1−σ and starts over.
2. The sender recovers x, y, z0, z1 by raising to the power r, picks f0, f1 ∈ H and then:

– S repeatedly chooses uniform r0, s0 ∈ � q and sets w0 = xs0γr0 , w′
0 = φ(w0) until he finds a pair

with w′
0 ≤ 2k. He then sets K0 = zs0

0 yr0 .
– S repeatedly chooses uniform r1, s1 ∈ � q and sets w1 = xs1γr1 , w′

1 = φ(w1) until he finds a pair
with w′

1 ≤ 2k. He then sets K1 = zs1
1 yr1 .

S sends w′
0‖f0‖f0(K0)⊕m0‖w

′
1‖f1‖f1(K1)⊕m1

3. C recovers Kσ = (w′
σ)rb and computes mσ .

Lemma 3. S cannot distinguish between the case that C is following the COT protocol and the case that C
is drawing from Uk; that is,

V S
COT(m0,m1, σ) ≈ V S

COT:UC
(m0,m1, σ).

Proof. Suppose that there exists a distinguisher D with advantage ε. Then there exists a DDH adversary A
with advantage at least ε/8 − ν(k) for a negligible ν. A takes as input a triple (γa, γb, γc), picks a random
bit σ, sets zσ = γc and picks a uniform z′1−σ ∈ {0, 1}

k , and computes x′ = φ(γa), y′ = φ(γb), z′σ = φ(zσ);
if all three are at most 2k, then A outputs D(x′, y′, z′0, z

′
1), otherwise A outputs 0.

Clearly, when c 6= ab,

Pr[A(γa, γb, γc) = 1] ≥
1

8
Pr[D(V S

COT:UC
) = 1] ,

since the elements passed by A to D are uniformly chosen and D calls A with probability at least 1/8 (since
each of x′, y′, z′σ are greater than 2k with probability at most 1/2). But when c = ab, then

Pr[A(γa, γb, γc) = 1] ≥ (1/8 − ν(k)) Pr[D(V S
COT) = 1] ,

since the elements passed by A to D are chosen exactly according to the distribution on C’s output specified
by COT ; and since the probability that D is invoked by A is at least 1/8 when c 6= ab it can be at most ν(k)
less when c = ab, by the Integer DDH assumption. Thus the DDH advantage of A is at least ε/8 − ν(k).
Since ε/8 must be negligible by the DDH assumption, we have that D’s advantage must also be negligible.

Lemma 4. When m0,m1 ← Uk/2, C cannot distinguish between the case that S is following the COT pro-
tocol and the case that S is sending uniformly chosen strings. That is, V C

COT(Uk/2, Uk/2, σ) ≈ V C
COT:US

(Uk/2, Uk/2, σ).

Proof. The group elements w0, w1 are uniformly chosen by S; thus when m0,m1 are uniformly chosen, the
message sent by S must also be uniformly distributed.

13

Lemma 5. The COT protocol securely realizes the OT2
1 functionality.

Proof. The protocol described by Pinkas and Naor is identical to the COT protocol, with the exception
that φ is not applied to the group elements x, y, z0, z1, w0, w1 and these elements are not rejected if they
are greater than 2k. Suppose an adversarial sender can predict σ with advantage ε in COT; then he can be
used to predict σ with advantage ε/16 − ν(k) in the Naor-Pinkas protocol, by applying the map φ to the
elements x, y, z0, z1 and predicting a coin flip if not all are less than 2k, and otherwise using the sender’s
prediction against the message that COT would send. Likewise, any bit a chooser can predict about (m0,m1)
with advantage ε in COT, can be predicted with advantage ε/4 in the Naor-Pinkas protocol: the Chooser’s
message can be transformed into elements of 〈γ〉 by taking the components to the power r, and the resulting
message of the Naor-Pinkas sender can be transformed by sampling from w ′

0 = φ(w0), w
′
1 = φ(w1) and

predicting a coin flip if either is greater than 2k, but otherwise giving the prediction of the COT chooser on
w′

0‖f0‖f0(K0)⊕m0‖w
′
1‖f1‖f1(K1)⊕m1.

Conjoining these three lemmas gives the following theorem:

Theorem 5. Protocol COT covertly realizes the uniform-OT2
1 functionality

We can combine the components developed up to this point to make a protocol which covertly realizes
any two-party functionality. The final protocol, which we call COVERT-YAO, is simple: assume that both
parties know a circuit Cf computing the functionality f . Bob first uses Yao’s protocol to create a garbled
circuit for f(·, xB). Alice and Bob perform |xA| covert oblivious transfers for the garbled wire values cor-
responding to Alice’s inputs. Bob sends the garbled gates to Alice. Finally, Alice collects the garbled output
values and sends them to Bob, who de-garbles these values to obtain the output.

Theorem 1. COVERT-YAO covertly realizes any functionality f for the uniform channel.

Proof. That (Alice, Bob) securely realize the functionality f follows from the security of Yao’s protocol.
Now consider the distribution of each message sent from Alice to Bob:

– In each execution of COT: each message sent by Alice is uniformly distributed
– Final values: these are masked by the uniformly chosen bits that Bob chose in garbling the output gates.

To an observer, they are uniformly distributed.

Thus Bob’s view, until the last round, is in fact identically distributed when Alice is running the protocol
and when she is drawing from U . Likewise, consider the messages sent by Bob:

– In each execution of COT: because the W b
i from Yao’s protocol are uniformly distributed, Theorem 5

implies that Bob’s messages are indistinguishable from uniform strings.
– When sending the garbled circuit, the pseudorandomness of F and the uniform choice of the W b

i imply
that each garbled gate, even given one garbled input pair, is indistinguishable from a random string.

Thus Alice’s view after all rounds of the protocol is indistinguishable from her view when Bob draws from
U .

If Bob can distinguish between Alice running the protocol and drawing from B after the final round,
then he can also be used to distinguish between f(XA, xB) and Ul. The approach is straightforward: given a
candidate y, use the simulator from Yao’s protocol to generate a view of the “data layer.” If y ← f(X A, xB),
then, by the security of Yao’s protocol, this view is indistinguishable from Bob’s view when Alice is running
the covert protocol. If y ← Ul, then the simulated view of the final step is distributed identically to Alice
drawing from U . Thus Bob’s advantage will be preserved, up to a negligible additive term.

14

Appendix B: Proof of Theorem 4

Theorem 4. Construction 3 is a strongly fair covert protocol realizing the functionality f

Proof. The correctness of the protocol follows by inspection. The two-party security follows by the security
of Yao’s protocol. Now suppose that some party, wlog Alice, cheats (by sending a circuit which computes
an incorrect result) in round j. Then, the key bit R0[j +1] and state S0[j +1] Alice computes in round j +1
will be randomized; and with overwhelming probability every subsequent result that Alice computes will be
useless. Assuming Alice can distinguish f(x0, X1) from uniform, she can still compute the result in at most
2k−j time by exhaustive search over the remaining key bits. By successively guessing the round at which
Alice began to cheat, Bob can compute the result in time at most 2k−j+2. If Alice aborts at round j, Bob
again can compute the result in time at most 2k−j+1. If Bob cheats in round j by giving inconsistent inputs,
with high probability all of his remaining outputs are randomized; thus cheating in this way gives him no
advantage over aborting in round j − 1. Thus, the fairness property is satisfied.

If G is a random oracle, neither Alice nor Bob can distinguish anything in their view from uniformly
chosen bits without querying G at the random string chosen by the other. So given a distinguisher D running
in time p(k) for V P0

Π,i(x̄) with advantage ε, it is simple to write an extractor which runs D, recording its
queries to G, picks one such query (say, q) uniformly, and outputs G(q) ⊕ F0. Since D can only have an
advantage when it queries r1, E will pick q = r1 with probability at least 1/p(k) and in this case correctly
outputs f(x0, x1). Thus the Strong Internal Covertness property is satisfied.

Appendix C: Weakly Fair Covertness

We can achieve a slightly weaker version of covertness without using random oracles. Π is said to be
a weakly fair covert protocol for the channel B if Π is externally covert, and has the property that if f is
strongly fair, then for every distinguisher Dσ for V Pσ

Π,i(x̄) with significant advantage ε, there is a distinguisher

D1−σ for V
P1−σ

Π,i (x̄) with advantage Ω(ε). Thus in a weakly fair covert protocol, we do not guarantee that
both parties get the result, only that if at some point in the protocol, one party can tell that the other is
running the protocol with significant advantage, the same is true for the other party.

We note that in the above protocols, if the function G is assumed to be a pseudorandom generator
(rather than a random oracle), then the resulting protocol exhibits weakly fair covertness. Suppose Dσ has
significant advantage ε after round i = 2j, as in the hypothesis of weak covertness. Notice that given
r1−σ[1], . . . , r1−σ[j−1], G(r1−σ)⊕f(x̄), the remainder of Pσ’s view can be simulated efficiently. Then Dσ

must be a distinguisher for G(r) given the first j − 1 bits of r. But since f is strongly fair, P1−σ can apply
Dσ to G(rσ) ⊕ f(x̄) by guessing at most 1 bit of rσ and simulating Pσ’s view with his own inputs. Thus
P1−σ has advantage at least ε/2− ν(k) = Ω(ε).

15

