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Physicist think they know
everything about Gaussians.

When a new result appears they
(we) get very impressed.

Exactness of Belief Propagation
In Gaussian models Is important.
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So this talk could just as well be
classified under Challenges from
Computer Science and Signal
Processing.

Because exactness of Gaussian
BP was discovered there.
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Outline:

The exactness results [Weiss 2001; Johnson, Malioutov,
Willsky 2006]

Some recent applications in CS and Signal Processing
Our application (data aggregation)
Our numerical results

Our unexpected numerical results
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Belief Propagation In
pair-wise models

gy L]

Message update rule:

October 16, 2009 Erik Aurell, KTH Stockholm 5



KTH/CSC

Gaussian BP
P(X) oC eXp(—%XiJinﬁhi X ) “Information matrix” form

1 2 _
m._,; (X;) o exp( ) Lo Xit Vi, X,-) Gaussian messages

2 1
Li.;=-J; T K. K= Zkeai\ L GaBP variance update

h+u, _
Visi :_\]ij ‘J“+ILIéi_)j ll’li_)j - Zkeai\ij—ﬂ GaBP mean Update
bi (X.) o exp( —% K, )(i2+,ui X, ) Gaussian marginals
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\o=f So what? Computing the
marginals is matrix inversion

P(Xi) oc eXP (-5 x—(J —1h)i)2/351) Correlations = inverse of J

The walk-sum interpretation
Scaleto J,=1 J;=Li-Ry J ;1:1” +Ry+ 2 R Ry -~
mi:(J _1h)i = Zj h,-( Walks from j to i, picking up factors of R)
These walks can be done on a computational tree.

The algebra of partial sums of the walks on trees is exactly Gaussian BP update.

Hence Gaussian BP converges and is exact for the means whenever the
spectral radius of the matrix |R| (element-wise absolute values) is less than 1.

Johnson, Malioutov, Willsky, NIPS 18 & J. Machine Learning Res. 7: 2031-2064 (2006)
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Some applications

GaBP is a distributed iterative linear equation solver

...has been reported to work better than classical iterative solution methods

Shental et al, Gaussian BP Solver for Systems of Linear Equations, ISIT 2008

P(|R|)<1 not a strict condition, can be fixed by preconditioner

...p(R)<1 is of course a strict condition. An alternate algorithm (incomplete
computation of matrix inverse by GaBP) has also shown good behaviour

Johnson et al, Fixing Convergence of Gaussian Belief Propagation, arXiv:0901:4192
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Some more recent applications

Fault identification + lattice decoders + other stuff

...using Gaussian BP on Gaussian mixture models (I will not try to explain)

Bickson, Avissar, Dolev, Boyd, Ihler, Baron, arXiv:0908.2005
Avissar, Bickson, Dolev, Ihler, 47th Allerton Conference, Sept. 2009

Distributed Netwon method

...recent work by Boyd, Dolev and collaborators. A new approach to network
optimization, where the Newton step can be done using GaBP

...which means a way for nodes to agree on values (x,y,z,...) such that
conditions F(x,y,z,...) = 0, G(x,y,z,..) = 0... are true, just by passing messages
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Our application: data
aggregation

KTH/CSC

In network management, sensor networks etc
This functionality can also be achieved by gossiping (physically a diffusion
processes), or by maintaining a spanning tree, where data aggregated from
the leaves to the root

The spanning tree has issues under churn, when nodes come and go

Gossiping has problems with convergence speed in large networks, and with
leakage, if nodes leave and take their data with them

Consensus Propagation, a special case of Gaussian BP, may be a trade-off

Moallemi and Van Roy, “Consensus Propagation®, IEEE Transactions on Information
Theory, Vol. 52, No. 11, November 2006
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“=2 Distributed management

Monitoring and data aggregation

Management Apps

_ Courtesy R Stadler
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Consensus Propagation
P(X) o exp(_%(xi—yi)z_%ﬂQu(Xi_Xj)z)

This is a walk-summable model for any finite 3, and Gaussian
BP will hence converge, and give exact means of marginals

The average of the x’s is centered around the average of y’s:
1 2
PG 2 X) < OP( 51 (Exi—=Y;)")

When (3 goes to infinity all the x’s are the same. Hence the
median of all these local variables then hold the global
average of the y’'s. Hence the name Consensus Propagation.
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Dynamism

Dynamic data = the local y’s change in time

...agreeing on a moving target

Competition between the dynamics of the data and the BP dynamics

Dynamic network = the couplings Q change in time

...somewhat related to work using Gaussian BP as a linear equation solver
with different preconditioners at different time steps, and where links may fail

Chandrasekaran, Johnson and Willsky, “Estimation in Gaussian Graphical Models..
IEEE Transactions on Signal Processing 56: 1916-1930 (2008)
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CP on small graph with
dynamic data 1Y
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It IS better to start from all-

KTH/CSC
Zero messages — NOt
-‘3? T Eﬂ' T
—— CFP average at node 4 CP average at node 4
165l real average i real average
10
A6
| N
355 ]
M. ‘ of .
a5k .....!1. :1.'1';"1‘-"‘-"'"" = A LT T— | X -._._\_.-
g |l 2
= 3450
] | E 10 | ,-“’.. —————
a4 -| -‘.,_ f
.1&_ .
3.35 ‘ =
aap
=30r
3.251
32 50 100 150 200 250 a00 -40 ; '
a 200 400 GO0 800 1000 1200

# ineratons # iterations

October 16, 2009 Erik Aurell, KTH Stockholm 15



Also If connectivity Is a
large Erd0s-Renyi graph
convergence is similar
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Convergence

It should perhaps not be a surprise that dynamic network
Improves convergence of Consensus Propagation

...consensus P computes an average, and mixing improves averaging
It was a suprise that it can improve so much

The limiting factor is in any case dynamic data

...S0 most of the rest of the talk concerns dynamic data only. The CP update
rules are iterated map equations, and with only dynamic data they are
eventually linear equation (of the y messages)
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Linearization
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K messages do not depend
on Y messages
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Largest eigenvalues of R’ lie in
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The largest eigenvalues of
submatrix A (M) are much larger
than the largest eigenvalue of
submatrix B (K direction)

Erdos-Renyi graphs with different N and ¢ — fast and slow
directions, extending to fast and slow manifolds

Amu’n(lg) o
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£ Phase-space plots of
Consensus P dynamics
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Largest eigenvalue is self-

averaging in E-R graphs and
iIndependent of graph size N

Erd6s-Renyi graphs of ¢
around 8 (random
realizations) of different
size from 20 to 20 000.

For small N computed
eigenvalue of linearized
GaBP; for large N
estimated convergence

ratio from iterating GaBP.
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Independence of N for different
c. Convergence slows with
Increasing values of c.
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There I1s a spectral gap, and It
Increases with c

lambda

aaaaaaa
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There Is a spectral gap, and It
remains as 8 tends to infinity
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But the leading eigenvalue itself of
course tends to one

1.0005
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And eigenvalue depends on the
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But perhaps only (or mainly)
through <Q>
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Challenges
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Delineate where and when Consenus Propagation
outperforms gossiping and tree-based aggregation.

Computing the eigenvalues of linearized Consensus
Propagation in Erd6s-Renyi graphs is a random matrix
problem. Can they be computed with random matrix
techniques?

Can one exploit the spectral gap to improve convergence
and push closer to the infinite
limit?

Can one compute other things than averages? The
Gaussian is the heat kernel. Are there other kernels out
there with good properties for Belief Propagation?
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