
Using value queries in combinatorial auctions

Benoı̂t Hudson∗ Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

{bhudson,sandholm}@cs.cmu.edu

ABSTRACT
Combinatorial auctions, where bidders can bid on bundles of items
are known to be desirable auction mechanisms for selling items that
are complementary and/or substitutable. However, there are 2k−1
bundles, and each agent may need to bid on all of them to fully
express its preferences. We address this by showing how the auc-
tioneer can recommend to the agents incrementally which bundles
to bid on so that they need to only place a small fraction of all pos-
sible bids. In particular, we design preference elicitation algorithms
that provably determine the optimal allocation while asking a van-
ishingly small fraction of all possible value queries. The elicitors
impose a great computational burden on the auctioneer. We show
how to speed them up dramatically. In order to provide an instance-
specific lower bound on how well any elicitation algorithm can do,
we develop a search-based method for finding the smallest certifi-
cate. We show that our best elicitor is almost as effective as this
omniscient elicitor. We also present an optimal non-omniscient
elicitor, but it is utterly intractable and thus impractical. Finally, we
introduce the notion of a universal revelation reducer, demonstrate
a randomized one, and prove that no deterministic one exists.

1. INTRODUCTION
Combinatorial auctions, where agents can submit bids on bun-

dles of items, are economically efficient mechanisms for selling k
items to n bidders, and are attractive when the bidders’ valuations
on bundles exhibit complementarity (a bundle of items is worth
more than the sum of its parts) and/or substitutability (a bundle is
worth less than the sum of its parts). Determining the winners in
such auctions is a complex optimization problem that has recently
received considerable attention (e.g., [1, 8, 15, 21]).

An equally important problem, which has received much less at-
tention, is that of bidding. There are 2k − 1 bundles, and each
agent may need to bid on all of them to fully express its prefer-
ences. This can be undesirable for any of several reasons: deter-
mining one’s valuation for any given bundle can be computationally
intractable [13, 18–20]; there is a huge number of bundles to eval-
uate; communicating the bids can incur prohibitive overhead (e.g.,
∗The first author of this paper is a student. The material in this
paper is based upon work supported by the National Science Foun-
dation under CAREER Award IRI-9703122, Grant IIS-9800994,
ITR IIS-0081246, and ITR IIS-0121678. Some of the results in
this paper appeared in the AMEC 2002 workshop.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

network traffic); and agents may prefer not to reveal all of their val-
uation information due to reasons of privacy or long-term competi-
tiveness. Appropriate bidding languages [8,10,15,21,22] can solve
the communication overhead in some cases (when the bidder’s util-
ity function is compressible). However, they still require the agents
to completely determine and transmit their valuation functions and
as such do not solve all the issues. So in practice, when the number
of items for sale is even moderate, the bidders will not bid on all
bundles. Instead, they may wastefully bid on bundles which they
will not win, and they may suffer reduced economic efficiency by
failing to bid on bundles they would have won.

Selective incremental preference elicitation by the auctioneer was
recently proposed to address these problems [6]. Some of the the-
oretical properties of the so-called rank-lattice based elicitors were
recently studied [7]. That family of elicitors suffers from having
to ask queries in an extremely rigid order. In this paper we study
the more practical approach where the elicitor uses value queries
in arbitrary order. We first develop a framework to describe our
algorithms (Section 2), and an experimental setup for evaluating
them (Section 3). Using this framework, we design a series of in-
creasingly effective elicitation algorithms and study their properties
theoretically and experimentally, showing that elicitation reduces
revelation drastically, and that this benefit increases with problem
size (Section 4). In Section 5 we provide an omniscient elicitor,
which acts as an instance-specific lower bound on any real elici-
tor. We then discuss an optimal non-omniscient elicitor (Section 6)
which is unfortunately not tractable. Finally, we introduce the no-
tion of a universal revelation reducer, and demonstrate that while a
randomized one exists, no deterministic one does (Section 7).

2. ELICITATION FRAMEWORK
We study a setting where one auctioneer is selling a setK, |K| =

k, of items to n bidders. We work with the standard independent
private values model, that is, we assume that each bidder’s valua-
tions for the bundles are independent of the other bidders’ valua-
tions.

The elicitation framework that we use is a slightly modified ver-
sion of that of Conen & Sandholm [6]. The auctioneer asks ques-
tions of the agents (it elicits information, and thus it is an elicitor),
and assimilates the information from the replies. Based on that in-
formation, the elicitor clears the auction if possible; if not, it elicits
further information.

2.1 Value propagation
In this paper we focus on elicitation using value queries. In a

value query, the elicitor asks an agent i for that agent’s valuation
vi(b) for bundle b.1 Throughout this paper we make the usual as-
1An important issue is that the agents might reveal their valuations

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

Figure 1: Constraint network with 3 items a, b, and c.

sumption of free disposal, that is, any agent can throw away ex-
tra items for free, so extra items never decrease an agent’s valua-
tion. This allows the elicitor to infer an upper bound on any sub-
bundle b− of b: namely, no smaller bundle can be worth more than
a larger bundle. Therefore UBi(b−) = minb⊃b− [vi(b)]. Similarly,
no larger bundle can be worth less than a smaller bundle. There-
fore, LBi(b+) = maxb⊂b+ [vi(b)]. The empty bundle is assumed
to be worth 0.

To support fast inference of the upper and lower bounds, we im-
plemented an interval constraint network. The elicitor maintains
one network for each agent. In each network i, a node corresponds
to a bundle b. The node is labeled by an upper bound UBi(b) and
a lower bound LBi(b) which together define an interval in which
the true value vi(b) is known to lie. A node for b has a directed
link to a node for b′ if b ⊃ b′. When a value for b becomes known,
the elicitor sets UBi(b) = LBi(b) to that value. It then propagates
the value down the links to smaller bundles, enforcing the invariant
that the UBi(b−) in the network corresponds to the definition of the
previous paragraph; similarly, it propagates the value up the links
to larger bundles to enforce LBi(b+).

2.2 Certificates
The auctioneer clears the auction if, given the information it has

received, the auctioneer can infer that one allocation is worth at
least as much as any other. That allocation is an optimal alloca-
tion. If the information the auctioneer has allows this inference, the
information forms a certificate for that allocation. The certificate
contains a set of value queries. A minimal certificate is a certificate
that would cease to be a certificate if any query were removed from
it. A shortest certificate is a certificate that has the smallest num-
ber of queries among all certificates. This depends on the problem
instance. For any given instance, we call the length of the shortest
certificate qmin .

2.3 Elicitation algorithm
The skeleton of the general elicitation algorithm is

insincerely. Furthermore, the elicitor’s queries leak information: a
query that an agent receives signals to that agent information about
how the other agents have answered the queries so far. That opens
the door for additional strategic manipulation by the agents. How-
ever, if Vickrey-Clarke-Groves (VCG) pricing [5,9,24] is used (this
requires some additional elicitation, but not significantly more),
and the bidders’ utility functions are quasilinear, then revealing
one’s preferences truthfully is an ex post equilibrium [6].

SOLVE()
1 C ← INITIALCANDIDATES(n, k)
2 while not DONE(C)
3 q ← SELECTQUERY(C)
4 ASKQUERY(q)
5 C ← PRUNE(C)

Here, C is a set of candidate allocations, where a candidate is a
vector c = 〈c1, c2, . . . , cn〉 of bundles where the bundles contain
no items in common. There are n agents bidding on k items. The
value of a candidate is v(c) =

∑
i vi(ci); UB(c) =

∑
i UBi(ci) is

an upper bound, and LB(c) =
∑
i LBi(ci) a lower bound.

INITIALCANDIDATES generates the set of all candidates, which is
the set of all nk allocations of the k items to the n agents (some
agents might not get any items).

PRUNE removes, one candidate at a time, each candidate that is
dominated by a remaining candidate. A candidate c dominates an-
other candidate c′—which we write as c � c′—if the elicitor can
prove, using what it currently knows, that the value of c must be at
least as high as the value of c′.2

DONE returns true if each candidate in the set of remaining can-
didates C is provably optimal. This is the case either if C has only
one element, or if all candidates in C have known value (that is,
∀c ∈ C,UB(c) = LB(c)). Because the algorithm has just pruned,
it knows that if all candidates have known value, then they have
equal value.

SELECTQUERY selects the next query to be asked. This function
can be instantiated in different ways to implement different elicita-
tion policies, as we will show.

ASKQUERY takes a query (b, i), asks agent i for its value of bun-
dle b, then appropriately updates the constraint network. In par-
ticular, every superbundle b+ has its lower bound be the tighter of
vi(b) and the previous lower bound LBi(b+); every subbundle b−

has its upper bound be the tighter of vi(b) and the previous upper
bound UBi(b−).

3. EXPERIMENTAL SETUP
We ran experiments to evaluate the effectiveness of the elicitation

policies we developed. Each experimental plot shows what fraction
of all value queries (of which there are n(2k − 1)) are made before
the auctioneer finds an optimal allocation and can prove that it is
optimal (that no other allocation is better). We call this fraction
the elicitation ratio. In each plot, each point represents an average
over 50 runs, where each run is on a different problem instance
(different draw of valuations for the agents). Each algorithm was
tested on the same set of problem instances.

Unfortunately, real data for combinatorial auctions are not pub-
licly available.3 Therefore, as in all of the other academic work on
combinatorial auctions so far, we used randomly generated data.
We first considered using existing benchmark distributions. How-
ever, the existing problem generators output instances with sparse
bids, that is, each agent bids on a relatively small number of bun-
dles. This is the case for the CATS suite of economically-motivated
random problem instances [14] as well as for the other prior bench-
marks [1,8,21]. However, in many real settings (spectrum auctions

2This is the case if
∑n
i=1 δi(ci, c

′
i) ≥ 0, where δi(b, b′) is the

greatest difference between vi(b) and vi(b
′) that can be proven

given the information in the constraint network. Namely, if b ⊃ b′,
then δi(b, b′) = max(0, LBi(b)−UBi(b′)); otherwise, δi(b, b′) =
LBi(b)− UBi(b′).
3Furthermore, even if the data were available, they would only have
some bids, not the full valuation functions of the agents (because
not all agents bid on all bundles).

for instance), every bidder has positive value on every bundle (at
least due to renting and reselling possibilities). In addition, the in-
stances generated by many of the earlier benchmarks do not honor
the free disposal constraints.

To capture these considerations, we developed a new benchmark
problem generator. In each problem instance we generate, each
bidder has a nonzero valuation for almost every bundle, and all val-
uations honor free disposal. Specifically, the generator assigns, for
each agent in turn, integer valuations using the following routine.
We impose an arbitrary maximum bid value MAXBID = 107 in
order to avoid integer arithmetic overflow issues, while at the same
time allowing a wide range of values to be expressed. Valuations
generated with this routine exhibit both complementarity and sub-
stitutability.
GENERATEBIDS(K)
1 G← new constraint network
2 S ← 2K (the set of all bundles)
3 impose free disposal constraints on G
4 UB(K)← MAXBID
5 while S 6= ∅
6 pick b uniformly at random from S
7 S ← S − b
8 pick v(b) uniformly at random from [LB(b),UB(b)]
9 propagate LB(b) = UB(b) = v(b) through G

4. ELICITATION POLICIES
We designed and tested several elicitation policies. All of them

compute a set of potential queries, and then randomly pick one. We
present the policies starting from the simplest. We then incremen-
tally add restrictions on the query set in an attempt to constrain the
random choice towards hopefully better queries.

4.1 Random elicitation policy
The first policy we investigate simply asks random value queries.

In the beginning, we generate the set of all n(2k−1) value queries.
Whenever it is time to ask a query, the policy chooses a random
query from the set, ignoring those it has already asked or for which
the value can already be inferred.

We can show that if it is possible to save elicitation, then on
average this policy saves elicitation:

PROPOSITION 1. Let Q = n(2k − 1) be the total number
of queries, and let qmin be the number of queries in the shortest
certificate. For any given problem instance, the expected num-
ber of queries that the random elicitation policy asks is at most
qmin
qmin +1

(Q+ 1).

PROOF. Assume pessimistically that a query is either required
to prove the optimal allocation or useless. Under this assumption,
the analysis reduces to the following problem. We have r red “nec-
essary” balls and b blue “useless” balls in a bag. We then randomly
draw one ball at a time without replacement. The question is how
many balls we expect to draw before all red balls have been drawn.
Let e(r, b) be this number. The base case is e(0, b) = 0, because
there are no red balls to draw. In the general case, we pick one ball
from the bag. With probability r/(r + b), it is red, so the bag now
has r − 1 red balls and b blue balls. Similarly, with probability
b/(r + b), it is blue, so the bag now has r red balls and b− 1 blue
balls. Therefore, e(r, b) = 1 + r

r+b
e(r − 1, b) + b

r+b
e(r, b − 1).

It is easy to verify that e(r, b) = r
r+1

(b + r + 1) solves this re-
currence. In the elicitation setting, r = qmin and r + b = Q. The
result follows.

The upper bound given in the above proposition only guarantees
relatively minor savings in elicitation (especially because qmin in-

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 2: Random elicitation policy.

creases when the number of agents and items increases). However,
we base the proof on the pessimistic assumption that there is only
one short certificate, and that all other certificates are extensions of
the shortest one. When there are several minimal certificates, it is
more likely that the next query will complete a certificate. We do
not know how to analyse how many minimal certificates we expect
to be present. Therefore, we ran an experiment to see how well
this policy does in practice. Figure 2 shows that the elicitation ratio
q/Q is indeed less than 1. Also, the ratio slowly falls as the num-
ber of items increases, proving that indeed, the number of minimal
certificates increases with the number of items. Nevertheless, we
would hope to do better: on all the instance sizes we ran on, this
algorithm asks more than half of all the queries.

4.2 Random allocatable elicitation policy
Essentially, the random elicitation policy is asking many queries

which, as it turns out, are not useful. We will now present a useful
restriction on the set of queries from which the elicitation policy
should choose. The key observation is that the elicitor might al-
ready know that a bundle b will not be allocated to a particular
bidder—even before the elicitor knows the bidder’s valuation for
the bundle. This occurs when the elicitor knows that the value other
agents have for the other items (those in K − b) is insufficient. On
the other hand, if the elicitor cannot (yet) determine this, then the
bundle-agent pair is deemed allocatable.

DEFINITION 1. A bundle-agent pair (b, i) is allocatable if there
exists a remaining candidate allocation c ∈ C such that ci = b.

Now we can refine our random elicitation policy to ask queries
on allocatable (b, i) only. This restriction is intuitively appealing,
and we can characterize cases where it cannot hurt. We define the
notation 〈x, y〉 to mean that revealing the value of a non-allocatable
(b, i) would raise the lower bound on x allocatable super-bundles
of b (that is, there are x allocatable (b′, i) such that b′ ⊃ b), and
lower the upper bound on y allocatable sub-bundles of b. To affect
a lower bound, vi(b) must be strictly greater than the currently-
proven lower bound on any of the x super-bundles. Similarly, vi(b)
must be strictly less than the currently-proven upper bound on the
y sub-bundles.

Given this notation, we can examine the cases where eliciting
a non-allocatable (b, i) is no more useful than eliciting some allo-
catable (b′, i). Because the elicitor does not know vi(b), it cannot
know what case actually applies.

PROPOSITION 2. Given the value queries the elicitor has asked
so far, for every non-allocatable (b, i) in case 〈x, y〉with x+y < 2,
there is an allocatable pair (b′, i) which the elicitor, in hindsight,
would have preferred (perhaps not strictly) to ask—no matter what
value queries the elicitor asked from then on.

PROOF. We analyze each case separately.
Case 〈0, 0〉: If b is not allocatable, and no parent of b is allocat-

able, and no child of b is allocatable, then eliciting vi(b) will yield
no information that the elicitor could not already infer about the
optimality of any given allocation. Thus, in retrospect at the end
of the auction, the elicitor would prefer not to have elicited (b, i),
since it would then have found a shorter certificate.

Cases 〈0, 1〉 and 〈1, 0〉: The two cases are symmetric; we as-
sume 〈0, 1〉 here. Let the single allocatable sub-bundle of b be
called b′. By eliciting vi(b), the upper bound on vi(b′) will be
tightened. However, eliciting vi(b′) would reveal an upper bound
on b′ that is at least as tight. So eliciting the allocatable bundle b′

would have been no worse.

While the idea of restricting the queries to allocatable bundles is
intuitively appealing and can never hurt in the cases above, there
are cases where this restriction forces the elicitor to ask a larger
number of queries:

PROPOSITION 3. Querying a non-allocatable (b, i) in case 〈x, y〉
with x + y ≥ 2 can allow an elicitor to find a shorter certificate
than an elicitor that is constrained to querying allocatable (b, i)
only.

PROOF. Assume there are two bidders. Further assume that
given the information elicited previously, there are only three al-
locations that could be optimal (|C| = 3). One allocation involves
giving bidder 1 the items in bundle b′, and the other items to bid-
der 2, and bidder 2 places a value of 50 on those items. Simi-
larly, the second allocation gives bidder 1 the items in bundle b′′,
and the other items to bidder 2, who again places a value of 50 on
those items. Bundle b′ is neither a super-bundle nor a sub-bundle
of b′′. Given the information elicited so far, the elicitor knows
UBi(b′) = UBi(b′′) = 100. A third allocation gives bidder 2
all the items, and bidder 2 places a value of 100 on this outcome;
bidder 1 gets no items. Finally, assume the true value agent 1 has
on bundle b is 40 (v1(b) = 40), and that b is not allocatable for
agent 1. This means that (b, 1) is in case 〈0, 2〉.

EXAMPLE 1. Example of case 〈0, x〉 where revealing a non-
allocatable bundle b is better than revealing any allocatable bun-
dle. By eliciting v1(b) = 40, the elicitor learns that the first two
candidate allocations have a value of at most 90, and can therefore
eliminate them.
v1(b′) = [0, 100] v2(K − b′) = 50 sum: [0, 150]
v1(b′′) = [0, 100] v2(K − b′′) = 50 sum: [0, 150]
v1(∅) = 0 v2(K) = 100 sum: 100

In this situation, by eliciting just v1(b), the elicitor would prove
that the third allocation (giving bidder 2 all the items) is optimal.
Restricted to revealing allocatable bundles b′ and b′′ but not b, the
elicitor will instead need to use two queries instead of just one.

Proposition 3 does not mean that in all cases 〈x, y〉 with x+y ≥
2 it is a good idea to ask a non-allocatable (b, i). Indeed, in some
such cases, eliciting the non-allocatable (b, i) gives insufficiently
tight bounds on the allocatable bundles it affects, and therefore the
allocatable bundles need to be elicited anyway.4

4An open problem is whether, in the case of an oracle that chooses
the best bundle to elicit every time, the bad cases would ever hap-
pen.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 3: Random allocatable elicitation policy.

The case-by-case analysis of Propositions 2 and 3 indicates that
restricting the elicitation policy to choosing only allocatable bun-
dles will often help, but may sometimes also cause harm. However,
the harm is limited, as we now show.

PROPOSITION 4. Any bad case 〈x, y〉 with x + y ≥ 2 causes
the random query policy that restricts itself to allocatable queries
to ask at most twice as many queries (in expectation) as the unre-
stricted random policy.

PROOF. Assume that to prove an optimal allocation, it is nec-
essary either to reveal the single non-allocatable bundle, or all of
the x + y allocatable bundles. If fewer than all x + y bundles are
needed, or if there is more than one subset of the x+ y that is suf-
ficient, this only reduces the advantage of being allowed to ask the
bad-case query.

In the restricted policy, which cannot ask the bad-case query,
the elicitor will ask x + y queries. In the unrestricted policy, the
elicitor’s task corresponds to removing balls one at a time from
a bag that has 1 red ball and b = x + y blue balls until either
the red ball has been removed, or all the blue balls have been re-
moved. Let e(b) be the number of balls we expect to pick until we
are done. We pick a red ball with probability 1/(b + 1) and are
done immediately. Otherwise, we pick a blue ball with probability
b/(b + 1). Therefore, e(b) = 1

b+1
+ b

b+1
(1 + e(b − 1)). If only

one blue ball is left, whether we pick the red ball or the blue ball,
we are done, so e(1) = 1. It can be verified that e(b) = b(3+b)

2(1+b)

solves the recurrence relation. Remembering that b = x + y, the
ratio of queries asked in the restricted policy to queries asked in
the unrestricted policy is b/e(b) = 2(1+b)

(3+b)
. From this, it is clear

that limb→∞ b/e(b) = 2; and furthermore, it approaches this limit
from below, so the ratio never exceeds 2.

In summary, restricting value elicitation to allocatable bundles
either helps, does not hurt, or at worst only causes the elicitor to
ask (in expectation) twice as many queries. We ran experiments
(Figure 3) to determine whether the restriction helps in practice. It
clearly does help. For example, at k = 8 items and n = 3 agents,
the elicitation ratio of the unrestricted random policy is 78% while
that of the allocatable-only policy is merely 30%. That is, the ran-
dom elicitation policy restricted to eliciting only allocatable (b, i)
avoids much of the elicitation needed in the unrestricted random
elicitation policy.

Furthermore, the elicitation ratio vanishes as the number of items
increases. This validates the idea of preference elicitation in com-
binatorial auctions.

4.3 Stronger restrictions
We analyzed several policies which restricted the query set more

strongly than simply to allocatable bundles, trying to cleverly ac-
count for many features. A list of negative results includes: count-
ing the number of allocations that include (b, i)5; counting the ex-
pected amount by which bounds will change in the constraint net-
works when we elicit (b, i); counting the expected number of bounds
that will change; counting the expected number of candidates that
will be pruned after eliciting (b, i). For the policies that count the
expected value of a quantity, we also tried the minimum and maxi-
mum value. All of these policies fared worse in terms of elicitation
ratio than the random allocatable elicitation policy.

4.4 High-value candidate elicitation policy
We did find one policy that significantly outperforms the ran-

dom allocatable elicitation policy. Let Cmax be the set of can-
didates of greatest upper bound (“high-value candidates”). That
is, Cmax = {c ∈ C s.t. UB(c) = maxc′∈C UB(c′)}. For each
(b, i) ∈ Cmax define subbundles(b, i) to be the number of other
bundles in high-value candidates whose value might be affected
upon eliciting (b, i). The subbundles are those (b′, i) ∈ Cmax for
which b ⊃ b′ and LBi(b) < UBi(b′). Finally, pick uniformly at
random among the (b, i) with the most subbundles.

This policy is a modification of the elicitation policy that was
recently used in a combinatorial exchange for allocating tasks in a
multi-robot system [23]. The intuition is that to prove an allocation
optimal, we must prove a sufficient high lower bound on it, while
at the same time proving sufficient low upper bounds on all other
allocations. By only picking from high-value candidates, we expect
to be biasing toward asking questions that will need to be asked
anyway. In addition, by picking from those queries that will reduce
as many values as possible, we bias toward reducing upper bounds,
which is desirable since there is typically only one optimum out of
the nk total candidates (the latter restriction was not present in the
previous work).

In terms of elicitation ratio, this is the best policy we know. It
achieves an elicitation ratio of only 24% with k = 8 items and
n = 3 agents, as opposed to 30% for the random allocatable policy
and 78% for the unrestricted random policy.

4.4.1 Representing candidates implicitly
The policy of the previous section works well in terms of elic-

itation, but in terms of time it scales poorly with the number of
agents. The chief cost is due to representing the candidates ex-
plicitly: PRUNE runs in time quadratic in the number of candidates,
while SELECTQUERY and DONE run in time linear in the number of
candidates, of which there are as many as nk. Since the policy
chooses among a set of size at most n2k, we might hope to save
work by implicitly representing the candidates, thus avoiding the
expensive operations (as long as n > 2).

We accomplish this by repeatedly solving an integer program
(IP) every time a query is to be selected—rather than explicitly rep-
resenting the set of candidates. We use the following IP to compute
the value of the highest-valued candidate:

maximize
∑
i∈N,b∈2K UBi(b)xi(b)

subject to xi(b) ∈ Z2 ∀i ∈ N,∀b ∈ 2K∑
b∈2K xi(b) ≤ 1 ∀i ∈ N∑

i∈N
∑
b3j xi(b) ≤ 1 ∀j ∈ K

5This is the value-query policy previously proposed by Conen &
Sandholm [6].

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 4: High-value candidate elicitation policy, with implicit
candidate set representation.

The first constraint of the IP states that each bundle is either allo-
cated or not. The second constraint states that each agent only gets
one bundle, and the third constraint states that each item is allocated
to only one agent.

Upon solving the IP, the elicitor will know the value UBmax

of the candidate with greatest upper bound. Then, for each pair
(b, i) in turn, we force xi(b) = 1 and solve again. This returns
the value UBmax(b, i) of the candidate with greatest upper bound,
constrained to only those candidates which allocate b to agent i.
If UBmax(b, i) = UBmax, then (b, i) is in a high-value candidate.
The elicitor now has the set of (b, i) that are in high-value candi-
dates, and can proceed as before (that is, for each such (b, i), count
the subbundles(b, i) and pick a random (b, i) among the ones with
the greatest number of subbundles).

Implemented naively, the policy solves the IP for each pair (b, i)
in each call to SELECTQUERY. One can sometimes avoid solving
the IP by caching cache(b, i) = UBmax(b, i). Since the IP uses the
current upper bounds on the true valuations, and upper bounds only
decrease, the value of the IP solutions will only decrease. That is, in
a later call to SELECTQUERY, it will be the case that UBmax(b, i) ≤
cache(b, i). Therefore, if cache(b, i) < UBmax, the elicitor can
infer that (b, i) is not in a high-value candidate, without computing
UBmax(b, i).

Our experiments (Figure 4) show that in our implementation, the
implicit representation of candidates is faster than the explicit one
already with three agents (n = 3). With 5 agents, the implicit
approach is several orders of magnitude faster.

5. OMNISCIENCE
So far we have shown that the elicitors that we designed save

most of the preference revelation. However, the question remains:
what is the best that any elicitor could do?6 To answer this ques-
tion, we examine the setting where the elicitor is omniscient: it
knows every agent’s valuation function exactly. However, it must
prove to a non-omniscient observer (say, the Federal Trade Com-
mission) that it is conducting the auction correctly. That is, it must
provide a certificate consisting of value queries and their answers.
The elicitor tries to minimize the length of the certificate. This cor-
responds to the normal non-omniscient elicitor above which tries to

6It is known that in the worst case, exponential communication
is required to find an (even approximately) optimal allocation in a
combinatorial auctions—no matter what query types and elicitation
policy is used [16].

0

0.2

0.4

0.6

0.8

1

2 3 4

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 5: Omniscient elicitor.

ask as few queries as possible. Therefore, the performance of the
omniscient elicitor provides a lower bound on that of any real—i.e.,
non-omniscient—elicitor.

We implemented a routine based on the IDA* search algorithm
[12] to find the shortest certificate. Firstly, we use the fact that
there exists a shortest certificate where the grand bundle value is
queried from every agent (this was proven as Proposition 6 in [11]).
Therefore, we immediately put (K, i) into the certificate for every
agent i.

In the search, we define a lexicographic order on queries. This
means that the search space is a tree, rather than a graph, eliminat-
ing any revisiting of nodes.

As is usual for IDA* search, we developed an admissible heuris-
tic h for guiding the search. At any given node of the search, the
h-value gives an lower bound on the number of further queries
needed to obtain a certificate. We based our heuristic on the ob-
servation that for a certificate to prove that the optimal candidate
dominates all candidates, it must at least prove that the optimal
candidate dominates any given candidate. For every candidate c,
we compute how many queries would be needed to separate c from
the optimal candidate. The heuristic function h is the maximum
over all c.7

This is clearly a weak heuristic: h is at most 2n and does not vary
as the number of items grows, whereas we expect the certificate
length to grow exponentially in the number of items! Instead, the
major strength of the heuristic lies in its ability to discover that no
certificate is reachable. Future work involves developing stronger
heuristics.

If there are multiple optimal candidates, then we run IDA* for
each optimum, in parallel, and use the best solution.

Figure 5 shows the elicitation ratio of the omniscient elicitor.
Given these results, we can evaluate how much we might hope to
improve the real (non-omniscient) elicitation algorithms presented
above. The answer is: a bit, but not much. For example, with
3 agents and 4 items, the high-value candidate elicitation policy
launches 50% of all queries, and the omniscient elicitor launches
33% of all queries. In addition to the difference being rather small,
it is highly unlikely that any non-omniscient policy could do as well
as the omniscient algorithm.

7Because of the lexicographic order on queries, it may be that there
is a candidate c which cannot be proven suboptimal using only
queries still reachable in the current branch of the search space.
In that case, the heuristic returns∞ immediately.

6. OPTIMAL ELICITATION ALGORITHM
As we show in this section, one can also design an optimal non-

omniscient elicitation algorithm. Unfortunately, it will be com-
pletely intractable even on the smallest instances. However, we
hope it will motivate new, better elicitation algorithms.

Consider the game where the elicitor is asking questions, and the
adversary answers them. The game ends when the revealed infor-
mation constitutes a certificate. The goal of the elicitor is to ask as
few questions as possible; the goal of the adversary is to force the
elicitor to ask as many as possible. In order to guarantee the fewest
number of queries, the elicitor can look through the gametree and
pick the shortest path (from the root to a leaf). As we will see in the
next section, the elicitor has no pure strategy against the adversary
that does better than blindly eliciting the value of every bundle, but
better mixed (i.e., probabilistic) strategies exist—for example, the
unrestricted random policy.

In the auction setting, the elicitor is not playing against an ad-
versary, but rather against a random distribution. In its gametree
search, it should therefore assume not the worst-case answer, but
rather a probability distribution over possible answers.

Unfortunately, a full game tree search is infeasible: at the root,
the elicitor can chose among n(2k − 1) queries. At the next level,
the adversary can choose among MAXBID possible answers. For
most of the answers, the elicitor has n(2k−1)−1 queries left to ask.
And so on. Even with very aggressive pruning, the combinatorics
are almost certainly too large to solve this problem optimally except
on the smallest instances.

7. UNIVERSAL REVELATION REDUCERS
So far we have presented elicitation policies that, on average over

instances, save a large amount of preference revelation. Now we
ask the question: Do there exist universal elicitors, that is, elicitors
that save revelation on all instances (excepting those where even
the omniscient elicitor must reveal everything)?

DEFINITION 2. (universal revelation reducer)
A universal revelation reducer is an elicitation policy with the fol-
lowing property: given a problem instance, it can guarantee (al-
ways in the deterministic case; in expectation over the random
choices in the randomized care) saving some elicitation over full
revelation—provided the shortest certificate is shorter than full rev-
elation. More formally, if qmin < Q, the policy makes q < Q
queries.

THEOREM 1. The unrestricted random elicitation policy is a
universal revelation reducer.

PROOF. From Proposition 1 we have a bound on the number of
queries asked in expectation. This bound is less than Q provided
qmin < Q, so in expectation, the policy asks fewer than all the
queries.

Interestingly, deterministic universal revelation reducers do not
exist:

THEOREM 2. No deterministic value query policy is a univer-
sal revelation reducer.

We prove that no deterministic policy can guarantee saving any
elicitation by constructing a fooling set. A minimal fooling set can
be built for the case where there are 2 items and 2 agents; we show
a somewhat more general result, that an equivalent fooling set can
also be built for the case where there are 2 items, but n ≥ 2 agents.

The fooling setRfool consists of valuation functions of the form:

∀i ∈ N vi(ab) = 2

∀a ∈ K, ∀i ∈ N vi(a) ∈ {0, 1}

And either (a):

∃a ∈ K s.t.
∑
i vi(a) = 2 and∑
i vi(b) = 0

Or (b):

∃i ∈ N s.t. vi(a) = vi(b) = 1 and

∀j 6= i, vj(a) = vj(b) = 0

That is, either one of the items has value 1 to two agents, and no
agent wants the other item; or one of the agents is happy with either
item and no other agent wants only a single item. Thus, there are
exactly two 1 values.

The socially optimal allocation is to give the entire set of items
K to one of the agents. Otherwise, we can only get value 1 from
the allocation.

LEMMA 1. Each instance in Rfool has a certificate that does
not fully reveal the agents’ valuations.

PROOF. (of Lemma 1)
Any instance in the fooling set can be solved by revealing all the
zero values and no 1 values. If we have an instance of type (a), we
have now revealed that any allocation of item a to an agent i, and
item b to another agent j, has value at most UBi(a) + UBj(b) =
2 + 0 ≤ vi(ab). Similarly for instances of type (b). Thus, we have
a certificate. We necessarily have two bundles of value 1, and after
revealing the zeros, an observer knows only that those two bundles
have value at most two. Therefore, we have not revealed the values
of all bundles.

PROOF. (of Theorem 2)
The proof that no deterministic universal reducer exists operates
under the model that the adversary can choose the instance during
the execution of the policy. Because the policy is deterministic, this
is equivalent to having the adversary examine the policy and choose
an instance a priori.

To the first query vi(S) where S is either a or b, the adversary
will return 1.

From then on, the adversary will return 0, until the policy asks
either vi(S̄) or until it asks vj(S) having already asked all vl(S)
for i 6= l 6= j, at which point the adversary will return 1. In other
words, the adversary forces the policy to ask both 1 values.

If the certificate thus chosen reveals both vi(S) = 1 and vi(S̄) =
1, then it must reveal vj(S) = vj(S̄) = 0 for all j 6= i. Otherwise,
the allocation of S (resp. S̄) to agent i and S̄ (resp. S) to agent j
has value up to UBi(S) + UBj(S̄) = 1 + 2 > 2 which contradicts
that we have a certificate. Thus the certificate must reveal the value
of all bundles.

If the certificate instead reveals both vi(S) = 1 and vj(S) = 1,
then it must reveal vl(S̄) = 0 for all l. Otherwise, we do not have a
certificate. In addition, if the adversary chose to answer vj(S) = 1,
then the policy asked vl(S) for all i 6= l 6= j. Thus, the certificate
reveals the value of all bundles.

The theorem, as stated, proves that no deterministic value query
policy saves on all instance sizes: given an algorithm, the adver-
sary can provide an instance that fools it. The proof is slightly
stronger: even if we require the adversary to provide an instance

with n agents, the adversary can fool the elicitor. We conjecture
the yet-stronger result that given any deterministic value query pol-
icy, any n ≥ 2, and any k ≥ 2, the adversary is still able to provide
an instance of the appropriate size that fools the elicitor.

8. CONCLUSIONS AND FUTURE RESEARCH
The work presented here showed how to drastically reduce the

amount of valuation information bidders in a combinatorial auction
need to reveal (and thus the amount they have to compute). We
showed that while our elicitors do quite well, there is still a gap
between their current performance and the best possible, leaving
us to consider developing even better elicitation policies. However,
closing that gap may be highly computationally expensive. To scale
to larger auctions, the techniques described here-in would need to
be sped up dramatically, and doing so may require compromising
on the elicitation ratio.

Further research should also focus on a tighter theoretical anal-
ysis on elicitation algorithms, both on upper bounds (we have an
upper bound for the unrestricted random policy but not the others)
and on lower bounds (we can compute one using IDA*, but that
technique is intractable).

We focused here on value queries only. It is not unlikely that
some other query types could be used to some advantage [6, 7].
Motivated by the same concerns as our research on elicitors, con-
siderable research has been devoted to ascending auctions (e.g. [2–
4,17,18,25]). Those mechanisms can be viewed as a special case of
the elicitation framework, where the queries are demand queries: If
these were the prices, what items would you buy from the auction?
Future research includes more deeply understanding the connec-
tion between preference elicitation and ascending auctions, and, if
appropriate, designing auction mechanisms that combine features
of both families.

9. REFERENCES
[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer

programming for combinatorial auction winner
determination. ICMAS, 2000.

[2] L. M. Ausubel and P. Milgrom. Ascending auctions with
package bidding. Technical report draft, June 7, 2001.

[3] S. Bikhchandani, S. de Vries, J. Schummer, and R. V. Vohra.
Linear programming and Vickrey auctions. Draft, 2001.

[4] S. Bikhchandani and J. Ostroy. The package assignment
model. UCLA Working Paper Series, mimeo, 2001.

[5] E. H. Clarke. Multipart pricing of public goods. Public
Choice, 11:17–33, 1971.

[6] W. Conen and T. Sandholm. Preference elicitation in
combinatorial auctions: Extended abstract. ACM-EC, 2001.
A more detailed description of the algorithmic aspects
appeared in the IJCAI-2001 Workshop on Economic Agents,
Models, and Mechanisms, pp. 71–80.

[7] W. Conen and T. Sandholm. Partial-revelation VCG
mechanism for combinatorial auctions. AAAI, 2002.

[8] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions:
Optimal and approximate approaches. IJCAI, 1999.

[9] T. Groves. Incentives in teams. Econometrica, 41:617–631,
1973.

[10] H. Hoos and C. Boutilier. Bidding languages for
combinatorial auctions. IJCAI, 2001.

[11] B. Hudson and T. Sandholm. Effectiveness of preference
elicitation in combinatorial auctions. AAMAS-02 workshop

on Agent-Mediated Electronic Commerce, 2002. Extended
version: Carnegie Mellon Univ., Computer Science
Department, CMU-CS-02-124, March 2002.

[12] R. E. Korf. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27(1):97–109,
1985.

[13] K. Larson and T. Sandholm. Costly valuation computation in
auctions. TARK-VIII, 2001.

[14] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a
universal test suite for combinatorial auction algorithms.
ACM-EC, 2000.

[15] N. Nisan. Bidding and allocation in combinatorial auctions.
ACM-EC, 2000.

[16] N. Nisan and I. Segal. The communication complexity of
efficient allocation problems. Draft March 5th, 2002.

[17] D. C. Parkes. iBundle: An efficient ascending price bundle
auction. ACM-EC, 1999.

[18] D. C. Parkes. Optimal auction design for agents with hard
valuation problems. IJCAI workshop on Agent-Mediated
Electronic Commerce, 1999.

[19] T. Sandholm. An implementation of the contract net protocol
based on marginal cost calculations. AAAI, 1993.

[20] T. Sandholm. Issues in computational Vickrey auctions.
International Journal of Electronic Commerce,
4(3):107–129, 2000. Special Issue on Applying Intelligent
Agents for Electronic Commerce. Early version: ICMAS-96.

[21] T. Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135:1–54, Jan.
2002. Also: Washington Univ., Dept. of Computer Science,
tech report WUCS-99-01, 1/28/1999; and IJCAI, 1999.

[22] T. Sandholm. eMediator: A next generation electronic
commerce server. Computational Intelligence, 2002. Special
issue on Agent Technology for Electronic Commerce. To
appear. Early versions: AGENTS, 2000; AAAI Workshop on
AI in Electronic Commerce, 1999; and Washington
University, St. Louis, Dept. of Computer Science technical
report WU-CS-99-02, Jan. 1999.

[23] T. Smith, T. Sandholm, and R. Simmons. Constructing and
clearing combinatorial exchanges using preference
elicitation. AAAI workshop on Preferences in AI and CP:
Symbolic Approaches, 2002.

[24] W. Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16:8–37, 1961.

[25] P. R. Wurman and M. P. Wellman. AkBA: A progressive,
anonymous-price combinatorial auction. ACM-EC, 2000.

