Generalizing Preference Elicitation in Combinatorial
Auctions

Benoit Hudson*

Tuomas Sandholm

Carnegie Mellon University
Computer Science Department
5000 Forbes Avenue
Pittsburgh, PA 15213, USA

{bhudson,sandholm }@cs.cmu.edu

Abstract

Combinatorial auctions where agents can bid on bundles of
items are desirable because they allow the agents to express

complementarity and substitutability between the items. How-

ever, expressing one’s preferences can require bidding on all
bundles. Selective incremental preference elicitation by the
auctioneer was recently proposed to address this problem [4],
but the idea was not evaluated. In this paper we show that
automated elicitation is extremely beneficial: as the number
of items for sale increases, the amount of information elicited
is a vanishing fraction of the information collected in tradi-
tional “direct revelation mechanisms” where bidders reveal
all their valuation information. The elicitors also maintain
the benefit as the number of agents increases—except rank
lattice based elicitors which we show ineffective. We also
develop elicitors that combine different query types, and we
present a new query type that takes the incremental na-
ture of elicitation to a new level by allowing agents to give
approximate answers that are refined only on an as-needed
basis. We show that determining VCG payments requires
very little additional elicitation. Finally, we show that elic-
itation can be easily adapted to combinatorial reverse auc-
tions, where the benefits are similar to those in auctions,
except that the elicitation ratio improves as the number of
agents increases. In the process, we present methods for
evaluating different types of elicitation policies.

1. INTRODUCTION

Combinatorial auctions, where agents can submit bids on
bundles of items, are economically efficient mechanisms for
selling k£ items to n bidders, and are attractive when the
bidders’ valuations on bundles exhibit complementarity (a
bundle of items is worth more than the sum of its parts)

*The first author of this paper is a student. The material in
this paper is based upon work supported by the National
Science Foundation under CAREER Award IRI-9703122,
Grant 11S-9800994, ITR 11S-0081246, and ITR I1S-0121678.
Some of the results in this paper appeared in the AMEC
2002 workshop.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and/or substitutability (a bundle is worth less than the sum
of its parts). Determining the winners in such auctions is
a complex optimization problem that has recently received
considerable attention (e.g., [1,6,11,15,19, 20]).

An equally important problem, which has received much
less attention, is that of bidding. There are 2¥ — 1 bun-
dles, and each agent may need to bid on all of them to fully
express its preferences. This can be undesirable for any of
several reasons: determining one’s valuation for any given
bundle can be computationally intractable [9,13,18]; there is
a huge number of bundles to evaluate; communicating the
bids can incur prohibitive overhead (e.g., network traffic);
and agents may prefer not to reveal all of their valuation
information due to reasons of privacy or long-term competi-
tiveness [16]. Appropriate bidding languages [6,8,11,17,19]
can solve the communication overhead in some cases (when
the bidder’s utility function is compressible). However, they
still require the agents to completely determine and trans-
mit their valuation functions and as such do not solve all
the issues. So in practice, when the number of items for
sale is even moderate, the bidders cannot bid on all bun-
dles. Instead, they may bid on bundles which they will not
win, and they may fail to bid on bundles they would have
won. The former problem leads to wasted effort, and the
latter problem leads to reduced economic efficiency of the
resulting allocation of items to bidders.

Selective incremental preference elicitation by the auc-
tioneer was recently proposed to address these problems [4],
but the idea was not evaluated. In this paper we examine
several different query types and elicitation policies for this
purpose. We also study the complexity of not only determin-
ing the optimal allocation of items to bidders but also the
bidders’ Vickrey-Clarke-Groves (VCG) payments [3, 7, 21].
In addition to combinatorial auctions we study combina-
torial reverse auctions (procurement auctions). Our ex-
periments show that only a vanishing fraction of the bid-
ders’ preference information needs to be elicited in order
to determine the provably optimal (economically efficient)
allocation—and the VCG payments.

2. AUCTIONANDELICITATIONSETTING

We model the auction as having a single auctioneer selling
a set K of items to n bidder agents (let k = |K|). Each agent
i has a wvaluation function v; : 2K+, R that determines
a positive, finite, and private value v;(b) for each bundle
b C K. We make the usual assumption that the agents have

free disposal, that is, adding items to an agent’s bundle never
makes the agent worse off because, at worst, the agent can
dispose of extra items for free. Formally, Vb C K,b' C b,
v;(b) > v;(b"). The techniques of the paper could also be
used without free disposal, although more elicitation would
be required due to less a priori structure.

At the start of the auction, the auctioneer knows the items
and the agents, but has no information about the agents’
value functions over the bundles—except that the agents
have free disposal. The auction proceeds by having the
auctioneer incrementally elicit value function information
from the agents one query at a time until the auctioneer has
enough information to determine an optimal allocation of
items to agents. Therefore, we also call the auctioneer the
elicitor. An allocation is optimal if it maximizes social wel-
fare 37, vi(bs), where b; is the bundle that agent i receives
in the allocation.! The goal of the elicitor is to determine
an optimal allocation with as little elicitation as possible.?

3. ELICITOR’S CONSTRAINT NETWORK

The elicitor, as we designed it, never asks a query whose

answer could be inferred from the answers to previous queries.

To support the storing and propagation of information re-
ceived from the agents, we have the elicitor store its infor-
mation in a constraint network.® Specifically, the elicitor
stores a graph for each agent. In each graph, there is one
node for each bundle b. Each node is labeled by an inter-
val [LB;(b), UB;(b)]. The lower bound LB;(b) is the highest
lower bound the elicitor can prove on the true v;(b) given
the answers received to queries so far. Analogously, UB;(b)
is the lowest upper bound. We say a bound is tight when it
is equal to the true value.

Each graph can also have directed edges. A directed edge
(a,b) encodes the knowledge that the agent prefers bundle a
over bundle b (that is, v;(a) > v;(b)). The elicitor may know
this even without knowing v;(a) or v;(b). An edge (a,b) lets
the elicitor infer that LB;(a) > LB;(b), which allows it to
tighten the lower bound on a and on any of a’s ancestors in
the graph. Similarly, the elicitor can infer UB;(a) > UB;(b),
which allows it to tighten the upper bound on b and its
descendants in the graph.

We define the relation a > b (read “a dominates b”) to
be true if we can prove that v;(a) > v;(b). This is the case
either if LB;(a) > UB;(b), or if there is a directed path from
a to b in the graph. The free disposal assumption allows the
elicitor to infer the following dominance relations before the
elicitation begins: Vb C K,b' C b, b= b'.

4. RANK LATTICE BASED ELICITATION

In this section we study the effectiveness of a technique
proposed earlier [4,5]: rank lattice based elicitation. The
idea is that the elicitor can make use of rank information
about the bidders’ bundles. Let b;(r;), 1 < r; < 2%, be the

'Social welfare can only be maximized meaningfully if bid-
ders’ valuations can be compared to each other. We make
the usual assumption that the valuations are measured in
money (dollars) and thus can be directly compared.

2A recent theoretical result shows that even with free dis-
posal, in the worst case, finding an (even only approxi-
mately) optimal allocation requires exponential communi-
cation [12].

3This was included in the augmented order graph of Conen
& Sandholm [4].

bundle that agent ¢ has at rank r;. In other words, b;(1) is
the agent’s most preferred bundle, b;(2) is its second most
preferred bundle, and so on down to b;(2), which is the
empty bundle.

For example, consider two agents 1 and 2 bidding on two
items A and B, and the following value functions:

V1 (AB) = 8, U1 (A) = 4, V1 (B) = 3, U1 (@) =0
'UQ(AB) = 9, UQ(A) = 1, UQ(B) = 6, 112(@) =0
So, agent 1 ranks AB first, A second, B third, and the empty
bundle last. Agent 2 ranks AB first, B second, A third, and
the empty bundle last.

The elicitor uses a rank vector r = (r1,72,... ,7n) to rep-
resent allocating b;(r;) to each agent i. Not all rank vec-
tors are feasible: the b;(r;)’s might overlap in items, which
would correspond to giving the same item to multiple agents.
For instance in the example above, rank vector (1,2) corre-
sponds to allocating AB to agent 1 and B to agent 2, which
is infeasible. Similarly, rank vector (2, 2) allocates A to agent
1 and B to agent 2, which is a feasible allocation. The value
of a rank vector r is v(b(r)) = >, vi(bi(r:)). Rank vector
(1,2) in our example has value 8 + 6 = 14, while (2,2) has
value 4 + 6 = 10.

The elicitor can put bounds on v;(b;(r;)) using the con-
straint network as before. Even without knowing b;(r;)
(which bundle it is that agent ¢ values r;th), it knows that
vi(bi(ri — 1)) < v3(bi(r:)) < vi(bi(ri + 1)). Thus an upper
bound on v;(b;(r; — 1)) is an upper bound on v; (b;(r;)), and
a lower bound on v; (b;(r;+1)) is a lower bound on v; (b;(r;)).
In our example, knowing only b;(1) = AB and v, (AB) =8,
the elicitor can infer v1(b1(2)) < 8.

The set of all rank vectors defines a rank lattice (Figure 1).
A key observation in the lattice is that the descendants of a
node have lower (or equal) value to the node.

=infeasible

Dominated

Figure 1: Rank lattice corresponding to the exam-
ple. The gray nodes are infeasible. The shaded area
is the set of nodes dominated by feasible nodes. The
number above each node is the value of the node.
At the outset, the auctioneer knows the structure
of the lattice, but knows neither the shadings nor
the values of each node.

Given the rank lattice, we can employ search algorithms
to find an optimal allocation. In particular, by starting from
the root and searching in best-first order (always expanding
the fringe node of highest value), we are guaranteed that the
first feasible node that is reached is optimal.

FINDOPTIMAL()

1 FRINGE < {(1,1,...,1)}

2 while FRINGE #

3 r = FINDBESTNODE(FRINGE)
4 FRINGE — FRINGE —{r}

5 if r is feasible

6 return r

7 for each r’ € children(r)

8 if ' ¢ FRINGE
9 FRINGE « FRINGE U {r'}

Unlike in typical best-first search, algorithm FINDOPTIMAL
does not necessarily know which node of the fringe has high-
est value and thus should be expanded next. Determining
this often requires further preference elicitation from the
bidders. We implemented the following algorithm for doing
this. It corresponds to an elicitation policy where as long
as we cannot prove which node on the fringe is the best, we
pick an arbitrary node and elicit just enough information to

determine its value.
FINDBESTNODE(FRINGE)

1 S« FRINGE
2 remove from S all r dominated by some r’ in S
3 if all » € S have the same value

4 return arbitraryr € S

5 choose r € S whose value we don’t know exactly
6 for each agent ¢

7 if elicitor does not know b;(r;)

8 ask agent ¢ what bundle it ranks r;th

9 if elicitor does not know v;(b;(r;)) exactly

0 ask agent ¢ for its valuation on bundle b;(r;)
1 goto 2

In some cases, FINDBESTNODE can return a rank vector r
although not all bundles b;(r;) are known to the elicitor.
This can occur, for example, if the known valuations in the
rank vector already sum up to a large enough number. In
that case, checking the feasibility in step 5 of FINDOPTIMAL
requires eliciting the unknown bundles b;(r;).

5. EXPERIMENTAL SETUP

While the idea and some algorithms for preference elic-
itation in combinatorial auctions have been presented pre-
viously [4], they have not been validated. To evaluate the
usefulness of the idea, we conducted a host of experiments.
We present the results in the rest of the paper. Each plot
shows how many queries were needed to find an optimal allo-
cation and prove that it is optimal (that no other allocation
is better). In each plot, each point represents an average
over 50 runs, where each run is on a different problem in-
stance (different draw of valuations for the agents). Each
algorithm was tested on the same set of problem instances.
The plots show results for the instance sizes on which all of
the 50 instances took less than 2 minutes to solve on a 2.8
GHz Linux machine.

Unfortunately, real data for combinatorial auctions are
not publicly available.* Therefore, as in all of the other
academic work on combinatorial auctions so far, we used
randomly generated data. We first considered using exist-
ing benchmark distributions. However, the existing problem
generators output instances with sparse bids, that is, each
agent bids on a relatively small number of bundles. This
is the case for the CATS suite of economically-motivated
random problem instances [10] as well as for the other prior
benchmarks [1,6,19]. In such cases, the communication is
a non-issue, which undermines the purpose of elicitation.
In addition, the instances generated by many of the earlier
benchmarks do not honor the free disposal constraints (be-
cause for an agent, the value of a bundle can be less than
that of a sub-bundle).

4Furthermore, even if the data were available, they would
only have some bids, not the full valuation functions of the
agents (because not all agents bid on all bundles).

elicitation ratio
1~

0.8

0.6

0.4

02t :

‘ ‘ ‘ . number of items
2 3 4 5 6 7 8 9 10 11

0

Figure 2: Performance of rank lattice based elici-
tation. The curves for 4 and 5 agents are barely
visible, being at an elicitation ratio of almost 1.

In many real settings, each bidder has a nonzero valuation
for every bundle. For example in spectrum auctions, each
bidder has positive value for every bundle because each item
is of positive value to every bidder (at least due to renting
and reselling possibilities). In other settings, there may exist
worthless items for some bidders. Even in such cases, un-
der the free disposal assumption, the bidders have positive
valuations for almost all bundles—except bundles that only
contain worthless items (because, at worst, they can throw
away the extra items in any bundle for free).

To capture these considerations, we developed a new bench-
mark instance generator. In each problem instance we gen-
erate, each bidder has a nonzero valuation for almost every
bundle, and all valuations honor free disposal. Specifically,
the generator assigns, for each agent in turn, integer valu-
ations using the following routine. We impose an arbitrary
maximum bid value MAXBID = 107 in order to avoid in-
teger arithmetic overflow issues, while at the same time al-
lowing a wide range of values to be expressed. Valuations
generated with this routine exhibit both complementarity

and substitutability.

GENERATEBIDS(K)

G« new constraint network

S « 2% (the set of all bundles)

impose free disposal constraints on G

UB(K) «— MAXBID

while S # ()
pick b uniformly at random from S
S—S—-b
pick v(b) uniformly at random from [LB(b), UB(b)]
propagate LB(b) = UB(b) = v(b) through G

RANK LATTICE EXPERIMENTS

The first experiment evaluates the efficiency of rank lattice
based elicitation. Define the elicitation ratio to be the num-
ber of queries asked divided by the number of queries asked
in full revelation. In full revelation, the number of queries is
n(2F — 1) (that is, for each agent, one value query for each
of the 2¥ bundles except the empty bundle). Figure 2 shows
that as the number of items in the auction increases, the
elicitation ratio approaches zero, that is, only a vanishingly
small fraction of the possible queries are asked!

Unfortunately, Figure 2 also shows that as the number
of agents n grows, the advantage from rank lattice based
elicitation decreases. This phenomenon can be explained as

© 00~ Uk W+

S

follows. Asthe number of agents increases, the average num-
ber of items that an agent wins decreases. Thus agents will
usually win smaller, lower-ranked bundles. Because rank
lattice based elicitors require the agents to reveal all high-
rank bundles before any low-rank bundles, as the number
of agents increases, each agent reveals a greater number of
bundle values. This holds not only for the specific elicitor
algorithm described above, but any elicitor that asks queries
in order of rank (even if the elicitor had an oracle for deciding
which queries should be asked from which agents). These
elicitors include all rank lattice based elicitors that search
continuous paths in the lattice, starting from the root (such
as the EBF elicitor family studied in [5]).

7. GENERALELICITATION FRAMEWORK

Given that no rank lattice based elicitor can do much
better than the one outlined above, we now move to a more
general elicitation framework. As we will show, this allows
us to develop algorithms that ask significantly fewer queries,
and that scale well as the number of agents grows.

The framework allows a richer set of query types (to ac-
commodate for different settings where answering some types
of queries is easier than answering other types); allows more
flexible ordering of the queries at run time; and never con-
siders infeasible solutions. The general elicitor template is a
slightly modified version of that of Conen & Sandholm [4]:
SOLVE()

C «— INITIALCANDIDATES (1, k)
while not DoNE(C)

g — SELECTQUERY(C)

ASKQUERY(q)

C — PruNE(C)

Tk W N~

Here, C' is a set of candidates allocations, where a can-
didate is a vector ¢ = (c1,c2,...,cn) of bundles where the
bundles contain no items in common. Unlike with rank vec-
tors, all candidates are feasible. The value of a candidate is
v(e) = Y, vi(ei); UB(e) = Y, UBi(c;) is an upper bound,
and LB(c) =}, LBi(c;) a lower bound.

INITIALCANDIDATES generates the set of all candidates, which
is the set of all n* allocations of the k items to the n agents
(some agents might get no items).

PRUNE removes, one candidate at a time, each candidate
that is dominated by a remaining candidate (a candidate ¢
dominates another candidate ¢’ if the elicitor can prove that
the value of c is at least as high as that of ¢’). This may elim-
inate some optimal allocations, but it will never eliminate all
optimal allocations—one will always remain. If strict dom-
ination were to be used as the criterion, then Sorve would
find all optimal allocations, at the cost of requiring more
elicitation.

DoNE returns true if all remaining candidates in C are
provably optimal. This is the case either if C' has only one
element, or if all candidates in C' have known value (that
is, Ve € C, UB(c) = LB(c)). Because the algorithm has just
pruned, it knows that if all candidates have known value,
then they have equal value.

SELECTQUERY selects the next query to be asked. This
function can be instantiated in different ways to implement
different elicitation policies, as we will show.

AskQUERY takes a query, asks the corresponding agent for
the information, and appropriately updates the constraint
network. The details of updating the network are discussed
in conjunction with each query type below.

7.1 Determining domination

As we stated, in the PRUNE procedure, a candidate ¢ dom-
inates another candidate ¢’ if the elicitor can prove that
the value of c is at least as high as that of ¢/. This is
the case if > | di(ci, ¢i) > 0, where 6;(b,b") is the great-
est difference between v;(b) and v;(b') that can be proven
given the information in the constraint network. Namely,
if b = b, then 6;(b,b") = max(0, LB;(b) — UB;(b')); other-
wise, 8;(b,b") = LB;(b)— UB;(b'). The elicitor can determine
domination by computing (¢, c’).

The calculation of §(c, ¢’) requires checking whether bun-
dle ¢; dominates bundle ¢;. This is an expensive operation:
the elicitor needs to determine whether a path exists from c;
to ¢} in the constraint network. This takes linear time in the
size of the network, which is O(2%) where k is the number
of items.?

It would be advantageous to avoid computing d(c, c’) ex-
actly if possible. In this section we show how to accomplish
this; by comparing the bounds on ¢ and ¢’, we can already
rule out some domination relationships.

First, in some cases the elicitor can determine that there
is no domination between bundles by simply looking at the
bounds on the bundles’ values. (This is not totally obvious.
Consider the setting where the elicitor has been told that
a; >~ bi, vi(ai) S [O, 5], ’Uz(bl) S [0,5] In this setting the
elicitor knows that a; dominates b;, although this cannot be
inferred from the bounds.)

LEMMA 1. If UB;(a;) < UB;(b;) then a; ¥ b;.
LEMMA 2. If LBZ(LLZ) < LBz(bz) then a; i b;.

PrROOF. Both of these Lemmas are immediate from the
propagation rules. [

When the elicitor is determining domination between can-
didates, additional complications arise from the fact that
different agents may rank the candidates in opposite order.
Nevertheless, we show that in some cases the elicitor can
determine that there is no domination by simply looking at
the bounds on the candidates’ values:

PROPOSITION 1. If UB(a) < UB(b) then a i b.

PRrOOF. Split the agents into two groups: S = {i|UB;(a:) <
UB;(b;)} and S = {i|UB;(a;) > UB;(b;)}. S may be empty,
but S necessarily includes at least one element by the as-
sumption. For all 4 € S, we know that a; f b; by Lemma 1.
This allows us to conclude:

icS =
Fori e S, di(ai, b;) depends on whether a; = b;. But if so,

0 only increases, so an upper bound on § assumes a; > b;:

> 6i(ai,bi) < max(0, LBi(a;) — UBi(b:))

i€S ieS
< Y max(0, UBi(a:) — UBi(b:))
i€S
< > UBi(a:) — UBi(b:)
i€S

5 Alternatively, one could keep in a hash table, for each
bundle-agent pair (b, %), all the bundles that b dominates
for that agent i. This would lead to constant time domina-
tion tests, but O(22%) time for each edge addition and ©(2%)

space for each bundle-agent pair, that is, space @(n22k).

The last step relies on the fact that by definition, for i € S,
UB;(a;)— UB;(b;) > 0, so the max has no effect. This leaves

us with:
8(a,b) < > [UBi(a:) — UBi(b:)] + Y _[UBi(a:) — UB;(b;)]
icS i€S

= UB(a)— UB(b) <0 O

PROPOSITION 2. If LB(a) < LB(b) then a # b.

PrOOF. The proof is symmetric to the former proof. [

Given these propositions, we implemented the following

algorithm for testing domination:
DOMINATES(c, ¢’)

1 if UB(c) < UB(c’) then return false
2 if LB(c) < LB(c") then return false
3 if §(c,c¢’) < 0 then return false

4 else return true

8. THE GRAND BUNDLE IS (ALMOST)
ALWAYS REVEALED

Intuitively it is appealing to elicit from every agent the
value for the grand bundle (i.e., the bundle that consists of
all items) because that sets an upper bound on all bundle-
agent pairs via the free disposal assumption. In this section
we show that this indeed is a good idea.

PRrROPOSITION 3. In order to determine the optimal allo-
cation, any elicitation policy must prove an upper bound on
v (K) for every agent i to which K is not allocated.

ProOOF. The lower bound on the optimal allocation is fi-
nite (say, L) because we require each bundle to have non-
negative and finite value for every bidder. Therefore, unless
the auctioneer provides an upper bound on v;(K), the pos-
sibility is open that allocating K to i is worth more than L.
Because allocating K to ¢ possibly has value greater than
implementing the allocation that is, in fact, optimal, the
elicitation policy cannot terminate. []

Furthermore, at least for value queries, eliciting the grand
bundle value for every agent comes at no loss:

PROPOSITION 4. Assume there are at least 2 bidders. There
is a policy (possibly requiring an oracle for choosing the
queries) using value queries that asks v;(K) for every agent i
and that asks the fewest possible queries (among all elicitors
that use value queries only).

Proor. If the optimal allocation involves allocating items
to at least two bidders, then we are not allocating the full
bundle to any agent, so by the proposition above, the auc-
tioneer must elicit v;(K) for every i.

Otherwise, the optimal allocation involves allocating all
items to a single agent i. For all j # 4, the proposition ap-
plies and therefore the auctioneer must elicit v;(K). What
is left to prove is that the auctioneer is at least as well off
also eliciting v; (K).

If all other bidders have zero value on all sub-bundles (that
is, the full bundle has positive value to them, but anything
less has zero value), then the auctioneer need only place a
lower bound on v;(K) that is higher than any other bidder’s,
which it can do by eliciting v;(K).

If any other bidder j has nonzero value on some bundle
K —b, the auctioneer needs to prove that v;(K —b) 4+ v;(b) <
v;(K). In other words, the auctioneer needs to provide a
lower bound on wv;(K) that is sufficiently greater than the
upper bound on v;(b). Using value queries and assuming
free disposal, the auctioneer can prove an upper bound on
v;(b) by eliciting b or any super-bundle &’. Similarly, it can
prove a lower bound on K by eliciting K or any sub-bundle.
However, it cannot prove sufficiently tight bounds to sepa-
rate the optimal allocation (of K to %) from the suboptimal
one by eliciting a single bundle: by eliciting a single bundle,
it would prove UB;(b) = LB;(K). Given that it must elicit
two bundles, it may as well elicit v;(K) to provide the lower
bound on that value.

The argument in the paragraph above generalizes to set-
tings where there are many bidders 7 who have nonzero value
for several bundles K —b. The auctioneer must prove a suffi-
ciently tight lower bound on K, and sufficiently tight upper
bounds on each of the bundle-agent pairs (b,%). Since not all
the elicitations that support sufficiently tight upper bounds
on b’s can also support a sufficiently tight lower bound on
K, the auctioneer must elicit at least one other bundle to
support that lower bound. There may be more than one
choice for this; one possible choice is to elicit v;(K). O

We use these observations in many of the elicitor algo-
rithms: they first consider the grand bundle. We will discuss
the specific elicitation policies below.

9. ORDER QUERIES

In some applications, agents might not know the values
of bundles, and might need to expend great effort to deter-
mine them [9,13, 18], but might easily be able to see that
one bundle is preferable over another. In such settings, it
would be sensible for the elicitor to ask order queries, that
is, ask an agent i to order two given bundles ¢; and ¢} (to
say which of the two it prefers). The agent will answer
ci > ¢ or ¢; > ¢; or both. AskQuUERy will then create new
edges in the constraint network to represent these new dom-
inates relations. By asking only order queries, the elicitor
cannot compare the valuations of one agent against those
of another, so in general it cannot determine a social wel-
fare maximizing allocation. However, order queries can be
helpful when interleaved with other types of queries.

9.1 Interleaving value and order queries

We developed an elicitation policy that uses both value
and order queries. It mixes them in a straightforward way,
simply alternating between the two, starting with an order
query. Whenever an order query is to be asked, the elicitor
computes all tuples (a, b, i) where a and b are each allocated
to agent ¢ in some candidate, and where the elicitor knows
neither @ > b nor b > a. The elicitor then picks a random
tuple. Whenever a value query is to be asked, the elicitor
chooses a random (b,¢) where b is allocated to agent ¢ in
some candidate.

To evaluate the mixed policy, we need a way of comparing
the cost of an order query to the cost of a value query. In
the experiment, we let an order query cost 0.1 and a value
query cost 1, capturing the notion that the qualitative order
queries should be much easier to answer than precise value
queries.

elicitation ratio
1

0.8

0.6

0.4

0.2

‘ number of items
2 3 4 5 6 7 8 9

Figure 3: Elicitation using value and order queries.

Figure 3 shows that, as desired, the elicitation ratio ap-
proaches zero as the number of items increases. Further-
more, unlike with rank lattice based elicitors, this benefit is
largely maintained as the number of agents increases.

The policy described above is able to reduce the number of
precise values it elicits, by about 10%, over asking only value
queries. This decrease is almost exactly offset by the cost of
asking order queries. In other words, the order queries are
helping, but more work needs to be done to find a policy
that better combines the two query types—or at least, to
find a better policy for order queries.

As the relative cost of an order query decreases, the bene-
fit of interleaving value queries with order queries increases.
In the limit, if order queries were free, the policy should
ask all the order information at the outset, then ask value
queries.

Another advantage of the mixed value-order query pol-
icy is that it does not depend as critically on free disposal.
Without free disposal, the policy that uses value queries
only would have to elicit all values. The order queries in the
mixed policy, on the other hand, can create useful edges in
the constraint network which the elicitor can use to prune
candidates.

10. BOUND-APPROXIMATION QUERIES

In many settings, the bidders can roughly estimate valu-
ations easily, but the more accurate the estimate, the more
costly it is to determine. In this sense, the bidders deter-
mine their valuations using anytime algorithms [9, 13, 18].
For this reason, we introduce a new query type: a bound-
approximation query. In such a query, the elicitor asks an
agent 4 to tighten the agent’s upper bound UB;(b) (or lower
bound LB;(b)) on the value of a given bundle b. This query
type leads to more incremental elicitation in that queries are
not answered with exact information, and the information
is refined incrementally on an as-needed basis.

The elicitor can provide a hint ¢ to the agent as to how
much additional time the agent should devote to tightening
the bound in the query. Smaller values of the hint ¢ make
elicitation more incremental, but cause additional communi-
cation overhead and computation by the elicitor. Therefore,
the hint can be tailored to the setting, depending on the
relative costs of communication, bundle evaluation by the
bidders, and computation by the elicitor. The hint could
also be adjusted at run-time, but in the experiments below,

we use a fixed hint ¢ = 0.2.

To evaluate this elicitation method, we need a model on
how the agents’ computation refines the bounds. We de-
signed the details of our elicitation policy motivated by the
following specific scenario, although the elicitation policy
can be used generally. Let each agent have two anytime al-
gorithms which it can run to discover its value of any given
bundle: one gives a lower bound, the other gives an upper
bound. Spending time d, 0 < d < 1 will yield a lower bound
vi(b)v/d or an upper bound (2 —v/d)v;(b).® This means that
there are diminishing returns to computation, as is the case
with most anytime algorithms.” Finally, we assume that the
algorithms can be restarted from the best solution found so
far with no penalty: having spent d time tightening a bound,
we can get the bound we would have gotten spending d’ > d
by only spending an additional time d’ — d.

Using randomly chosen bound-approximation queries as
the elicitation policy would work, but the more sophisti-
cated elicitation policy that we developed chooses the query
that maximizes the expected benefit. This is the amount by
which we expect the upper and lower bounds on bundle-
agent pairs to be tightened when we propagate the new
bound that the queried agent will return (only counting
bundle-agent pairs that are included in the set of remain-
ing candidates). To compute the expected benefit, the elic-
itor assumes that v;(b) is drawn uniformly at random in
[LB;(b), UB;(b)]. To estimate the expected change in bounds,
the elicitor samples 10 values ¥; (b) in that interval, uniformly
at random. For each value, the elicitor computes (using the
cost model described in the previous paragraph) what bound
z it would receive if the agent spent additional time ¢ work-
ing on that bound and the true value were v;(b). Finally, the
elicitor observes by how much the values in the constraint
network would change if the elicitor were to propagate z
through the network (only bundle-agent pairs that are in-
cluded in the set of remaining candidates are counted).®

We evaluated bound-approximation queries using the elic-
itation policy and agents’ computation model described above.
Figure 4 shows that as the number of items increases, only
a vanishingly small fraction of the overall computation cost
is actually incurred because the optimal allocation is de-
termined while querying only very approximate valuations
on most bundle-agent pairs. The method also maintains
its benefit as the number of agents increases. Because the

5The model of agents’ computation cost here opens the pos-
sibility to cheat in the evaluation of the elicitor. As the
model is stated, the elicitor could ask an agent to spend
t time each on the upper and lower bound. Based on the
answers, the elicitor would know the exact value (it would
be in the middle between the lower and upper bound). To
check that our results do not inadvertently depend on such
specifics of the agents’ computation model, we ran experi-
ments using an asymmetric cost function (linear for lower
bounds, square root for upper bounds). This did not appre-
ciably change the results.

"The square root is arbitrary, but captures the case of di-
minishing returns to additional computation. Running ex-

periments with d in place of v/d did not significantly change
the results.

8 A minor detail comes in estimating the worth of reducing
an upper bound from co. We avoid this question by ini-
tially asking each agent for an upper bound on the grand
bundle—which is almost always required anyway as shown
in Proposition 3. By free disposal, that is also an upper
bound on all other bundles.

elicitation ratio
1 ;
2 agents
3 agents ———
08 4 agents 1
~.__ Sagents
06 |
04 r]
02+ .
0 ‘ number of items
2 3 4 5 6 7 8
Figure 4: Elicitation using bound-approximation
queries.

method can incur up to cost 2 per bundle (1 for getting an
tight lower bound, plus another 1 for getting an tight upper
bound), the elicitation ratio exceeds 1, as it does for the
2-agent, 2-item case.

11. DETERMINING VCG PAYMENTS

Having allocated the items to the agents, the auction-
eer needs to specify how much each agent should pay for
its bundle. Requiring an agent to pay the amount it re-
vealed during the elicitation algorithm has the disadvantage
that agents will be motivated to lie about their preferences
(and may need to spend additional computational resources
to compute what preferences they should reveal). In the
Vickrey-Clarke-Groves (VCG) mechanism [3, 7, 21] applied
to a combinatorial auction (this mechanism is also known
as the Generalized Vickrey auction), the auctioneer charges
each agents an amount equal to the negative externality that
agent imposed on the other bidders. That is, if an agent 4
enters an auction and wins items, the other agents will typ-
ically be worse off than if the agent had not entered the
auction; agent ¢ is required to pay the difference to the auc-
tioneer.

Under the VCG pricing scheme, answering the queries
truthfully is an ez post equilibrium [4].° This holds despite
the fact that the elicitor’s queries leak information to the
bidder about what the other bidders have answered so far.
This also holds even if the bidders are allowed to pass on
answering some queries, and are allowed to answer queries
that were never asked!

After enough information has been elicited to determine
the optimal allocation, some additional elicitation may be
required to determine the VCG payments. We implemented
the following routine to carry out the overall elicitation:

COMPUTEPAYMENTS()

1 Call SOLVE as before, getting the optimal allocation opt.

2 Elicit the exact value v(opt) of the optimal allocation.

3 For each agent i, call SOLVE but remove from C all alloc-
ations that allocate items to 7. Call this opt_;. Elicit the
exact value v(opt_;) of this allocation.

4 The payment by agent ¢ is v(opt_;) — (v(opt) — v;(opt;)).

In the 2-agent case, almost no additional elicitation is re-
quired: opt_, simply allocates the grand bundle K to the

—1

9This is a game-theoretic solution concept that is stronger
than Nash equilibrium, but weaker than dominant strategy
implementation.

elicitation ratio

1 TR
.\ bound-approx, 2 agents
. - bound-approx, 4 agents
0.8 | vaue/order, 2 agents - -
uelorder, 4 agents
06 1
04 | e ’
02 | e
0 number of items

2 3 4 5 6 7 8 9 10

Figure 5: Computing VCG payments. The upper
two curves are for the bound-approximation policy,
the lower two for the value and order policy.

agent that was not removed. Thus at most 4 additional pre-
cise values are needed over what is necessary to compute the
optimal allocation: v;(opt,;) and v;(K) for both ¢ = 1 and
i = 2.Unfortunately this argument does not generalize to
more than 2 agents. The optimal allocation and the VCG
payments could be computed by invoking SoLvE separately
(n + 1) times (once for the overall problem, and once for
each agent removed in turn). In practice, however, the in-
formation needed for the VCG payments is elicited largely
as a side effect of eliciting information for determining the
optimal allocation.'® For example, the elicitation ratio of
the bound-approximation policy is 60% at n = 3, £k = 5
while computing VCG payments only increases the elicita-
tion ratio to 71%. Similarly, that of the value and order
policy only increases from 48% to 56%.

12. REVERSE AUCTIONS

While earlier work on preference elicitation has focused
on combinatorial forward auctions, the methodology can be
adapted for combinatorial reverse auctions as well, where
there is one buyer and multiple sellers (bidders). For all the
elicitation policies discussed in the general elicitation frame-
work, the only change is in the PrRUNE procedure. Rather
than removing candidates that are dominated, we remove
candidates that dominate.™

Figures 6 and 7 show some of the results of running our
elicitors on combinatorial reverse auctions. As in auctions,
only a vanishing fraction of the preferences of the bidders
gets revealed. Interestingly, while in auctions, adding more
agents tends to increase the elicitation ratio (for a suffi-
ciently large number of items), the converse is true in re-
verse auctions (and “sufficiently large” is smaller).

13. CONCLUSIONS AND FUTURE WORK

In all of the elicitation algorithms of this paper, as the
number of items for sale increases, the amount of informa-

10T rank lattice based elicitors, no additional information is
required to compute the VCG payments, regardless of the
number of agents [5].

1 Eor some policies, we might also need to redefine SELECTOP,
but the way the policies above choose an operation does not
depend on whether the auction is a forward or a reverse
auction.

elicitation ratio

2 agents
3 agents ———
0.8 - 4 agents -]
5 agents
06 | 1
04 ¢ 1
0.2 1
0 ‘ ‘ ___number of items

2 3 4 5 6 7 8 9

Figure 6: Alternating value/order query policy in
reverse auctions.

elicitation ratio
1 : : : : :

0.8

0.6

04 :

number of items
2 3 4 5 6 7 8

Figure 7: Bound-approximation query policy in re-
verse auctions.

tion elicited is a vanishing fraction of the information col-
lected in traditional “direct revelation mechanisms” where
bidders reveal all their valuation information! The elicita-
tion schemes also maintain their benefit as the number of
agents increases. Rank lattice based elicitors are the excep-
tion: we showed that they scale poorly in agents and we
explained why.

By using the VCG pricing scheme, each agent is moti-
vated to answer the queries truthfully, even if the agents
are allowed to pass on queries and answer queries that were
not asked. We showed that determining the VCG payments
requires very little additional preference elicitation beyond
what is needed to determine the optimal allocation.

We adapted preference elicitation to combinatorial reverse
auctions and showed that, there too, as the number of items
for sale increases, the fraction of preference information that
is revealed approaches zero. Unlike in auctions, the elicita-
tion ratio improves as the number of agents increases.

We experimented with several query types. Using a com-
bination of value queries to get exact values, and order
queries which are easier to answer, we can reduce the amount
of exact valuation the bidders need to do. More work needs
to be done to reduce the overall amount of agent-side com-
putation. Our bound-approximation queries take the incre-
mental nature of elicitation to a new level. The agents are
only asked for rough bounds on valuations first, and more
refined approximations are elicited only on an as-needed

basis. A related approach would be to propose a bound,
and ask whether the agent’s valuation is above or below
the bound. This suggest a relationship between preference
elicitation and ascending combinatorial auctions where the
auction proceeds in rounds, and in each round the bidders
react to price feedback from the auctioneer by revealing de-
mand (e.g., [2,14,22]). As future research, we plan to explore
this connection more deeply. We also desire to design new,
increasingly effective preference elicitation algorithms.

14, REFERENCES

[1] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge.
Integer programming for combinatorial auction winner
determination. JCMAS 2000.

Sushil Bikhchandani, Sven de Vries, James Schummer, and

Rakesh V. Vohra. Linear programming and Vickrey

auctions, 2001. Draft.

[3] E H Clarke. Multipart pricing of public goods. Public
Choice, 11:17-33, 1971.

[4] Wolfram Conen and Tuomas Sandholm. Preference
elicitation in combinatorial auctions: Extended abstract.
ACM-EC 2001.

[5] Wolfram Conen and Tuomas Sandholm. Partial-revelation
VCG mechanism for combinatorial auctions. AAAI 2002.

[6] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham.
Taming the computational complexity of combinatorial
auctions: Optimal and approximate approaches. IJCAI
1999.

[7] Theodore Groves. Incentives in teams. Econometrica,
41:617-631, 1973.

[8] Holger Hoos and Craig Boutilier. Bidding languages for
combinatorial auctions. IJCAI 2001.

[9] Kate Larson and Tuomas Sandholm. Costly valuation
computation in auctions. TARK 2001.

[10] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham.
Towards a universal test suite for combinatorial auction
algorithms. ACM-EC 2000.

[11] Noam Nisan. Bidding and allocation in combinatorial
auctions. ACM-EC 2000.

[12] Noam Nisan and Ilya Segal. The communication
complexity of efficient allocation problems, 2002. Draft.
Second version March 5th.

[13] David C Parkes. Optimal auction design for agents with
hard valuation problems. Agent-Mediated Electronic
Commerce Workshop at IJCAT 1999.

[14] David C Parkes and Lyle Ungar. Iterative combinatorial
auctions: Theory and practice. AAAT 2000.

[15] Michael H Rothkopf, Aleksandar Peke¢, and Ronald M
Harstad. Computationally manageable combinatorial
auctions. Management Science, 44(8):1131-1147, 1998.

[16] Michael H Rothkopf, Thomas J Teisberg, and Edward P
Kahn. Why are Vickrey auctions rare? Journal of Political
Economy, 98(1):94-109, 1990.

[17] Tuomas Sandholm. eMediator: A next generation electronic
commerce server. AGENTS 2000.

[18] Tuomas Sandholm. Issues in computational Vickrey
auctions. International Journal of Electronic Commerce,
4(3):107-129, 2000.

[19] Tuomas Sandholm. Algorithm for optimal winner
determination in combinatorial auctions. Artificial
Intelligence, 135:1-54, 2002.

[20] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and
David Levine. CABOB: A fast optimal algorithm for
combinatorial auctions. IJCAI 2001.

[21] W Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16:8-37, 1961.

[22] Peter R Wurman and Michael P Wellman. AkBA: A
progressive, anonymous-price combinatorial auction.

ACM-EC, 2000.

2

