Machine Learning for Signal Processing
Predicting and Estimation from Time Series

Abelino Jimenez
Slides from Bhiksha Raj
Preliminaries : \(P(y \mid x) \) for Gaussian

- If \(P(x,y) \) is Gaussian:
 \[
 P(x,y) = N\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix} \right)
 \]

- The conditional probability of \(y \) given \(x \) is also Gaussian
 - The slice in the figure is Gaussian

 \[
 P(y \mid x) = N\left(\mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x), C_{yy} - C_{yx} C_{xx}^{-1} C_{xy} \right)
 \]

- The mean of this Gaussian is a function of \(x \)
- The variance of \(y \) reduces if \(x \) is known
 - Uncertainty is reduced
Preliminaries: $P(y|x)$ for Gaussian

Best guess for Y when X is not known

$$P(y | x) = N(\mu_y + C_{yx}C_x^{-1}(x - \mu_x), C_{yy} - C_{yx}C_x^{-1}C_{xy})$$
Preliminaries: $P(y| x)$ for Gaussian

Update guess of Y based on information in X
Correction is 0 if X and Y are uncorrelated, i.e $C_{yx} = 0$

Correction of Y using information in X

Best guess for Y when X is not known

Mean of Y given X

Given X value

$P(y| x) = N(\mu_y + C_{yx}C^{-1}_{xx}(x - \mu_x), C_{yy} - C_{yx}C^{-1}_{xx}C_{xy})$
Preliminaries: $P(y|x)$ for Gaussian

Correction to $Y = \text{slope} \times (\text{offset of } X \text{ from mean})$

Correction of Y using information in X

Best guess for Y when X is not known

Mean of Y given X

Given X value

$P(y|x) = N(\mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x), C_{yy} - C_{yx} C_{xx}^{-1} C_{xy})$
Preliminaries: $P(y|x)$ for Gaussian

Correction of Y using information in X

Best guess for Y when X is not known

Uncertainty in Y when X is not known

$$P(y|x) = N(\mu_y + C_{yx}C^{-1}_{xx}(x - \mu_x), C_{yy} - C_{yx}C^{-1}_{xx}C_{xy})$$
Preliminaries: $P(y| x)$ for Gaussian

Shrinkage of variance is 0 if X and Y are uncorrelated, i.e $C_{yx} = 0$

Correction of Y using information in X

Best guess for Y when X is not known

Reduced uncertainty from knowing X

Uncertainty in Y when X is not known

Shrinkage of uncertainty from knowing X

Best guess for Y when X is not known

$$P(y|x) = N(\mu_y + C_{yx}C_{xx}^{-1}(x-\mu_x), C_{yy} - C_{yx}C_{xx}^{-1}C_{xy})$$
Preliminaries : \(P(y|x) \) for Gaussian

Knowing \(X \) modifies the mean of \(Y \) and shrinks its variance

\[
P(y|x) = N(\mu_y + C_{yx}C^{-1}_{xx}(x - \mu_x), C_{yy} - C_{yx}C^{-1}_{xx}C_{xy})
\]
Consider a random variable O obtained as above.

The expected value of O is given by

$$E[O] = E[AS + \varepsilon] = A\mu_s + \mu_\varepsilon$$

Notation:

$$E[O] = \mu_O$$
Background: Sum of Gaussian RVs

\[O = AS + \varepsilon \]

\[S \sim N(\mu_s, \Theta_s) \quad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon) \]

• The variance of \(O \) is given by

\[\text{Var}(O) = \Theta_O = E[(O - \mu_O)(O - \mu_O)^T] \]

• This is just the sum of the variance of \(AS \) and the variance of \(\varepsilon \)

\[\Theta_O = A\Theta_SA^T + \Theta_\varepsilon \]
Background: Sum of Gaussian RVs

\[O = AS + \varepsilon \]

\[S \sim N(\mu_s, \Theta_s) \quad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon) \]

- The conditional probability of \(O \):
 \[P(O|S) = N(AS + \mu_\varepsilon, \Theta_\varepsilon) \]

- The overall probability of \(O \):
 \[P(O) = N(A\mu_s + \mu_\varepsilon, A\Theta_s A^T + \Theta_\varepsilon) \]
Background: Sum of Gaussian RVs

\[O = AS + \varepsilon \]
\[S \sim N(\mu_S, \Theta_S) \quad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon) \]

- The cross-correlation between \(O \) and \(S \)
 \[\theta_{OS} = E[(O - \mu_O)(S - \mu_S)^T] \]
 \[= E[(A(S - \mu_S) + (\varepsilon - \mu_\varepsilon))(S - \mu_S)^T] \]
 \[= E[A(S - \mu_S)(S - \mu_S)^T + (\varepsilon - \mu_\varepsilon)(S - \mu_S)^T] \]
 \[= AE[(S - \mu_S)(S - \mu_S)^T] + E[(\varepsilon - \mu_\varepsilon)(S - \mu_S)^T] \]
 \[= AE[(S - \mu_S)(S - \mu_S)^T] \]
 \[= AS \]

- The cross-correlation between \(O \) and \(S \) is
 \[\theta_{OS} = A\theta_S \]
 \[\theta_{SO} = \theta_SA^T \]
Background: Joint Prob. of O and S

\[O = AS + \varepsilon \]

\[Z = \begin{bmatrix} O \\ S \end{bmatrix} \]

• The joint probability of \(O \) and \(S \) (i.e. \(P(Z) \)) is also Gaussian

\[P(Z) = P(O, S) = N(\mu_Z, \Theta_Z) \]

• Where

\[\mu_Z = \begin{bmatrix} \mu_O \\ \mu_S \end{bmatrix} = \begin{bmatrix} A\mu_S + \mu_\varepsilon \\ \mu_S \end{bmatrix} \]

• \(\Theta_Z = \begin{bmatrix} \Theta_O & \Theta_0S \\ \Theta_S0 & \Theta_S \end{bmatrix} = \begin{bmatrix} A\Theta_SA^T + \Theta_\varepsilon & A\Theta_S \\ \Theta_SA^T & \Theta_S \end{bmatrix} \]
Preliminaries: Conditional of S given O: $P(S|O)$

\[
P(S|O) = N(\mu_S + \Theta_{SO}\Theta_o^{-1}(O - \mu_O), \quad \Theta_S - \Theta_{SO}\Theta_o^{-1}\Theta_{OS})
\]

\[
P(S|O) = N(\mu_S + \Theta_S A^T(A\Theta_S A^T + \Theta_\epsilon)^{-1}(O - A\mu_S - \mu_\epsilon), \quad
\Theta_S - \Theta_S A^T(A\Theta_S A^T + \Theta_\epsilon)^{-1} A\Theta_S)
\]

\[
O = AS + \epsilon
\]
The little parable

You’ve been kidnapped

And blindfolded

You can only hear the car
You must find your way back home from wherever they drop you off
Kidnapped!

• Determine by only *listening* to a running automobile, if it is:
 – Idling; or
 – Travelling at constant velocity; or
 – Accelerating; or
 – Decelerating

• You only record energy level (SPL) in the sound
 – The SPL is measured once per second
What we know

• An automobile that is at rest can accelerate, or continue to stay at rest
• An accelerating automobile can hit a steady-state velocity, continue to accelerate, or decelerate
• A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate
• A automobile at a steady-state velocity can stay in steady state, accelerate or decelerate
What else we know

- The probability distribution of the SPL of the sound is different in the various conditions
 - As shown in figure
 - In reality, depends on the car
- The distributions for the different conditions overlap
 - Simply knowing the current sound level is not enough to know the state of the car
The state-space model

- Assuming all transitions from a state are equally probable
- This is a Hidden Markov Model!
Estimating the state at $T = 0$-

- $T=0$, before the first observation, we know nothing of the state
 - Assume all states are equally likely

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idling</td>
<td>0.25</td>
</tr>
<tr>
<td>Declerating</td>
<td>0.25</td>
</tr>
<tr>
<td>Cruising</td>
<td>0.25</td>
</tr>
<tr>
<td>Accelerating</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- A $T=0$, before the first observation, we know nothing of the state
 - Assume all states are equally likely
The first observation: $T=0$

- At $T=0$ you observe the sound level $x_0 = 68\text{dB SPL}$
 - The observation modifies our belief in the state of the system
The first observation: \(T=0 \)

\[
\begin{array}{cccc}
P(x|\text{idle}) & P(x|\text{decel}) & P(x|\text{cruise}) & P(x|\text{accel}) \\
45 & 60 & 65 & 70 \\
68dB & & &
\end{array}
\]

| P(x|\text{idle}) | P(x|\text{deceleration}) | P(x|\text{cruising}) | P(x|\text{acceleration}) |
|------------------|--------------------------|----------------------|--------------------------|
| 0 | 0.0001 | 0.5 | 0.7 |

These don’t have to sum to 1

Can even be greater than 1!
The first observation: $T=0$

- $P(x|\text{idle})$
- $P(x|\text{decel})$
- $P(x|\text{cruise})$
- $P(x|\text{accel})$

Idling
Declerating
Cruising
Accelerating

Remember the prior
Estimating state after at observing x_0

• Combine prior information about state and evidence from observation
• We want $P(state|x_0)$
• We can compute it using Bayes rule as

$$P(state|x_0) = \frac{P(state)P(x_0|state)}{\sum_{state'} P(state')P(x_0|state')}$$
The Posterior

\[P(x_0 | state) \]

\[
\begin{align*}
0 & \quad 0.0001 & \quad 0.5 & \quad 0.7 \\
\text{Idling} & \quad \text{Declerating} & \quad \text{Cruising} & \quad \text{Accelerating}
\end{align*}
\]

\[
\text{Prior: } P(state)
\]

\[
\begin{align*}
0.25 & \quad 0.25 & \quad 0.25 & \quad 0.25 \\
\text{Idling} & \quad \text{Declerating} & \quad \text{Cruising} & \quad \text{Accelerating}
\end{align*}
\]

- Multiply the two, term by term, and normalize them so that they sum to 1.0
Estimating the state at $T = 0^+$

At $T=0$, after the first observation x_0, we update our belief about the states:

- The first observation provided some evidence about the state of the system.
- It modifies our belief in the state of the system.
Predicting the state at $T=1$

- Predicting the probability of idling at $T=1$
 - $P(\text{idling} \mid \text{idling}) = 0.5$;
 - $P(\text{idling} \mid \text{deceleration}) = 0.25$
 - $P(\text{idling at } T=1 \mid x_0) = P(I_{T=0} \mid x_0) P(I \mid I) + P(D_{T=0} \mid x_0) P(I \mid D) = 2.1 \times 10^{-5}$

- In general, for any state S
 - $P(S_{T=1} \mid x_0) = \sum_{S_{T=0}} P(S_{T=0} \mid x_0) P(S_{T=1} \mid S_{T=0})$

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>A</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>D</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Predicting the state at $T = 1$

$$P(S_T=0|x_0) = \begin{cases} 0.57 & \text{Accelerating} \\ 0.42 & \text{Cruising} \\ 8.3 \times 10^{-5} & \text{Decelerating} \\ 0.0 & \text{Idling} \end{cases}$$

$$P(S_T=1|x_0) = \sum_{S_T=0} P(S_T=0|x_0)P(S_T=1|S_T=0)$$

$$P(S_T=1|x_0) = \begin{cases} 0.33 & \text{Accelerating} \\ 0.33 & \text{Cruising} \\ 0.33 & \text{Idling} \end{cases}$$

Rounded.
In reality, they sum to 1.0
Updating after the observation at T=1

- At T=1 we observe $x_1 = 63\text{dB SPL}$
Updating after the observation at T=1

\[
P(x|\text{idle}) \quad P(x|\text{decel}) \quad P(x|\text{cruise}) \quad P(x|\text{accel})
\]

63dB

| P(x|idle) | P(x|deceleration) | P(x|cruising) | P(x|acceleration) |
|-----------|-------------------|---------------|-------------------|
| 0 | 0.2 | 0.5 | 0.01 |

\[
P(x_1|\text{state})
\]

0 0.2 0.5 0.02

Idling Declerating Cruising Accelerating
The second observation: \(T=1 \)

\[
P(x_{1}|state)
\]

\[
\begin{array}{c|c|c|c|c}
& \text{Idling} & \text{Declerating} & \text{Cruising} & \text{Accelerating} \\
\hline
P(x_{1}|idle) & 0 & 0.2 & 0.5 & 0.02 \\
\end{array}
\]

\[
\text{Prior: } P(state|x_0)
\]

\[
\begin{array}{c|c|c|c|c}
& \text{Idling} & \text{Declerating} & \text{Cruising} & \text{Accelerating} \\
\hline
P(x_0|idle) & 0.33 & 0.33 & 0.33 \\
\end{array}
\]

Remember the prior

\[
\begin{array}{c|c|c|c|c}
& \text{Idling} & \text{Declerating} & \text{Cruising} & \text{Accelerating} \\
\hline
\text{Prior} & 0.33 & 0.33 & 0.33 \\
\end{array}
\]
Estimating state after at observing x_1

- Combine prior information from the observation at time $T=0$, AND evidence from observation at $T=1$ to estimate state at $T=1$

- We want $P(state|x_0, x_1)$

- We can compute it using Bayes rule as

$$P(state|x_0, x_1) = \frac{P(state|x_0)P(x_1|state)}{\sum_{state'} P(state'|x_0)P(x_1|state')}$$
The Posterior at $T = 1$

- Multiply the two, term by term, and normalize them so that they sum to 1.0

![Diagram showing posterior probabilities for different states at $T = 1$](image-url)
Estimating the state at $T = 1^+$

- The updated probability at $T=1$ incorporates information from both x_0 and x_1
 - It is NOT a local decision based on x_1 alone
 - Because of the Markov nature of the process, the state at $T=0$ affects the state at $T=1$
 - x_0 provides evidence for the state at $T=1$
Overall Process

<table>
<thead>
<tr>
<th>Time</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=0- : A priori probability</td>
<td>(P(S_0) = P(S))</td>
</tr>
<tr>
<td>T = 0+ : Update after (X_0)</td>
<td>(P(S_0</td>
</tr>
<tr>
<td>T=1- (Prediction before (X_1))</td>
<td>(P(S_1</td>
</tr>
<tr>
<td>T = 1+ : Update after (X_1)</td>
<td>(P(S_1</td>
</tr>
<tr>
<td>T=2- (Prediction before (X_2))</td>
<td>(P(S_2</td>
</tr>
<tr>
<td>T = 2+ : Update after (X_2)</td>
<td>(P(S_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T= t- (Prediction before (X_t))</td>
<td>(P(S_t</td>
</tr>
<tr>
<td>T = t+ : Update after (X_t)</td>
<td>(P(S_t</td>
</tr>
</tbody>
</table>
Overall procedure

- At T=0 the predicted state distribution is the initial state probability
- At each time T, the current estimate of the distribution over states considers *all* observations $x_0 \ldots x_T$
 - A natural outcome of the Markov nature of the model
- The prediction+update is identical to the forward computation for HMMs to within a normalizing constant

Predict the distribution of the state at T

Update the distribution of the state at T after observing x_T

\[P(S_T \mid x_{0:T}) = \sum_{S_{T-1}} P(S_{T-1} \mid x_{0:T-1}) P(S_T \mid S_{T-1}) \]

\[P(S_T \mid x_{0:T}) = C \cdot P(S_T \mid x_{0:T-1}) P(x_T \mid S_T) \]
Decomposing the Algorithm

\[
P(S_t, X_{0:t}) = P(X_t | S_t) \sum_{S_{t-1}} P(S_t | S_{t-1}) P(S_{t-1}, X_{0:t-1})
\]

Predict: \(P(S_t | X_{0:t-1}) = \sum_{S_{t-1}} P(S_t | S_{t-1}) P(S_{t-1} | X_{0:t-1}) \)

Update: \[P(S_t | X_{0:t}) = \frac{P(S_t | X_{0:t-1}) P(X_t | S_t)}{\sum_S P(S | X_{0:t-1}) P(X_t | S)} \]
Estimating a Unique state

• What we have estimated is a distribution over the states

• If we had to guess a state, we would pick the most likely state from the distributions

• State(T=0) = Accelerating

• State(T=1) = Cruising
Estimating the state

- The state is estimated from the updated distribution.
 - The updated distribution is propagated into time, not the state.

\[
P(S_T | x_{0:T-1}) = \sum_{S_{T-1}} P(S_{T-1} | x_{0:T-1}) P(S_T | S_{T-1})
\]

\[
P(S_T | x_{0:T}) = C \cdot P(S_T | x_{0:T-1}) P(x_T | S_T)
\]

\[
\text{Estimate}(S_T) = \arg\max_{S_T} P(S_T | x_{0:T})
\]
Predicting the *next observation*

- The probability distribution for the observations at the next time is a mixture:

 \[P(X_t | X_{0:t-1}) = \sum_{S_t} P(X_t | S_t) P(S_t | X_{0:t-1}) \]

- The actual observation can be predicted from \(P(x_T | x_{0:T-1}) \)
A continuous state model

• HMM assumes a very coarsely quantized state space
 – Idling / accelerating / cruising / decelerating

• Actual state can be finer
 – Idling, accelerating at various rates, decelerating at various rates, cruising at various speeds

• Solution: Many more states (one for each acceleration / deceleration rate, cruising speed)?

• Solution: A continuous valued state
Tracking and Prediction: The wind and the target

• **Aim:** measure wind velocity

• **Using a noisy wind speed sensor**
 – E.g. arrows shot at a target

• **State:** Wind speed at time t depends on speed at time $t-1$

 \[S_t = S_{t-1} + \epsilon_t \]

• **Observation:** Arrow position at time t depends on wind speed at time t

 \[Y_t = A S_t + \gamma_t \]
The real-valued state model

• A state equation describing the dynamics of the system

\[s_t = f(s_{t-1}, \varepsilon_t) \]

 – \(s_t \) is the state of the system at time \(t \)
 – \(\varepsilon_t \) is a driving function, which is assumed to be random

• The state of the system at any time depends only on the state at the previous time instant and the driving term at the current time

• An observation equation relating state to observation

\[o_t = g(s_t, \gamma_t) \]

 – \(o_t \) is the observation at time \(t \)
 – \(\gamma_t \) is the noise affecting the observation (also random)

• The observation at any time depends only on the current state of the system and the noise
States are still “hidden”

• The state is a continuous valued parameter that is not directly seen
 – The state is the position of the automobile or the star

• The observations are dependent on the state and are the only way of knowing about the state
 – Sensor readings (for the automobile) or recorded image (for the telescope)

\[
\begin{align*}
 s_t &= f(s_{t-1}, \varepsilon_t) \\
 o_t &= g(s_t, \gamma_t)
\end{align*}
\]
Discrete vs. Continuous state systems

Prediction at time 0:

\[
P(S_0) = \pi(S_0)
\]

Update after \(O_0\):

\[
P(S_0|O_0) = C. \pi(S_0)P(O_0|S_0)
\]

Prediction at time 1:

\[
P(S_1|O_0) = \sum_{S_0} P(S_0|O_0)P(S_1|S_0)
\]

Update after \(O_1\):

\[
P(S_1|O_{0:1}) = C. P(S_1|O_0)P(O_1|S_1)
\]

\[
s_t = f(s_{t-1}, \varepsilon_t)
\]

\[
o_t = g(s_t, \gamma_t)
\]

\[
P(S_0) = P_0(S_0)
\]

\[
P(S_0|O_0) = C. P(S_0)P(O_0|S_0)
\]

\[
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0)\,dS_0
\]

\[
P(S_1|O_{0:1}) = C. P(S_1|O_0)P(O_1|S_1)
\]
Discrete vs. Continuous State Systems

Prediction at time t:
$$P(S_t|O_{0:t-1}) = \sum_{S_{t-1}} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})$$

Update after observing O_t:
$$P(S_t|O_{0:t}) = C \cdot P(S_t|O_{0:t-1})P(O_t|S_t)$$

$$S_t = f(S_{t-1}, \varepsilon_t)$$
$$O_t = g(S_t, \gamma_t)$$
Discrete vs. Continuous State Systems

\[\pi = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 \end{bmatrix} \]

- Initial state prob. \(\pi \)
- Transition prob \(P(s_t = j | s_{t-1} = i) \)
- Observation prob \(P(O|s) \)

\[s_t = f(s_{t-1}, \varepsilon_t) \]
\[o_t = g(s_t, \gamma_t) \]
Special case: Linear Gaussian model

\[s_t = A_t s_{t-1} + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

- **A linear state dynamics equation**
 - Probability of state driving term \(\varepsilon \) is Gaussian
 - Sometimes viewed as a driving term \(\mu_{\varepsilon} \) and additive zero-mean noise

- **A linear observation equation**
 - Probability of observation noise \(\gamma \) is Gaussian

- \(A_t, B_t \) and Gaussian parameters assumed known
 - May vary with time

\[
P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\varepsilon}|}} \exp\left(-0.5(\varepsilon - \mu_{\varepsilon})^T \Theta_{\varepsilon}^{-1}(\varepsilon - \mu_{\varepsilon})\right)
\]

\[
P(\gamma) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\gamma}|}} \exp\left(-0.5(\gamma - \mu_{\gamma})^T \Theta_{\gamma}^{-1}(\gamma - \mu_{\gamma})\right)
\]
Linear model example
The wind and the target

• **State:** Wind speed at time t depends on speed at time $t-1$

$$S_t = S_{t-1} + \epsilon_t$$

• **Observation:** Arrow position at time t depends on wind speed at time t

$$O_t = BS_t + \gamma_t$$
Model Parameters:
The initial state probability

\[P_0(s) = \frac{1}{\sqrt{(2\pi)^d | R|}} \exp\left(-0.5(s - \bar{s})R^{-1}(s - \bar{s})^T\right) \]

\[P_0(s) = \text{Gaussian}(s; \bar{s}, R) \]

- We also assume the \textit{initial} state distribution to be Gaussian
 - Often assumed zero mean

\[s_t = A_t s_{t-1} + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]
Model Parameters:

The observation probability

\[o_t = B_t s_t + \gamma_t \]
\[P(\gamma) = \text{Gaussian}(\gamma; \mu_\gamma, \Theta_\gamma) \]
\[P(o_t \mid s_t) = \text{Gaussian}(o_t; \mu_\gamma + B_t s_t, \Theta_\gamma) \]

• The probability of the observation, given the state, is simply the probability of the noise, with the mean shifted
 – Since the only uncertainty is from the noise

• The new mean is the mean of the distribution of the noise + the value of the observation in the absence of noise
Model Parameters: State transition probability

\[s_{t+1} = A_t s_t + \varepsilon_t \]

\[P(\varepsilon) = \text{Gaussian}(\varepsilon; \mu_\varepsilon, \Theta_\varepsilon) \]

\[P(s_{t+1} \mid s_t) = \text{Gaussian}(s_t; \mu_\varepsilon + A_t s_t, \Theta_\varepsilon) \]

- The probability of the state at time \(t \), given the state at \(t-1 \), is simply the probability of the driving term, with the mean shifted
Continuous state systems

\[s_{t+1} = A_t s_t + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = P_0(S_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = C \cdot P(S_0)P(O_0|S_0) \]

Prediction at time 1:

\[P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0) dS_0 \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0)P(O_1|S_1) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \mathcal{E}_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = P_0(S_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = C \cdot P(S_0)P(O_0|S_0) \]

Prediction at time 1:

\[P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0) \, dS_0 \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0)P(O_1|S_1) \]
Model Parameters:
The initial state probability

\[P_0(s) = \frac{1}{\sqrt{(2\pi)^d |R_0|}} \exp\left(-0.5(s - \bar{s}_0)R_0^{-1}(s - \bar{s}_0)^T\right) \]

\[P_0(s) = \text{Gaussian}(s; \bar{s}_0, R_0) \]

- We assume the *initial* state distribution to be Gaussian
 - Often assumed zero mean
Continuous state systems

Prediction at time 0:

\[P(S_0) = P_0(S_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = C \cdot P(S_0)P(O_0|S_0) \]

Prediction at time 1:

\[P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0) dS_0 \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0)P(O_1|S_1) \]

\[s_{t+1} = A_ts_t + \mathcal{E}_t \]

\[o_t = B_ts_t + \gamma_t \]

\[P(S_0) = N(\bar{s}_0, R_0) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = C \cdot P(S_0)P(O_0|S_0) \]

Prediction at time 1:

\[P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0) dS_0 \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0)P(O_1|S_1) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \epsilon_t \]
\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:
\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):
\[P(S_0|O_0) = C \cdot P(S_0)P(O_0|S_0) \quad \text{or} \quad P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \]

Prediction at time 1:
\[P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0) \, dS_0 \]

Update after \(O_1 \):
\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0)P(O_1|S_1) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \varepsilon_t \]
\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:
\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):
\[P(S_0 | O_0) = N(\hat{s}_0, \hat{R}_0) \]
\[K_0 = R_0 B^T (BR_0 B^T + \Theta \gamma)^{-1} \]
\[\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s}_0 - \mu_\gamma) \]
\[\hat{R}_0 = (I - K_0) R_0 \]

Prediction at time 1:
\[P(S_1 | O_0) = \int_{-\infty}^{\infty} P(S_0 | O_0) P(S_1 | S_0) dS_0 \]

Update after \(O_1 \):
\[P(S_1 | O_{0:1}) = C \cdot P(S_1 | O_0) P(O_1 | S_1) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \]

\[K_0 = R_0 B^T (BR_0 B^T + \Theta)^{-1} \]

\[\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B\bar{s}_0 - \mu_\gamma) \]

\[\hat{R}_0 = (I - K_0) R_0 \]

Prediction at time 1:

\[P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0 \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0) P(O_1|S_1) \]
Continuous state systems

\(P_0(s) \)

\[s_{t+1} = A_t s_t + \mathcal{E}_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0 | O_0) = N(\hat{s}_0, \hat{R}_0) \]

\[K_0 = R_0 B^T (B R_0 B^T + \Theta)^{-1} \]

\[\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s}_0 - \mu) \]

\[\hat{R}_0 = (I - K_0) R_0 \]

Prediction at time 1:

\[P(S_1 | O_0) = \int_{-\infty}^{\infty} P(S_0 | O_0) P(S_1 | S_0) dS_0 \]

\[= N(A \hat{s}_0 + \mu_\varepsilon, \Theta_\varepsilon + A \hat{R}_0 A^T) \]

Update after \(O_1 \):

\[P(S_1 | O_{0:1}) = C \cdot P(S_1 | O_0) P(O_1 | S_1) \]
Continuous state systems

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \]

\[\hat{s}_0 = \bar{s}_0 + K_0(O_0 - B\bar{s}_0 - \mu_\gamma) \]

\[\hat{R}_0 = (I - K_0)R_0 \]

Prediction at time 1:

\[P(S_1|O_0) = N(\bar{s}_1, R_1) \]

\[\bar{s}_1 = A\hat{s}_0 + \mu_\varepsilon \]

\[R_1 = \Theta_\varepsilon + A\hat{R}_0A^T \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0)P(O_1|S_1) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \]

\[K_0 = R_0 B^T (B R_0 B^T + \Theta_{\gamma})^{-1} \]

\[\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s}_0 - \mu_{\gamma}) \]

\[\hat{R}_0 = (I - K_0) R_0 \]

Prediction at time 1:

\[P(S_1|O_0) = N(\bar{s}_1, R_1) \]

\[\bar{s}_1 = A \hat{s}_0 + \mu_{\epsilon} \]

\[R_1 = \Theta_{\epsilon} + A \hat{R}_0 A^T \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0) P(O_1|S_1) \]
Continuous state systems

\[s_{t+1} = A_t s_t + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \]

\[\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B\bar{s}_0 - \mu_\gamma) \]

\[\hat{R}_0 = (I - K_0 B) R_0 \]

Prediction at time 1:

\[P(S_1|O_0) = N(\bar{s}_1, R_1) \]

\[\bar{s}_1 = A\hat{s}_0 + \mu_\epsilon \]

\[R_1 = \Theta_\epsilon + A\hat{R}_0 A^T \]

Update after \(O_1 \):

\[P(S_1|O_{0:1}) = C \cdot P(S_1|O_0) P(O_1|S_1) = N(\hat{s}_1, \hat{R}_1) \]

\[\hat{s}_1 = \bar{s}_1 + K_1 (O_1 - B\bar{s}_1 - \mu_\gamma) \]

\[\hat{R}_1 = (I - K_1 B) R_1 \]
Continuous state systems

\[s_{t+1} = A_t s_t + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

Prediction at time 0:

\[P(S_0) = N(\bar{s}_0, R_0) \]

Update after \(O_0 \):

\[P(S_0 | O_0) = N(\hat{s}_0, \hat{R}_0) \]

\[K_0 = R_0 B^T (BR_0 B^T + \Theta_\gamma)^{-1} \]

\[\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B\bar{s}_0 - \mu_\gamma) \]

\[\hat{R}_0 = (I - K_0 B) R_0 \]

Prediction at time 1:

\[P(S_1 | O_0) = N(\bar{s}_1, R_1) \]

\[\bar{s}_1 = A \hat{s}_0 + \mu_\varepsilon \]

\[R_1 = \Theta_\varepsilon + A \hat{R}_0 A^T \]

Update after \(O_1 \):

\[P(S_1 | O_{0:1}) = N(\hat{s}_1, \hat{R}_1) \]

\[K_1 = R_1 B^T (BR_1 B^T + \Theta_\gamma)^{-1} \]

\[\hat{s}_1 = \bar{s}_1 + K_1 (O_1 - B\bar{s}_1 - \mu_\gamma) \]

\[\hat{R}_1 = (I - K_1 B) R_1 \]
Gaussian Continuous State Linear Systems

Prediction at time t:

$$P(S_t|O_{0:t-1}) = \int_{-\infty}^{\infty} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})dS_{t-1}$$

Update after observing O_t:

$$P(S_t|O_{0:t}) = C \cdot P(S_t|O_{0:t-1})P(O_t|S_t)$$
Gaussian Continuous State Linear Systems

Prediction at time t:

$$P(S_t | O_{0:t-1}) = N(\bar{s}_t, R_t)$$

$$s_{t+1} = A_t s_t + \varepsilon_t$$

$$o_t = B_t s_t + \gamma_t$$

Update after observing O_t:

$$P(S_t | O_{0:t}) = N(\hat{s}_t, \hat{R}_t)$$

$$\bar{s}_t = A\hat{s}_{t-1} + \mu_\varepsilon$$

$$R_t = \theta_\varepsilon + A\hat{R}_{t-1}A^T$$

$$K_t = R_1B^T(BR_1B^T + \theta_\gamma)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (O_t - B\bar{s}_t - \mu_\gamma)$$

$$\hat{R}_t = (I - K_tB) R_t$$
Gaussian Continuous State Linear Systems

Prediction at time t:

$$P(S_t | O_{0:t-1}) = N(\bar{s}_t, R_t)$$

Update after observing O_t:

$$P(S_t | O_{0:t}) = N(\hat{s}_t, \hat{R}_t)$$

$$\bar{s}_t = A\hat{s}_{t-1} + \mu_\varepsilon$$

$$R_t = \Theta_\varepsilon + A\hat{R}_{t-1}A^T$$

$$K_t = R_1B^T(BR_1B^T + \Theta_\gamma)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t(O_t - B\bar{s}_t - \mu_\gamma)$$

$$\hat{R}_t = (I - K_tB)R_t$$
The Kalman filter

- Prediction (based on state equation)
 \[\bar{s}_t = A_t \hat{s}_{t-1} + \mu \varepsilon \]
 \[s_t = A_t s_{t-1} + \varepsilon_t \]

 \[R_t = \Theta \varepsilon + A_t \hat{R}_{t-1} A_t^T \]

- Update (using observation and observation equation)
 \[K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta \gamma \right)^{-1} \]
 \[o_t = B_t s_t + \gamma_t \]

 \[\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t - \mu \gamma) \]

 \[\hat{R}_t = (I - K_t B_t) R_t \]
Explaining the Kalman Filter

• Prediction

\[\bar{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon} \]

\[R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T \]

• The Kalman filter can be explained intuitively without working through the math

\[\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t - \mu_{\gamma}) \]

\[\hat{R}_t = (I - K_t B_t) R_t \]

\[s_t = A_t s_{t-1} + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]
The Kalman filter

- **Prediction**

The predicted state at time \(t \) is obtained simply by propagating the estimated state at \(t-1 \) through the state dynamics equation:

\[
\bar{s}_t = A_t \hat{s}_{t-1} + \mu \varepsilon
\]

- **Update**

\[
s_t = A_t s_{t-1} + \varepsilon_t
\]

\[
o_t = B_t s_t + \gamma_t
\]

\[
K_t = R_t B_t (B_t R_t B_t + \Theta \gamma)^{-1}
\]

\[
\hat{s}_t = \bar{s}_t + K_t \left(o_t - B_t \bar{s}_t - \mu \gamma \right)
\]

\[
\hat{R}_t = \left(I - K_t B_t \right) R_t
\]
The Kalman filter

• Prediction

\[s_t = A_t \hat{s}_{t-1} + \mu_e \]

\[o_t = B_t s_t + \gamma_t \]

This is the uncertainty in the prediction. The variance of the predictor = variance of \(\varepsilon_t \) + variance of \(A s_{t-1} \)

The two simply add because \(\varepsilon_t \) is not correlated with \(s_t \)
The Kalman filter

- **Prediction**

\[\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{e} \]

\[R_t = \Theta_{e} + A_t \hat{R}_{t-1} A_t^T \]

\[\hat{o}_t = B_t \overline{s}_t + \mu_{\gamma} \]

We can also predict the observation from the predicted state using the observation equation

\[s_t = A_t s_{t-1} + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

\[\hat{R}_t = (I - K_t B_t) R_t \]
The Kalman filter

• Prediction

\[
\bar{s}_t = A_t \hat{s}_{t-1} + \mu \varepsilon
\]

\[
R_t = \Theta \varepsilon + A_t \hat{R}_{t-1} A_t^T
\]

\[
s_t = A_t s_{t-1} + \varepsilon_t
\]

\[
o_t = B_t s_t + \gamma_t
\]

• Update

Actual observation

\[
K_t = R_t B_t^T (B_t R_t B_t^T + \Theta) \Gamma
\]

\[
\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t)
\]

\[
\hat{R}_t = (I - K_t B_t) R_t
\]

11-755/18797
MAP Recap (for Gaussians)

- If \(P(x,y) \) is Gaussian:

\[
P(x, y) = N(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix})
\]

\[
P(y|x) = N(\mu_y + C_{yx}C^{-1}_{xx}(x - \mu_x), C_{yy} - C_{yx}C^{-1}_{xx}C_{xy})
\]

\[
\hat{y} = \mu_y + C_{yx}C^{-1}_{xx}(x - \mu_x)
\]
MAP Recap: For Gaussians

• If $P(x,y)$ is Gaussian:

$$P(y,x) = N\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix} \right)$$

$$P(y|x) = N(\mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x), C_{yy} - C_{yx}^T C_{xx}^{-1} C_{xy})$$

$$\hat{y} = \mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x)$$

“Slope” of the line
The Kalman filter

- **Prediction**
 \[\bar{s}_t = A_t \hat{s}_{t-1} + \mu_\varepsilon \]
 \[R_t = \Theta_\varepsilon + A_t \hat{R}_{t-1} A_t^T \]

- **Update**
 \[K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_\gamma \right)^{-1} \]

This is the slope of the MAP estimator that predicts \(s \) from \(o \)

\[RB^T = C_{so}, \quad (BRB^T + \Theta) = C_{oo} \]

This is also called the Kalman Gain
The Kalman filter

- **Prediction**

We must correct the predicted value of the state after making an observation.

\[\hat{s}_t = A_t \hat{s}_{t-1} + \mu_e \]

\[s_t = A_t s_{t-1} + \epsilon_t \]

\[\hat{o}_t = B_t \hat{s}_t + \mu_\gamma \]

\[o_t \]

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain.

\[\hat{s}_t = \bar{s}_t + K_t (o_t - \hat{o}_t) \]

\[K_t = R_t B_t^T (B_t R_t B_t^T + \mathbb{K}_\gamma)^{-1} \]
The Kalman filter

• Prediction

\[\ddot{s}_t = A_t \dot{s}_{t-1} + \mu \varepsilon \]

We must correct the predicted value of the state after making an observation

\[K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta \gamma \right)^{-1} \]

\[\hat{s}_t = \ddot{s}_t + K_t \left(o_t - B_t \ddot{s}_t - \mu \gamma \right) \]

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

\[s_t = A_t s_{t-1} + \varepsilon_t \]

\[\hat{o}_t = B_t \ddot{s}_t + \mu \gamma \]

\[o_t \]
The Kalman filter

• Prediction

\[\bar{s}_t = A_t \hat{s}_{t-1} + \mu_\epsilon \]

\[s_t = A_t s_{t-1} + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

• Update:

The uncertainty in state decreases if we observe the data and make a correction.

The reduction is a multiplicative “shrinkage” based on Kalman gain and B.

\[R_t = \Theta_\epsilon + A_t \hat{R}_{t-1} A_t^T \]

\[\hat{R}_t = (I - K_t B_t) R_t \]
The Kalman filter

• Prediction

\[\bar{s}_t = A_t \hat{s}_{t-1} + \mu_x \]

\[R_t = \Theta \varepsilon + A_t \hat{R}_{t-1} A_t^T \]

• Update:

\[K_t = R_t B_t^T (B_t R_t B_t^T + \Theta_\gamma)^{-1} \]

\[\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t - \mu_\gamma) \]

• Update

\[\hat{R}_t = (I - K_t B_t) R_t \]
The Kalman Filter

• Very popular for tracking the state of processes
 – Control systems
 – Robotic tracking
 • Simultaneous localization and mapping
 – Radars
 – Even the stock market..

• What are the parameters of the process?
Kalman filter contd.

\[s_t = A_t s_{t-1} + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

• Model parameters A and B must be known
 – Often the state equation includes an additional driving term: \(s_t = A_t s_{t-1} + G_t u_t + \varepsilon_t \)
 – The parameters of the driving term must be known

• The initial state distribution must be known
Defining the parameters

• State state must be carefully defined
 – E.g. for a robotic vehicle, the state is an extended vector that includes the current velocity and acceleration
 • \(S = [X, dX, d^2X] \)

• State equation: Must incorporate appropriate constraints
 – If state includes acceleration and velocity, velocity at next time = current velocity + acc. * time step
 – \(St = AS_{t-1} + e \)
 • \(A = [1 \ t \ 0.5t^2; \ 0 \ 1 \ t; \ 0 \ 0 \ 1] \)
Parameters

• Observation equation:
 – Critical to have accurate observation equation
 – Must provide a valid relationship between state and observations

• Observations typically high-dimensional
 – May have higher or lower dimensionality than state
Problems

\[s_t = f(s_{t-1}, \varepsilon_t) \]
\[o_t = g(s_t, \gamma_t) \]

• \(f() \) and/or \(g() \) may not be nice linear functions
 – Conventional Kalman update rules are no longer valid

• \(\varepsilon \) and/or \(\gamma \) may not be Gaussian
 – Gaussian based update rules no longer valid
Linear Gaussian Model

\[s_t = A_t s_{t-1} + \mathcal{E}_t \]

\[o_t = B_t s_t + \gamma_t \]

All distributions remain Gaussian
Problems

- Nonlinear \(f() \) and/or \(g() \) : The Gaussian assumption breaks down
 - Conventional Kalman update rules are no longer valid
The problem with non-linear functions

\[s_t = f(s_{t-1}, \varepsilon_t) \]

\[o_t = g(s_t, \gamma_t) \]

\[P(s_t | o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} | o_{0:t-1})P(s_t | s_{t-1})ds_{t-1} \]

\[P(s_t | o_{0:t}) = CP(s_t | o_{0:t-1})P(o_t | s_t) \]

- Estimation requires knowledge of \(P(o|s) \)
 - Difficult to estimate for nonlinear \(g() \)
 - Even if it can be estimated, may not be tractable with update loop

- Estimation also requires knowledge of \(P(s_t|s_{t-1}) \)
 - Difficult for nonlinear \(f() \)
 - May not be amenable to closed form integration
The problem with nonlinearity

\[o_t = g(s_t, \gamma_t) \]

- The PDF may not have a closed form

\[
P(o_t \mid s_t) = \sum_{\gamma : g(s_t, \gamma) = o_t} \frac{P_\gamma(\gamma)}{|J_{g(s_t, \gamma)}(o_t)|}
\]

- Even if a closed form exists initially, it will typically become intractable very quickly
Example: a simple nonlinearity

\[o = \gamma + \log(1 + \exp(s)) \]

- \(P(o \mid s) = ? \)
 - Assume \(\gamma \) is Gaussian
 - \(P(\gamma) = \text{Gaussian}(\gamma; \mu_{\gamma}, \Theta_{\gamma}) \)
Example: a simple nonlinearity

\[o = \gamma + \log(1 + \exp(s)) \]

- \(P(o \mid s) = ? \)

\[P(\gamma) = Gaussian(\gamma; \mu_\gamma, \Theta_\gamma) \]

\[P(o \mid s) = Gaussian(o; \mu_\gamma + \log(1 + \exp(s)), \Theta_\gamma) \]
Example: At T=0.

\[o = \gamma + \log(1 + \exp(s)) \]

- Assume initial probability \(P(s) \) is Gaussian

\[P(s_0) = P_0(s) = \text{Gaussian}(s; \bar{s}, R) \]

- Update

\[P(s_0 \mid o_0) = CP(o_0 \mid s_0)P(s_0) \]

\[P(s_0 \mid o_0) = C\text{Gaussian}(o; \mu_\gamma + \log(1 + \exp(s_0)), \Theta_\gamma)\text{Gaussian}(s_0; \bar{s}, R) \]
UPDATE: At \(T=0 \).

\[
o = \gamma + \log(1 + \exp(s))
\]

\[
P(s_0 \mid o_0) = CGaussian(o; \mu_\gamma + \log(1 + \exp(s_0)), \Theta_\gamma) Gaussian(s_0; \bar{s}, R)
\]

\[
P(s_0 \mid o_0) = C \exp \left(-0.5(\mu_\gamma + \log(1 + \exp(s_0)) - o)^T \Theta_\gamma^{-1} (\mu_\gamma + \log(1 + \exp(s_0)) - o) - 0.5(s_0 - \bar{s})^T R^{-1} (s_0 - \bar{s}) \right)
\]

\[
= \text{Not Gaussian}
\]
Prediction for $T = 1$

\[S_t = S_{t-1} + \mathcal{E} \]

\[P(\mathcal{E}) = Gaussian(\mathcal{E}; 0, \Theta_{\mathcal{E}}) \]

- Trivial, linear state transition equation

\[P(s_t | s_{t-1}) = Gaussian(s_t; s_{t-1}, \Theta_{\mathcal{E}}) \]

- Prediction

\[
P(s_1 | o_0) = \int_{-\infty}^{\infty} P(s_0 | o_0) P(s_1 | s_0) ds_0
\]

\[
P(s_1 | o_0) = \int_{-\infty}^{\infty} \mathcal{C} \exp \left(-0.5 (\mu_\gamma + \log(1+\exp(s_0)) - o)^T \Theta^{-1}_\gamma (\mu_\gamma + \log(1+\exp(s_0)) - o)
- 0.5 (s_0 - \bar{s})^T R^{-1} (s_0 - \bar{s})
\right) \exp \left((s_1 - s_0)^T \Theta^{-1}_\mathcal{E} (s_1 - s_0) \right) ds_0
\]

- = intractable
Update at T=1 and later

- Update at T=1
 \[P(s_t \mid o_{0:t}) = CP(s_t \mid o_{0:t-1})P(o_t \mid s_t) \]
 - Intractable

- Prediction for T=2
 \[P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1})P(s_t \mid s_{t-1})ds_{t-1} \]
 - Intractable
The State prediction Equation

\[s_t = f(s_{t-1}, \varepsilon_t) \]

- Similar problems arise for the state prediction equation
- \(P(s_t|s_{t-1}) \) may not have a closed form
- Even if it does, it may become intractable within the prediction and update equations
 - Particularly the prediction equation, which includes an integration operation
Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth.

\[o = \gamma + \log(1 + \exp(s)) \]
Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth.

\[o = \gamma + \log(1 + \exp(s)) \]
Simplifying the problem: Linearize

• The \textit{tangent} at any point is a good \textit{local} approximation if the function is sufficiently smooth.

\[o = \gamma + \log(1 + \exp(s)) \]
Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth.
Linearizing the observation function

\[P(s_t \mid o_{0:t-1}) = \text{Gaussian}(\bar{s}_t, R_t) \]

\[o = \gamma + g(s) \quad \Rightarrow \quad o \approx \gamma + g(\bar{s}_t) + J_{g}(\bar{s}_t)(s - \bar{s}_t) \]

- Simple first-order Taylor series expansion
 - \(J() \) is the Jacobian matrix
 - Simply a determinant for scalar state

- Expansion around current predicted \textit{a priori} (or predicted) mean of the state
 - Linear approximation changes with time
Most probability is in the low-error region

\[P(s_t \mid o_{0:t-1}) = Gaussian(\bar{s}_t, R_t) \]

Most probability mass close to mean

- \(P(s_t) \) is small where approximation error is large
 - Most of the probability mass of \(s \) is in low-error regions
The state equation?

\[s_t = f(s_{t-1}) + \epsilon \]

\[P(\epsilon) = \text{Gaussian}(\epsilon;0,\Theta_\epsilon) \]

- Again, direct use of \(f() \) can be disastrous

- Solution: Linearize

\[P(s_{t-1} \mid o_{0:t-1}) = \text{Gaussian}(s_{t-1};\hat{s}_{t-1},\hat{R}_{t-1}) \]

\[s_t = f(s_{t-1}) + \epsilon \]

\[s_t \approx \epsilon + f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}) \]

- Linearize around the mean of the updated distribution of \(s \) at \(t-1 \)
 - Converts the system to a linear one
Linearized System

\[o = y + g(s) \]

\[s_t = f(s_{t-1}) + \varepsilon \]

\[o \approx y + g(\bar{s}_t) + J_g (\bar{s}_t)(s - \bar{s}_t) \]

\[s_t \approx \varepsilon + f(\hat{s}_{t-1}) + J_f (\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}) \]

• Now we have a simple time-varying linear system

• Kalman filter equations directly apply
The Extended Kalman filter

- **Prediction**

\[\bar{s}_t = f(\hat{s}_{t-1}) \]

\[R_t = \Theta_\varepsilon + A_t \hat{R}_{t-1} A_t^T \]

- **Update**

\[K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_\gamma \right)^{-1} \]

\[\hat{s}_t = \bar{s}_t + K_t \left(o_t - g(\bar{s}_t) \right) \]

\[\hat{R}_t = (I - K_t B_t) R_t \]

\[s_t = f(s_{t-1}) + \varepsilon \]

\[o_t = g(s_t) + \gamma \]

\[A_t = J_f(\hat{s}_{t-1}) \]

\[B_t = J_g(\bar{s}_t) \]

Jacobians used in Linearization

Assuming \(\varepsilon \) and \(\gamma \) are 0 mean for simplicity
The Extended Kalman filter

• Prediction

\[s_t = f(s_{t-1}) + \varepsilon \]

\[o_t = g(s_t) + \gamma \]

The predicted state at time \(t \) is obtained simply by propagating the estimated state at \(t-1 \) through the state dynamics equation

\[K_t = R_t B_t (B_t R_t B_t + \Theta \gamma) \]

\[\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t)) \]

\[\hat{R}_t = (I - K_t B_t) R_t \]
The Extended Kalman filter

• Prediction

\[\hat{s}_t = f(\hat{s}_{t-1}) \]

\[R_t = \Theta_\varepsilon + A_t \hat{R}_{t-1} A_t^T \]

Uncertainty of prediction.
The variance of the predictor = variance of \(\varepsilon_t \) + variance of \(A s_{t-1} \)

\[K_t = (P_t - K_t B_t)R_t^{-1} \]

A is obtained by linearizing \(f() \)

\[s_t = f(s_{t-1}) + \varepsilon \]

\[o_t = g(s_t) + \varepsilon \]

\[A_t = J_f(\hat{s}_{t-1}) \]

\[B_t = J_g(\hat{s}_t) \]
The Extended Kalman filter

• Prediction

\[
\bar{s}_t = f(\hat{s}_{t-1})
\]

\[
R_t = \Theta \varepsilon + A_t \hat{R}_{t-1} A_t^T
\]

• Update

\[
K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta \gamma \right)^{-1}
\]

The Kalman gain is the slope of the MAP estimator that predicts \(s \) from \(o \)

\[
RBT = C_{so}, \quad (BRB^T + \Theta) = C_{oo}
\]

\(B \) is obtained by linearizing \(g() \)
The Extended Kalman filter

• Prediction

\[
\bar{s}_t = f(\hat{s}_{t-1})
\]
\[
s_t = f(s_{t-1}) + \epsilon
\]
\[
o_t = g(s_t) + \epsilon
\]
\[
R_t = \Theta \epsilon + A_t \hat{R}_{t-1} A_t^T
\]

We can also predict the observation from the predicted state using the observation equation

\[
\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))
\]
\[
\hat{R}_t = (I - K_t B_t) R_t
\]
\[
\bar{o}_t = g(\bar{s}_t)
\]
The Extended Kalman filter

- **Prediction**

\[\bar{s}_t = f(\hat{s}_{t-1}) \]

\[R_t = \Theta_\varepsilon + A_t \hat{R}_{t-1} A_t^T \]

We must correct the predicted value of the state after making an observation

\[\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t)) \]

\[\bar{o}_t = g(\bar{s}_t) \]

The correction is the difference between the actual observation and the predicted observation, scaled by the Kalman Gain

\[s_t = f(s_{t-1}) + \varepsilon \]

\[o_t = g(s_t) + \varepsilon \]
The Extended Kalman filter

• Prediction

\[\bar{s}_t = f(\hat{s}_{t-1}) \]

\[R_t = \Theta \epsilon + A_t \hat{R}_{t-1} A_t^T \]

\[B_t = J_g(\bar{s}_t) \]

The uncertainty in state decreases if we observe the data and make a correction

The reduction is a multiplicative “shrinkage” based on Kalman gain and B

\[\hat{R}_t = (I - K_t B_t) R_t \]
The Extended Kalman filter

• Prediction

\[\bar{s}_t = f(\hat{s}_{t-1}) \]

\[R_t = \Theta \varepsilon + A_t \hat{R}_{t-1} A_t^T \]

• Update

\[K_t = R_t B_t^T (B_t R_t B_t^T + \Theta)^{-1} \]

\[\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t)) \]

\[\hat{R}_t = (I - K_t B_t) R_t \]

\[s_t = f(s_{t-1}) + \varepsilon \]

\[o_t = g(s_t) + \varepsilon \]

\[A_t = J_f(\hat{s}_{t-1}) \]

\[B_t = J_g(\bar{s}_t) \]
EKFs

• EKFs are probably the most commonly used algorithm for tracking and prediction
 – Most systems are non-linear
 – Specifically, the relationship between state and observation is usually nonlinear
 – The approach can be extended to include non-linear functions of noise as well

• The term “Kalman filter” often simply refers to an extended Kalman filter in most contexts.

• But..
EKFs have limitations

- If the non-linearity changes too quickly with s, the linear approximation is invalid
 - Unstable
- The estimate is often biased
 - The true function lies entirely on one side of the approximation

- Various extensions have been proposed:
 - Invariant extended Kalman filters (IEKF)
 - Unscented Kalman filters (UKF)
Conclusions

• HMMs are predictive models
• Continuous-state models are simple extensions of HMMs
 – Same math applies
• Prediction of linear, Gaussian systems can be performed by Kalman filtering
• Prediction of non-linear, Gaussian systems can be performed by Extended Kalman filtering