Machine Learning for Signal Processing
Hidden Markov Models

Bhiksha Raj
A quick intro to Markov Chains..

• The case of flider and spy..
A little parable

You’ve been kidnapped
A little parable

You’ve been kidnapped

And blindfolded
A little parable

You’ve been kidnapped

And blindfolded

You can only hear the car
You must find your way back home from wherever they drop you off
Kidnapped

• Determine automatically, by only *listening* to a running automobile, if it is:
 – Idling; or
 – Travelling at constant velocity; or
 – Accelerating; or
 – Decelerating

• You are super acoustically sensitive and can determine sound pressure level (SPL)
 – The SPL is measured once per second
What you know

• An automobile that is at rest can accelerate, or continue to stay at rest
• An accelerating automobile can hit a steady-state velocity, continue to accelerate, or decelerate
• A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate
• A automobile at a steady-state velocity can stay in steady state, accelerate or decelerate
What else you know

- The probability distribution of the SPL of the sound is different in the various conditions
 - As shown in figure
 - In reality, depends on the car
- The distributions for the different conditions overlap
 - Simply knowing the current sound level is not enough to know the state of the car
The state-space model

- Assuming all transitions from a state are equally probable
- We will help you find your way back home in the next class
What is an HMM

• The model assumes that the process can be in one of a number of states at any time instant

• The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)

• At each instant the process generates an observation from a probability distribution that is specific to the current state

• The generated observations are all that we get to see
 – the actual state of the process is not directly observable
 • Hence the qualifier hidden
What is an HMM

• “Probabilistic function of a markov chain”
• Models a dynamical system
• System goes through a number of states
 – Following a Markov chain model
• On arriving at any state it generates observations according to a state-specific probability distribution
A Hidden Markov Model consists of two components

- A state/transition backbone that specifies how many states there are, and how they can follow one another
- A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state

Markov chain

Data distributions
How an HMM models a process

HMM assumed to be generating data

state sequence

state distributions

observation sequence
HMM Parameters

- The **topology** of the HMM
 - Number of states and allowed transitions
 - E.g. here we have 3 states and cannot go from the blue state to the red

- The transition probabilities
 - Often represented as a matrix as here
 - T_{ij} is the probability that when in state i, the process will move to j

- The probability π_i of beginning at any state s_i
 - The complete set is represented as π

- The **state output distributions**
HMM state output distributions

• The state output distribution is the distribution of data produced from any state
• Typically modelled as Gaussian

\[P(x \mid s_i) = \text{Gaussian}(x; \mu_i, \Theta_i) = \frac{1}{\sqrt{(2\pi)^d |\Theta_i|}} e^{-0.5(x - \mu_i)^T \Theta_i^{-1} (x - \mu_i)} \]

• The parameters are \(\mu_i \) and \(\Theta_i \)
• More typically, modelled as Gaussian mixtures

\[P(x \mid s_i) = \sum_{j=0}^{K-1} w_{i,j} \text{Gaussian}(x; \mu_{i,j}, \Theta_{i,j}) \]

• Other distributions may also be used
• E.g. histograms for discrete observations
The Diagonal Covariance Matrix

• For GMMs it is frequently assumed that the feature vector dimensions are all independent of each other

• Result: The covariance matrix is reduced to a diagonal form
 – The determinant of the diagonal Θ matrix is easy to compute

Full covariance: all elements are non-zero

\[-0.5(x-\mu)^T\Theta^{-1}(x-\mu)\]

Diagonal covariance: off-diagonal elements are zero

\[-\sum_i (x_i-\mu_i)^2 / 2\sigma_i^2\]
Three Basic HMM Problems

• What is the probability that it will generate a specific observation sequence

• Given a observation sequence, how do we determine which observation was generated from which state
 – The state segmentation problem

• How do we learn the parameters of the HMM from observation sequences
Computing the Probability of an Observation Sequence

• Two aspects to producing the observation:
 – Progressing through a sequence of states
 – Producing observations from these states
HMM assumed to be generating data

• The process begins at some state (red) here
• From that state, it makes an allowed transition
 – To arrive at the same or any other state
• From that state it makes another allowed transition
 – And so on
Probability that the HMM will follow a particular state sequence

\[P(s_1, s_2, s_3, \ldots) = P(s_1)P(s_2|s_1)P(s_3|s_2)\ldots \]

- \(P(s_1) \) is the probability that the process will initially be in state \(s_1 \)
- \(P(s_i|s_i) \) is the transition probability of moving to state \(s_i \) at the next time instant when the system is currently in \(s_i \)
 - Also denoted by \(T_{ij} \) earlier
HMM assumed to be generating data

• At each time it generates an observation from the state it is in at that time
Probability that the HMM will generate a particular observation sequence given a state sequence (state sequence known)

\[
P(o_1, o_2, o_3, \ldots | s_1, s_2, s_3, \ldots) = P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \ldots
\]

Computed from the Gaussian or Gaussian mixture for state \(s_1 \)

- \(P(o_i | s_i) \) is the probability of generating observation \(o_i \) when the system is in state \(s_i \)
Proceeding through States and Producing Observations

HMM assumed to be generating data

- At each time it produces an observation and makes a transition
Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

\[
P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \\
P(o_1, o_2, o_3, \ldots | s_1, s_2, s_3, \ldots) P(s_1, s_2, s_3, \ldots) = \\
P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \ldots P(s_1) P(s_2 | s_1) P(s_3 | s_2) \ldots
\]
Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

\[
P(o_1, o_2, o_3, \ldots) = \sum_{\text{all possible state sequences}} P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) =
\]

\[
\sum_{\text{all possible state sequences}} P(o_1|s_1) P(o_2|s_2) P(o_3|s_3) \ldots P(s_1) P(s_2|s_1) P(s_3|s_2) \ldots
\]
Computing it Efficiently

- Explicit summing over all state sequences is not tractable
 - A very large number of possible state sequences

- Instead we use the forward algorithm

- A dynamic programming technique.
Illustrative Example

- Example: a generic HMM with 5 states and a “terminating state”.
 - Left to right topology
 - $P(s_i) = 1$ for state 1 and 0 for others
 - The arrows represent transition for which the probability is not 0
Introducing the Trellis

• Draw grid showing state vs time
• Explain state
Introducing the Trellis

• Draw grid showing state vs time
• Explain state
• Show a single path and explain how it’s a state sequence
Introducing the Trellis

• Draw grid showing state vs time
• Explain state
• Show a single path and explain how it’s a state sequence
• Draw entire trellis and show its all paths
Introducing the Trellis

• Draw grid showing state vs time
• Explain state
• Show a single path and explain how it’s a state sequence
• Draw entire trellis and show its all paths
• Introduce alpha from time 0 in fact
Introducing the Trellis

• Draw grid showing state vs time
• Explain state
• Show a single path and explain how it’s a state sequence
• Draw entire trellis and show its all paths
• Introduce alpha from time 0 in fact
• Explain alpha at next time
• Then recurse
Diversion: The Trellis

- The trellis is a graphical representation of all possible paths through the HMM to produce a given observation.
- The Y-axis represents HMM states, X axis represents observations.
- Every edge in the graph represents a valid transition in the HMM over a single time step.
- Every node represents the event of a particular observation being generated from a particular state.

\[\alpha(s,t) \]
The Forward Algorithm

\[\alpha(s,t) = P(x_1, x_2, \ldots, x_t, \text{state}(t) = s) \]

- \(\alpha(s,t) \) is the total probability of ALL state sequences that end at state \(s \) at time \(t \), and all observations until \(x_t \)
The Forward Algorithm

\[\alpha(s, t) = P(x_1, x_2, \ldots, x_t, \text{state}(t) = s) \]

Can be recursively estimated starting from the first time instant (forward recursion)

\[\alpha(s, t) = \sum_{s'} \alpha(s', t-1) P(s \mid s') P(x_t \mid s) \]

- \(\alpha(s, t) \) can be recursively computed in terms of \(\alpha(s', t') \), the forward probabilities at time \(t-1 \).
The Forward Algorithm

\[\text{Totalprob} = \sum_{s} \alpha(s, T) \]

- In the final observation the alpha at each state gives the probability of all state sequences ending at that state.
- General model: The total probability of the observation is the sum of the alpha values at all states.
Problem 2: State segmentation

• Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?
The HMM as a generator

- The process goes through a series of states and produces observations from them.
HMM assumed to be generating data

States are hidden

- The observations do not reveal the underlying state
The state segmentation problem

HMM assumed to be generating data

- State segmentation: Estimate state sequence given observations
Estimating the State Sequence

• Many different state sequences are capable of producing the observation

• Solution: Identify the most probable state sequence
 – The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
 – i.e. $P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots)$ is maximum
Estimating the state sequence

• Once again, exhaustive evaluation is impossibly expensive

• But once again a simple dynamic-programming solution is available

\[P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \]

\[P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \ldots P(s_1) P(s_2 | s_1) P(s_3 | s_2) \ldots \]

• Needed:

\[\arg \max_{s_1, s_2, s_3, \ldots} P(o_1 | s_1) P(s_1) P(o_2 | s_2) P(s_2 | s_1) P(o_3 | s_3) P(s_3 | s_2) \]
Estimating the state sequence

• Once again, exhaustive evaluation is impossibly expensive

• But once again a simple dynamic-programming solution is available

\[P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \]

\[P(o_1|s_1) P(o_2|s_2) P(o_3|s_3) \ldots P(s_1) P(s_2|s_1) P(s_3|s_2) \ldots \]

• Needed:

\[\arg\max_{s_1, s_2, s_3, \ldots} P(o_1 | s_1) P(s_1) P(o_2 | s_2) P(s_2 | s_1) P(o_3 | s_3) P(s_3 | s_2) \]
The HMM as a generator

HMM assumed to be generating data

- Each enclosed term represents one forward transition and a subsequent emission
The state sequence

- The probability of a state sequence ?,?,?,?,s_x,s_y ending at time t, and producing all observations until o_t
 \[P(o_{1..t-1}, ?,?,?,?, s_x, o_t,s_y) = P(o_{1..t-1},?,?,?, s_x) \cdot P(o_t|s_y) \cdot P(s_y|s_x) \]

- The best state sequence that ends with s_x,s_y at t will have a probability equal to the probability of the best state sequence ending at t-1 at s_x times P(o_t|s_y)P(s_y|s_x)
The probability of a state sequence $?,?,?,?,s_x,s_y$ ending at time t and producing observations until o_t

\[
P(o_{1..t-1}, o_t, ?,?,?,?, s_x,s_y) = P(o_{1..t-1},?,?,?, s_x)P(o_t|s_y)P(s_y|s_x)
\]
Trellis

• The graph below shows the set of all possible state sequences through this HMM in five time instants.
The cost of extending a state sequence

- The cost of extending a state sequence ending at s_x is only dependent on the transition from s_x to s_y, and the observation probability at s_y.

$$P(o_t|s_y)P(s_y|s_x)$$
The cost of extending a state sequence

- The best path to s_y through s_x is simply an extension of the best path to s_x

$$\text{BestP}(o_{1..t-1}, ?, ?, ?, ?, s_x)$$

$$P(o_t|s_y)P(s_y|s_x)$$
The Recursion

• The overall best path to s_y is an extension of the best path to one of the states at the previous time
The Recursion

- Prob. of best path to $s_y = \max_{s_x} \text{BestP}(o_{1..t-1}, ?, ?, ?, s_x) \cdot P(o_t|s_y)P(s_y|s_x)
Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
 - After A.J.Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!
Viterbi Search (contd.)

Initial state initialized with path-score $= P(s_1)b_1(1)$

In this example all other states have score 0 since $P(s_i) = 0$ for them.
Viterbi Search (contd.)

\[P_j(t) = \max_i [P_i(t-1) \cdot t_{ij} \cdot b_j(t)] \]

- **State with best path-score**
- **State with path-score < best**
- **State without a valid path-score**

State transition probability, \(i \) to \(j \)

Score for state \(j \), given the input at time \(t \)

Total path-score ending up at state \(j \) at time \(t \)
Viterbi Search (contd.)

\[P_j(t) = \max_i [P_i(t-1) \cdot t_{ij} \cdot b_j(t)] \]

State transition probability, \(i \) to \(j \)
Score for state \(j \), given the input at time \(t \)
Total path-score ending up at state \(j \) at time \(t \)
Viterbi Search (contd.)

[Diagram of a Viterbi search algorithm with nodes and transitions labeled with time.]
Viterbi Search (contd.)
Viterbi Search (contd.)

(time)
THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION
Problem 3: Training HMM parameters

• We can compute the probability of an observation, and the best state sequence given an observation, using the HMM’s parameters.

• But where do the HMM parameters come from?

• They must be learned from a collection of observation sequences.
Learning HMM parameters: Simple procedure – counting

• Given a set of training instances
• Iteratively:
 1. Initialize HMM parameters
 2. Segment all training instances
 3. Estimate transition probabilities and state output probability parameters by counting
Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
 - How to count after state sequences are obtained
Example: Learning HMM Parameters

- We have an HMM with two states s_1 and s_2.
- Observations are vectors x_{ij}
 - i-th sequence, j-th vector
- We are given the following three observation sequences
 - And have already estimated state sequences

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Initial state probabilities (usually denoted as \(\pi\)):**
 - We have 3 observations
 - 2 of these begin with S1, and one with S2
 - \(\pi(S1) = 2/3, \pi(S2) = 1/3\)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{a1})</td>
<td>(X_{a2})</td>
<td>(X_{a3})</td>
<td>(X_{a4})</td>
<td>(X_{a5})</td>
<td>(X_{a6})</td>
<td>(X_{a7})</td>
<td>(X_{a8})</td>
<td>(X_{a9})</td>
<td>(X_{a10})</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{b1})</td>
<td>(X_{b2})</td>
<td>(X_{b3})</td>
<td>(X_{b4})</td>
<td>(X_{b5})</td>
<td>(X_{b6})</td>
<td>(X_{b7})</td>
<td>(X_{b8})</td>
<td>(X_{b9})</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{c1})</td>
<td>(X_{c2})</td>
<td>(X_{c3})</td>
<td>(X_{c4})</td>
<td>(X_{c5})</td>
<td>(X_{c6})</td>
<td>(X_{c7})</td>
<td>(X_{c8})</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in *non-terminal* locations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
<td></td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>Xa1</td>
<td>Xa2</td>
<td>Xa3</td>
<td>Xa4</td>
<td>Xa5</td>
<td>Xa6</td>
<td>Xa7</td>
<td>Xa8</td>
<td>Xa9</td>
<td>Xa10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>Xb1</td>
<td>Xb2</td>
<td>Xb3</td>
<td>Xb4</td>
<td>Xb5</td>
<td>Xb6</td>
<td>Xb7</td>
<td>Xb8</td>
<td>Xb9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>Xc1</td>
<td>Xc2</td>
<td>Xc3</td>
<td>Xc4</td>
<td>Xc5</td>
<td>Xc6</td>
<td>Xc7</td>
<td>Xc8</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
 - It is followed immediately by S2 5 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>Xa1</td>
<td>Xa2</td>
<td>Xa3</td>
<td>Xa4</td>
<td>Xa5</td>
<td>Xa6</td>
<td>Xa7</td>
<td>Xa8</td>
<td>Xa9</td>
<td>Xa10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>Xb1</td>
<td>Xb2</td>
<td>Xb3</td>
<td>Xb4</td>
<td>Xb5</td>
<td>Xb6</td>
<td>Xb7</td>
<td>Xb8</td>
<td>Xb9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>Xc1</td>
<td>Xc2</td>
<td>Xc3</td>
<td>Xc4</td>
<td>Xc5</td>
<td>Xc6</td>
<td>Xc7</td>
<td>Xc8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
 - It is followed immediately by S2 5 times
 - $P(S1 \mid \textbf{S1}) = 6/11; \quad P(S2 \mid \textbf{S1}) = 5/11$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_a1</td>
<td>X_a2</td>
<td>X_a3</td>
<td>X_a4</td>
<td>X_a5</td>
<td>X_a6</td>
<td>X_a7</td>
<td>X_a8</td>
<td>X_a9</td>
<td>X_a10</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_b1</td>
<td>X_b2</td>
<td>X_b3</td>
<td>X_b4</td>
<td>X_b5</td>
<td>X_b6</td>
<td>X_b7</td>
<td>X_b8</td>
<td>X_b9</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_c1</td>
<td>X_c2</td>
<td>X_c3</td>
<td>X_c4</td>
<td>X_c5</td>
<td>X_c6</td>
<td>X_c7</td>
<td>X_c8</td>
<td></td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
<td>X_{b10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td>X_{c9}</td>
<td>X_{c10}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- Transition probabilities:
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times
 - It is followed immediately by S2 8 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td>X_{c9}</td>
<td>X_{c10}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times
 - It is followed immediately by S2 8 times
 - \(P(S1 \mid S2) = \frac{5}{13}; \quad P(S2 \mid S2) = \frac{8}{13} \)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{a1})</td>
<td>(X_{a2})</td>
<td>(X_{a3})</td>
<td>(X_{a4})</td>
<td>(X_{a5})</td>
<td>(X_{a6})</td>
<td>(X_{a7})</td>
<td>(X_{a8})</td>
<td>(X_{a9})</td>
<td>(X_{a10})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{b1})</td>
<td>(X_{b2})</td>
<td>(X_{b3})</td>
<td>(X_{b4})</td>
<td>(X_{b5})</td>
<td>(X_{b6})</td>
<td>(X_{b7})</td>
<td>(X_{b8})</td>
<td>(X_{b9})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{c1})</td>
<td>(X_{c2})</td>
<td>(X_{c3})</td>
<td>(X_{c4})</td>
<td>(X_{c5})</td>
<td>(X_{c6})</td>
<td>(X_{c7})</td>
<td>(X_{c8})</td>
</tr>
</tbody>
</table>
Parameters learnt so far

• State initial probabilities, often denoted as π

 – $\pi(S1) = 2/3 = 0.66$

 – $\pi(S2) = 1/3 = 0.33$

• State transition probabilities

 – $P(S1 \mid S1) = 6/11 = 0.545$; $P(S2 \mid S1) = 5/11 = 0.455$

 – $P(S1 \mid S2) = 5/13 = 0.385$; $P(S2 \mid S2) = 8/13 = 0.615$

 – Represented as a transition matrix

\[
A = \begin{pmatrix}
P(S1 \mid S1) & P(S2 \mid S1) \\
P(S1 \mid S2) & P(S2 \mid S2)
\end{pmatrix} = \begin{pmatrix}
0.545 & 0.455 \\
0.385 & 0.615
\end{pmatrix}
\]

Each row of this matrix must sum to 1.0
Example: Learning HMM Parameters

- State output probability for S1
 - There are 13 observations in S1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- State output probability for S1
 - There are 13 observations in S1
 - Segregate them out and count
- Compute parameters (mean and variance) of Gaussian output density for state S1

\[
P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d |\Theta_1|}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right)
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{a1})</td>
<td>(X_{a2})</td>
<td>(X_{a6})</td>
<td>(X_{a7})</td>
<td>(X_{a9})</td>
<td>(X_{a10})</td>
</tr>
</tbody>
</table>

\[
\mu_1 = \frac{1}{13} \left(X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + X_{b4} + X_{b9} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \right)
\]

\[
\Theta_1 = \frac{1}{13} \left((X_{a1} - \mu_1)(X_{a1} - \mu_1)^T + (X_{a2} - \mu_1)(X_{a2} - \mu_1)^T + \ldots \right.
\]

\[
+ \left((X_{b3} - \mu_1)(X_{b3} - \mu_1)^T + (X_{b4} - \mu_1)(X_{b4} - \mu_1)^T + \ldots \right)
\]

\[
+ \left((X_{c1} - \mu_1)(X_{c1} - \mu_1)^T + (X_{c2} - \mu_1)(X_{c2} - \mu_1)^T + \ldots \right)
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>3</th>
<th>4</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{b3})</td>
<td>(X_{b4})</td>
<td>(X_{b9})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{c1})</td>
<td>(X_{c2})</td>
<td>(X_{c4})</td>
<td>(X_{c5})</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- State output probability for S2
 - There are 14 observations in S2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- State output probability for S2
 - There are 14 observations in S2
 - Segregate them out and count
- Compute parameters (mean and variance) of Gaussian output density for state S2

\[
P(X | S_2) = \frac{1}{\sqrt{(2\pi)^d | \Theta_2 |}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2)\right)
\]

\[
\mu_2 = \frac{1}{14} \left(X_{a3} + X_{a4} + X_{a5} + X_{a8} + X_{b1} + X_{b2} + X_{b5} + X_{b6} + X_{b7} + X_{b8} + X_{c2} + X_{c6} + X_{c7} + X_{c8} \right)
\]

\[
\Theta_1 = \frac{1}{14} \left((X_{a3} - \mu_2)(X_{a3} - \mu_2)^T + \ldots \right)
\]
We have learnt all the HMM parameters

• State initial probabilities, often denoted as π
 $\pi(S1) = 0.66 \quad \pi(S2) = 1/3 = 0.33$

• State transition probabilities

$$A = \begin{pmatrix}
0.545 & 0.455 \\
0.385 & 0.615
\end{pmatrix}$$

• State output probabilities

State output probability for S1

$$P(X | S_1) = \frac{1}{\sqrt{(2\pi)^d |\Theta_1|}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right)$$

State output probability for S2

$$P(X | S_2) = \frac{1}{\sqrt{(2\pi)^d |\Theta_2|}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right)$$
Update rules at each iteration

$$
\pi(s_i) = \frac{\text{No. of observation sequences that start at state } s_i}{\text{Total no. of observation sequences}}
$$

$$
P(s_j \mid s_i) = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i \& \text{state}(t+1)=s_j} 1}{\sum_{\text{obs } t: \text{state}(t)=s_i} 1}.
$$

$$
\mu_i = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i} \sum X_{\text{obs},t}}{\sum_{\text{obs } t: \text{state}(t)=s_i} 1}.
$$

$$
\Theta_i = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i} \sum (X_{\text{obs},t} - \mu_i)(X_{\text{obs},t} - \mu_i)^T}{\sum_{\text{obs } t: \text{state}(t)=s_i} 1}.
$$

- Assumes state output PDF = Gaussian
 - For GMMs, estimate GMM parameters from collection of observations at any state
Training by segmentation: Viterbi training

- Initialize all HMM parameters
- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a “segmental k-means” learning procedure
Alternative to counting: SOFT counting

• Expectation maximization
• *Every* observation contributes to every state
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})(X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

- Every observation contributes to every state
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{Obs} P(state(t = 1) = s_i \mid Obs)}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{t} \sum_{Obs} P(state(t) = s_i, state(t + 1) = s_j \mid Obs)}{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)} \]

\[\mu_i = \frac{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs) X_{obs,t}}{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)} \]

\[\Theta_i = \frac{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)(X_{obs,t} - \mu_i)(X_{obs,t} - \mu_i)^T}{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)} \]

• Where did these terms come from?
\[P(\text{state}(t) = s \mid \text{Obs}) \]

- The probability that the process was at \(s \) when it generated \(X_t \) given the entire observation
 - Dropping the “Obs” subscript for brevity

\[P(\text{state}(t) = s \mid X_1, X_2, \ldots, X_T) \propto P(\text{state}(t) = s, X_1, X_2, \ldots, X_T) \]

- We will compute \(P(\text{state}(t) = s_i, x_1, x_2, \ldots, x_T) \) first
 - This is the probability that the process visited \(s \) at time \(t \) while producing the entire observation
The probability that the HMM was in a particular state s when generating the observation sequence is the probability that it followed a state sequence that passed through s at time t.

$$P(state(t) = s, x_1, x_2, \ldots, x_T)$$
\[P(state(t) = s, x_1, x_2, \ldots, x_T) \]

- This can be decomposed into two multiplicative sections
 - The section of the lattice leading into state \(s \) at time \(t \) and the section leading out of it
The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state s at time t
 - This is simply $\alpha(s,t)$
 - Can be computed using the forward algorithm
The Backward Paths

- The blue portion represents the probability of all state sequences that began at state s at time t
 - Like the red portion, it can be computed using a backward recursion
The Backward Recursion

$$\beta(s,t) = P(x_{t+1}, x_{t+2}, \ldots, x_T \mid \text{state}(t) = s)$$

- $\beta(s,t)$ is the total probability of ALL state sequences that depart from s at time t, and all observations after x_t
 - $\beta(s,T) = 1$ at the final time instant for all valid final states
The complete probability

\[\alpha(s,t) \beta(s,t) = P(x_{t+1}, x_{t+2}, \ldots, x_T, \text{state}(t) = s) \]
Posterior probability of a state

• The probability that the process was in state s at time t, given that we have observed the data is obtained by simple normalization

$$P(state(t) = s \mid Obs) = \frac{P(state(t) = s, x_1, x_2, \ldots, x_T)}{\sum_{s'} P(state(t) = s, x_1, x_2, \ldots, x_T)} = \frac{\alpha(s, t) \beta(s, t)}{\sum_{s'} \alpha(s', t) \beta(s', t)}$$

• This term is often referred to as the gamma term and denoted by $\gamma_{s,t}$
Update rules at each iteration

\[
\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}}
\]

\[
P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})}
\]

\[
\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})}
\]

\[
\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) (X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})}
\]

• These have been found
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})(X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

• Where did these terms come from?
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]
\[P(state(t) = s, state(t + 1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) \]
\[P(\text{state}(t) = s, \text{state}(t+1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) \ P(s'| s) P(x_{t+1} | s') \]
\[
P(state(t) = s, state(t + 1) = s', x_1, x_2, \ldots, x_T)
\]
\[
\alpha(s, t) P(s' | s) P(x_{t+1} | s') \beta(s', t + 1)
\]
The a posteriori probability of transition

\[P(\text{state}(t) = s, \text{state}(t + 1) = s'| \text{Obs}) = \frac{\sum \sum \alpha(s, t) P(s'| s) P(x_{t+1} \mid s') \beta(s', t + 1)}{\sum \sum \alpha(s_1, t) P(s_2 \mid s_1) P(x_{t+1} \mid s_2) \beta(s_2, t + 1)} \]

- The a posteriori probability of a transition given an observation
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs}) (X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

- These have been found
Training without explicit segmentation: Baum-Welch training

- Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data
HMM Issues

• How to find the best state sequence: Covered
• How to learn HMM parameters: Covered
• How to compute the probability of an observation sequence: Covered
Magic numbers

• How many states:
 – No nice automatic technique to learn this
 – You choose
 • For speech, HMM topology is usually left to right (no backward transitions)
 • For other cyclic processes, topology must reflect nature of process
 • No. of states – 3 per phoneme in speech
 • For other processes, depends on estimated no. of distinct states in process
Applications of HMMs

• Classification:
 – Learn HMMs for the various classes of time series from training data
 – Compute probability of test time series using the HMMs for each class
 – Use in a Bayesian classifier
 – Speech recognition, vision, gene sequencing, character recognition, text mining...

• Prediction

• Tracking
Applications of HMMs

• Segmentation:
 – Given HMMs for various events, find event boundaries
 • Simply find the best state sequence and the locations where state identities change

• Automatic speech segmentation, text segmentation by topic, genome segmentation, ...