Machine Learning for Signal Processing
Supervised Representations
(Slides by Najim Dehak)
Definitions: Variance and Covariance

• **Variance:** $\Sigma_{XX} = E[(X-\mu)(X-\mu)^T]$
 - Estimated as $\Sigma_{XX} = (1/N) (X-\text{avg}(X)) (X-\text{avg}(X))^T$
 - How “spread” is the data in the direction of X (assuming 0 mean)
 - Scalar version: $\sigma_x^2 = E((x - \mu)^2)$

• **Covariance:** $\Sigma_{XY} = E [(X-\mu_X)(X-\mu_Y)^T]$
 - Estimated as $\Sigma_{XY} = (1/N) (X-\text{avg}(X)) (Y-\text{avg}(Y))^T$
 - How much does X predict Y (assuming 0 mean)
 - Scalar version: $\sigma_{xy} = E((x - \mu_x)(y - \mu_y))$

$\sigma_{xy} > 0 \Rightarrow \frac{d\hat{y}}{dx} > 0$
Definition: Whitening Matrix

- Whitening matrix: $\Sigma_{XX}^{-0.5}$
- Transforms the variable to unit variance
- Scalar version: σ_X^{-1}
Definition: Correlation Coefficient

- Normalized Correlation: $\Sigma_{XX}^{-0.5} \Sigma_{XY} \Sigma_{YY}^{-0.5}$
- Scalar version: $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$

 - Explains how Y varies with X, after normalizing out innate variation of X and Y
MLSP

• Application of Machine Learning techniques to the analysis of signals

• Feature Extraction:
 – Supervised (Guided) representation
Data specific bases?

• **Issue:** The bases we have considered so far are *data agnostic*
 – Fourier / Wavelet type bases for all data may not be optimal

• **Improvement I:** The bases we saw next were *data specific*
 – PCA, NMF, ICA, ...
 – The bases changed depending on the data

• **Improvement II:** What if bases are both data specific and task specific?
 – Basis depends on both the data and a task
Recall: Unsupervised Basis Learning

• What is a good basis?
 – Energy Compaction → Karkhonen-Loève
 – Uncorrelated → PCA
 – Sparsity → Sparse Representation, Compressed Sensing, ...
 – Statistically Independent → ICA

• We create a narrative about how the data are created
Supervised Basis Learning?

• We have some external information guiding our notion of optimal basis
 – Can we learn a basis for a set of variables that will best predict some value(s)

• What is a good basis?
 – Basis that gives best classification performance
 – Basis that maximizes shared information with another ‘view’
Regression

• Simplest case
 – Given a bunch of scalar data points predict some value
 – Years are independent
 – Temperature is dependent
Regression

• Formulation of problem

\[
\arg \min_{\beta_1, \beta_0} \sum_{i=1}^{N} (y_i - \beta_1 x_i - \beta_0)^2
\]

\[
= \arg \min_\beta \|Y - \beta^T X\|^2_F
\]

• Let’s solve!

Source: climate.nasa.gov
Regression

\nabla_\beta \; Tr(X^T \beta \beta^T X) - 2Tr(Y^T \beta^T X) = 2XX^T \beta - 2XY^T = 0

\implies \beta = (XX^T)^{-1} XY^T

- This is just basically least squares again
- Note that this looks a lot like the following

\[\Sigma_{XX}^{-1} \Sigma_{XY} \]

- In the 1-d case where x predicts y this is just ...

\[\frac{Cov(X, Y)}{\sigma_X^2} = \rho \frac{\sigma_Y}{\sigma_X} \]
Multiple Regression

• Robot Archer Example
 – A robot fires defective arrows at a target
 • We don’t know how wind might affect their movement, but we’d like to correct for it if possible.
 – Predict the distance from the center of a target of a fired arrow

• Measure wind speed in 3 directions

\[X_i = \begin{bmatrix} 1 \\ w_x \\ w_y \\ w_z \end{bmatrix} \]
Multiple Regression

- Wind speed

\[X_i = \begin{bmatrix} 1 \\ w_x \\ w_y \\ w_z \end{bmatrix} \]

- Offset from center in 2 directions

\[Y_i = \begin{bmatrix} o_x \\ o_y \end{bmatrix} \]

- Model

\[Y_i = \beta X_i \]
Multiple Regression

• Answer

\[\beta = (XX^T)^{-1}XY^T \]

– Here \(Y \) contains measurements of the distance of the arrow from the center

\[Y_i = \beta X_i \rightarrow \]

We are fitting a plane

– Correlation is basically just the gradient of the plane
Canonical Correlation Analysis

- Further Generalization (CCA)
 - Do all wind factors affect the position
 - Or just some low-dimensional combinations $\hat{X} = AX$
 - Do they affect both coordinates individually
 - Or just some of combination $\hat{y} = BY$
Canonical Correlation Analysis

• Let’s call the arrow location vector Y and the wind vectors X
 – Let’s find the projection of the vectors for Y and X respectively that are most correlated

Best X projection plane Predicts best Y projection
Canonical Correlation Analysis

• What do these vectors represent?
 – Direction of max correlation ignores parts of wind and location data that do not affect each other
 • Only information about the defective arrow remains!

Best X projection plane Predicts best Y projection
CCA Motivation and History

• Proposed by Hotelling (1936)
• Many real world problems involve 2 ‘views’ of data
• Economics
 – Consumption of wheat is related to the price of potatoes, rice and barley ... and wheat
 – Random vector of prices X
 – Random vector of consumption Y
CCA Motivation and History

- Magnus Borga, David Hardoon popularized CCA as a technique in signal processing and machine learning.
- Better for dimensionality reduction in many cases.
CCA Dimensionality Reduction

• We keep only the correlated subspace
• Is this always good?
 – If we have measured things we care about then we have removed useless information
CCA Dimensionality Reduction

- In this case:
 - CCA found a basis component that preserved class distinctions while reducing dimensionality
 - Able to preserve class in both views
Comparison to PCA

• PCA fails to preserve class distinctions as well
Failure of PCA

- PCA is unsupervised
 - Captures the direction of greatest variance (Energy)
 - No notion of task or hence what is good or bad information
 - The direction of greatest variance can sometimes be noise
 - Ok for reconstruction of signal
 - Catastrophic for preserving class information in some cases
Benefits of CCA

• Why did CCA work?
 – Soft supervision
 • External Knowledge
 – The 2 views track each other in a direction that does not correspond to noise
 – Noise suppression (sometimes)

• Preview
 – If one of the sets of signals are true labels, CCA is equivalent to Linear Discriminant Analysis
 – Hard Supervision
Multiview Assumption

• CCA models both variables as different views of a common reality
 – “Multiview” assumption

• When does CCA work?
 – The correlated subspace must actually have interesting signal
 • If two views have correlated noise then we will learn a bad representation

• Sometimes the correlated subspace can be noise
 – Correlated noise in both sets of views
Multiview Assumption

- Why not just concatenate both views?
 - It does not exploit the extra structure of the signal (more on this in 2 slides)
 - PCA on joint data will decorrelate all variables
 - Also mixes X and Y, whereas we want to predict Y from X
 - We want to decorrelate X and Y, but maximize cross-correlation between X and Y
 - High dimensionality \rightarrow over-fit
Multiview Assumption

• We can sort of think of a model for how our data might be generated

• We want View 1 independent of View 2 conditioned on knowledge of the source
 – All correlation is due to source
Multiview Examples

• Look at many stocks from different sectors of the economy
 – Conditioned on the fact that they are part of the same economy they might be independent of one another

• Multiple Speakers saying the same sentence
 • The sentence generates signals from many speakers. Each speaker might be independent of each other conditioned on the sentence
Multiview Examples

http://mlg.postech.ac.kr/static/research/multiview_overview.png
Recall: Least squares formulae

\[E = \sum_{i} (X_i - Y_i)^2 \]

\[X = [X_1, X_2, \ldots, X_N] \quad Y = [Y_1, Y_2, \ldots, Y_N] \]

\[E = \|X - Y\|_F^2 \]

• Expressing total error as a matrix operation
• The effect of a transform on the covariance of an RV

\[Z = UX \]

\[C_{XX} = E[XX^T] \]

\[C_{ZZ} = E[ZZ^T] = UC_{XX}U^T \]
Recall: Objective Functions

• So far our objective needs no external data
 – No knowledge of task
 \[
 \arg\min_{\mathbf{Y} \in \mathbb{R}^{k \times N}} \| \mathbf{X} - \mathbf{U} \mathbf{Y} \|_F^2
 \]
 \[\text{s.t. } \mathbf{U} \in \mathbb{R}^{d \times k}, \quad \text{rank}(\mathbf{U}) = k\]

• CCA requires an extra view
 – We force both views to look like each other
 \[
 \min_{\mathbf{U} \in \mathbb{R}^{d_x \times k}, \mathbf{V} \in \mathbb{R}^{d_y \times k}} \| \mathbf{U}^T \mathbf{X} - \mathbf{V}^T \mathbf{Y} \|_F^2
 \]
 \[\text{s.t. } \mathbf{U}^T \mathbf{C}_{XX} \mathbf{U} = \mathbf{I}_k, \quad \mathbf{V}^T \mathbf{C}_{YY} \mathbf{V} = \mathbf{I}_k\]
Interpreting the CCA Objective

• Minimize the reconstruction error between the projections of both views of data

• Find the subspaces U, V onto which we project views X and Y such that their correlation is maximized

• Find combinations of both views that best predict each other
A Quick Review

- Cross Covariance

\[
\mathbb{E} \left[\begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}^T \right] \approx \frac{1}{N} \begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}^T
\]

\[
= \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix}
\]
A Quick Review

• Matrix representation

\[\mathbf{X} = [X_1, X_2, \ldots, X_N] \quad \mathbf{Y} = [Y_1, Y_2, \ldots, Y_N] \]

\[C_{XX} = \sum_i X_i X_i^T = \frac{1}{N} \mathbf{XX}^T \]

\[C_{YY} = \sum_i Y_i Y_i^T = \frac{1}{N} \mathbf{YY}^T \]

\[C_{XY} = \sum_i X_i Y_i^T = \frac{1}{N} \mathbf{XY}^T \]
Interpreting the CCA Objective

• CCA maximizes correlation between two views

• While keeping individual views uncorrelated
 – Uncorrelated measurements are easy to model

\[
\begin{align*}
\min_{U \in \mathbb{R}^{d_x \times k}, \ V \in \mathbb{R}^{d_y \times k}} \ & \ \|U^T X - V^T Y\|^2_F \\
\text{s.t.} \ & \ U^T XX^T U = I_k, \ V^T YY^T V = NI_k \\
\text{s.t.} \ & \ U^T C_{XX} U = I_k, \ V^T C_{YY} V = I_k
\end{align*}
\]
CCA Derivation

\[
\min_{U \in \mathbb{R}^{dx \times k}, \ V \in \mathbb{R}^{dy \times k}} \| U^T X - V^T Y \|_F^2
\]

s.t. \(U^T X X^T U = I_k, \ V^T Y Y^T V = N I_k \)

s.t. \(U^T C_{XX} U = I_k, \ V^T C_{YY} V = I_k \)

• Assume \(C_{XX}, \ C_{XX} \) are invertible

• Create the Lagrangian and differentiate
CCA Derivation

\[\|U^T X - V^T Y\|_F^2 = \text{trace}(U^T X - V^T Y)(U^T X - V^T Y)^T \]

\[= \text{trace}(U^T XX^T U + V^T YY^T V - U^T XY^T V - V^T YX^T U) \]

\[= 2Nk - 2\text{trace}(U^T XY^T V) \]

• So we can solve the equivalent problem below

\[\max_{U,V} \text{trace}(U^T XY^T V) \]

\[\text{s.t. } U^T C_{XX} U = I_k, \ V^T C_{YY} V = I_k \]
CCA Derivation

• Incorporating Lagrangian, maximize
\[\mathcal{L}(\Lambda_X, \Lambda_Y) \]
\[= tr(U^TXY^TV) - tr((U^TXX^TU) - NI_k)\Lambda_X \]
\[- tr((V^TYY^TV) - NI_k)\Lambda_Y \]

• Remember that the constraints matrices are symmetric
CCA Derivation

• Taking derivatives and after a few manipulations

\[N\Lambda_X = N\Lambda_Y = \Lambda \]

• We arrive at the following system of equation

\[C_{YX}\tilde{U} = C_{YY}\tilde{V}D \]
\[C_{XY}\tilde{V} = C_{XX}\tilde{U}D \]
CCA Derivation

• We isolate \tilde{V}

$$\tilde{V} = C_{yy}^{-1} C_{yx} \tilde{U} D^{-1}$$

• We arrive at the following system of equation

$$C_{xx}^{-1} C_{xy} C_{yy}^{-1} C_{yx} \tilde{U} = \tilde{U} D^2$$

$$C_{yy}^{-1} C_{yx} C_{xx}^{-1} C_{xy} \tilde{V} = \tilde{V} D^2$$
CCA Derivation

• We just have to find eigenvectors for

\[\begin{align*}
C_{XX}^{-1} C_{XY} C_{YY}^{-1} C_{YX}
\end{align*} \]

• We then solve for the other view using the expression for \(\tilde{\mathbf{V}} \) on the previous slide.

• In PCA the eigenvalues were the variances in the PCA bases directions

• In CCA the eigenvalues are the squared correlations in the canonical correlation directions
CCA as Generalized Eigenvalue Problem

• Combine the system of eigenvalue eigenvector equations

\[
\begin{bmatrix}
0 & C_{XY} \\
C_{YX} & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{U} \\
\tilde{V}
\end{bmatrix}
= \begin{bmatrix}
C_{XX} & 0 \\
0 & C_{YY}
\end{bmatrix}
\begin{bmatrix}
\tilde{U} \\
\tilde{V}
\end{bmatrix}
D
\]

• Generalized eigenvalue problem

\[AU = BU\Lambda\]

• We assumed invertible \(C_{XX}, C_{YY} \rightarrow \exists B^{-1} \)

• Solve a single eigenvalue/vector equation

\[B^{-1}A\tilde{U} = \tilde{U}D\]
CCA Fixes

• We assumed invertibility of covariance matrices.
 – Sometimes they are close to singular and we would like stable matrix inverses
 – If we added a small positive diagonal element to the covariances then we could guarantee invertibility.

• It turns out this is equivalent to regularization
CCA Fixes

• The following problems are equivalent
 – They have the same gradients

\[
\begin{align*}
\min_{U,V} & \quad \|U^T X - V^T Y\|_F^2 + \lambda_x \|U\|_F^2 + \lambda_y \|V\|_F^2 \\
\max_{U,V} & \quad \text{trace}(U^T X Y^T V) \\
\text{s.t.} & \quad U^T (C_{XX} + \lambda_x I) U = I_k, \quad V^T (C_{YY} + \lambda_y I) V = I_k
\end{align*}
\]

• The previous solution still applies but with slightly different autocovariance matrices
 – “Diagonal load” the autocovariances
What to do with the CCA Bases?

- The CCA Bases are important in their own right.
 - Allow us a generalized measure of correlation
 - Compressing data into a compact correlative basis
- For machine learning we generally ...
 - Learn a CCA basis for a class of data
 - Project new instances of data from that class onto the learned basis
 - This is called multi-view learning
Multiview Setup

Train View 1

Train View 2

CCA

U

V

Down Stream Task

Projected Test View 1

Test View 1
Multiview Setup

• Often one view consists of measurements that are very hard to collect
 – Speakers all saying the same sentence
 – Articulatory measurements along with speech
 – Odd camera angles
 – Etc.
Multiview Setup

• We learn the correlated direction from data during training

• Constrain the common view to lie in the correlated subspace at test time
 – Removes useless information (Noise)
Linear Discriminant Analysis

- Given data from two classes
- Find the projection U
- Such that the separation between the classes is maximum along U
 - $Y = U^TX$ is the projection bases in U
 - No other basis separates the classes as much as U
Linear Discriminant Analysis

• We have 2 views as in CCA
• One of the views is the class labels of the data
 – Learn the direction that is maximally correlated with the class labels!
• It turns out that LDA and CCA are equivalent when the situation above is true
LDA Formulation

- LDA setup
 - Assume classes are roughly Gaussian
 - Still works if they are not, but not as well
 - We know the class membership of our training data
 - Classes are distinguishable by ...
 - Big gaps between classes with no data points
 - Relatively compact clusters
LDA Formulation

• LDA setup
LDA Formulation

• We define a few Quantities
 – Within-class scatter
 \[S_W = \sum_{k=1}^{K} S_k \]
 \[S_k = \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T \]
 • Minimize how far points can stray from the mean
 • Compact classes
 – Between-class scatter
 • Maximize the variance of the class means (distance between means)
 \[S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T \]
LDA Formulation

• We want a small within-class variance
• We want a high between-class variance
• Let’s maximize the ratio of the two!!
 – Remember we are looking for the basis W onto which projections maximize this ratio
 – In both cases we are finding covariance type functions of transformations of Random Vectors
 • What is the covariance of $Y = W^T X$?
Recall: Effect of projection on scatter

• Let $Y = W^T X$

• Let S_B and S_W be the between and within class scatter of X

• Within class scatter of Y: $S_W^Y = W^T S_W W$

• Between class scatter of Y: $S_B^Y = W^T S_B W$

• Must maximize S_B^Y while minimizing S_W^Y.
LDA Formulation

• We actually have too much freedom
 – Without any constraints on \(W \)
• Let’s fix the within-class variance to be 1.

\[
\arg\max_{W \in \mathbb{R}^{d \times k}} \text{Tr} (W^T S_B W) \quad \text{s.t.} \quad W^T S_W W = I
\]

– The Lagrangian is ...

\[
\mathcal{L}(\Lambda) = \arg\max_{W \in \mathbb{R}^{d \times k}} \text{Tr} (W^T S_B W) - \text{Tr}((W^T S_W W - I)\Lambda)
\]

– So we see that we have a generalized eigenvalue solution

\[
S_B w = \lambda S_W w
\]

• \(w \) is any column of \(W \) and \(\lambda \) is a diagonal entry of \(\Lambda \)
LDA Formulation

• When does LDA fail?
 • When classes do not fit into our model of a blob
 • We assumed classes are separated by means
 • They might be separated by variance
 • We can fix this using heteroscedastic LDA
 – Fixes the assumption of shared covariance across class.

https://www.lsv.uni-saarland.de/fileadmin/teaching/dsp/ss15/DSP2016/matdid437773.pdf
LDA for classification

• For each class assume a Gaussian Distribution
 • Estimate parameters of the Gaussian
 • We want \(\text{argmax } P(Y = K \mid X) \)
 • We use Bayes rule
 \[
P(Y = K \mid X) = P(X \mid Y = K)P(Y = K)
\]
 • We end up with linear decision surfaces between classes

\[
\log \left(\frac{P(y = k \mid X)}{P(y = l \mid X)} \right) = 0 \iff (\mu_k - \mu_l)\Sigma^{-1} X = \frac{1}{2}(\mu_k^t\Sigma^{-1}\mu_k - \mu_l^t\Sigma^{-1}\mu_l)
\]

For the best classification, perform Bayes classification on the LDA projections.
Bakeoff – PCA, CCA, LDA on Vowel Classification

• Speech is produced by an excitation in the glottis (vocal folds)
• Sound is then shaped with the tongue, teeth, soft palate ...
• This shaping is what generates the different vowels

https://www.youtube.com/watch?v=58AJya7JzOU#t=00m36s
Bakeoff – PCA, CCA, LDA on Vowel Classification

- To represent where in the mouth the vowels are being shaped linguists have something called a vowel diagram
- It classifies vowels as front-back, open-closed depending on tongue position

<table>
<thead>
<tr>
<th>VOWELS</th>
<th>Front</th>
<th>Central</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>i y</td>
<td>i u</td>
<td>u</td>
</tr>
<tr>
<td>Close-mid</td>
<td>e ø</td>
<td>e θ</td>
<td>Y o</td>
</tr>
<tr>
<td>Open-mid</td>
<td>e æ</td>
<td>e œ</td>
<td>æ θ</td>
</tr>
<tr>
<td>Open</td>
<td>æ a</td>
<td>æ œ</td>
<td>œ θ</td>
</tr>
</tbody>
</table>

Where symbols appear in pairs, the one to the right represents a rounded vowel.
Bakeoff – PCA, CCA, LDA on Vowel Classification

• Task:
 – Discover the vowel chart from data

• CCA on Acoustic and Articulatory View
 – Project Acoustic data onto top 3 dimensions

PCA

CCA

Where symbols appear in pairs, the one to the right represents a rounded vowel.
Bakeoff – PCA, CCA, LDA on Vowel Classification

• Using a one hot encoding of labels as a view gives LDA
• Another Example of CCA
 – Word is mapped into some vector space
 – A notion of distance between words is defined and the mapping is such that words that are semantically similar are mapped to near to each other (hopefully)
Multilingual CCA

• What if parallel text in another language exists?
• What if we could generate words in another language?
• Use different languages as different views

http://www.trivial.io/word2vec-on-databricks/
Fisher Faces

• We can apply LDA to the same faces we all know and love.
 – The details, especially stranger ones such as eye depth emerge as discriminating features
Conclusions

- LDA learns discriminative representations by using supervision
 - Knowledge of Labels
- CCA is equivalent to LDA when one view is labels
 - CCA provides soft supervision by exploiting redundant view of data