Machine Learning for Signal Processing
Bayes Classification and Regression

Instructor: Bhiksha Raj
Recap: KNN

• A very effective and simple way of performing classification

• Simple model: For any instance, select the class from the instances close to it in feature space
Multi-class Image Classification
k-Nearest Neighbors

Given a query item:
Find k closest matches in a labeled dataset ↓
k-Nearest Neighbors

Given a query item:
Find k closest matches

Return the most Frequent label
k-Nearest Neighbors

2 votes for cat,
1 each for Buffalo, Deer, Lion

Cat wins...
Nearest neighbor method

- Weighted majority vote within the k nearest neighbors

\[\hat{Y}(x) = \arg \max_c \sum_{x_i \in N_k(x), y_i = c} w(x, x_i) y_i \]
But what happens if..

- You have many training instances at exactly that value of x?
- Majority vote on nearest neighbors:

$$\hat{y} = \arg\max_y \text{count}(y|x)$$
But what happens if..

• You have many training instances at exactly that value of x?

• Majority vote on nearest neighbors:

$$\hat{y} = \arg\max_y \frac{N_y(x)}{N(x)}$$
But what happens if..

• You have many training instances at exactly that value of x?
• Majority vote on nearest neighbors:

$$\hat{y} = \arg\max_y P(y|x)$$
But what happens if..

- You have many training instances at exactly that value of x?
- Majority vote on nearest neighbors:

 $\hat{y} = \arg\max_y P(y|x)$

- Bayes Classification Rule
Bayes Classification Rule

• For any observed feature X, select the class value Y that is most frequent
 – Also applies to continuous valued predicted variables
 • I.e. regression

• Select Y to maximize the \textit{a posteriori} probability $P(Y|X)$
 – Bayes classification is an instance of \textit{maximum a posteriori} estimation
Bayes classification

• What happens if there are no *exact* neighbors
 – No training instances with exactly the same X value?
Bayes Classification Rule

• Given
 – a set of classes \(\mathcal{C} = \{C_1, C_2, \ldots, C_N\} \)
 – Conditional probability distributions \(P(C|X) \)
 – Classification performed as
 \[
 \hat{C} = \arg\max_{C \in \mathcal{C}} P(C|X)
 \]

• Problem: How do you characterize \(P(C|X) \)
 – Require a function that, given an \(X \), computes \(P(C|X) \) for every class \(C \)
Modelling $P(C|X)$

Each pixel is a combination of red green and blue weighted by the a posteriori probability of the classes

- Assumption: there’s a continuous function that, at every X, produces a vector of outputs $P(C|X)$ for every class C
 - The “decision boundary” for any class is the boundary within which its own posterior has the highest value

- This function accurately represents the actual a posteriori probabilities for the classes

- Objective: Estimate this function
Modelling the posterior

• To model the posterior, we need a functional form for $P(C|X)$ which can be learned

• Typically this functional form is expressed in terms of distance from a decision boundary

• The simplest decision boundary is the linear boundary
Bayesian Linear Classification:
Two class case

• First: Two-class classification
• Assumption: the decision boundary between the classes is a simple hyperplane
• As you go away from the hyperplane, the fraction of data from one class increases, while that from the other decreases
 – Will also hold for any sample of data
1-D binary class example

- One-dimensional example for visualization
- Only two classes (represented by y=0 and y=1)
 - All (red) dots at Y=1 represent instances of class Y=1
 - All (blue) dots at Y=0 are from class Y=0
 - The data are not linearly separable
 - In this 1-D example, a linear separator is a threshold
 - No threshold will cleanly separate red and blue dots
The probability of $y=1$

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the probability of $Y=1$ at that point
The *probability* of $y=1$

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point
The probability of $y=1$

- Consider this differently: at each point look at a small window around that point.
- Plot the average value within the window.
 - This is an approximation of the probability of 1 at that point.
Consider this differently: at each point look at a small window around that point.

Plot the average value within the window.

- This is an approximation of the probability of 1 at that point.
The probability of $y=1$

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the probability of 1 at that point
The probability of $y=1$

- Consider this differently: at each point look at a small window around that point.
- Plot the average value within the window.
 - This is an approximation of the probability of 1 at that point.
The *probability* of $y=1$

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point
The probability of $y=1$

- Consider this differently: at each point look at a small window around that point.
- Plot the average value within the window.
 - This is an approximation of the probability of 1 at that point.
The *probability* of $y=1$

- Consider this differently: at each point look at a small window around that point.
- Plot the average value within the window.
 - This is an approximation of the *probability* of 1 at that point.
The *probability* of $y=1$

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point
The *probability of y=1*

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point
The *probability* of $y=1$

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point
Consider this differently: at each point look at a small window around that point.

Plot the average value within the window.

- This is an approximation of the probability of 1 at that point.
The probability of $y=1$

Need a function to model the shape of this curve.

A good choice that works under many conditions: Logistic function

- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the probability of 1 at that point
The logistic regression model

\[P(y|x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}} \]

- Class 1 becomes increasingly probable going left to right
 - Very typical in many problems
 - The logistic is a function of the distance from the \(P(y|x) = 0.5 \) boundary
For two-dimensional input

When \(X \) is a 2-D variable

- The decision boundary for \(P(Y|X)=0.5 \) is a hyperplane
 - It is a linear model

\[
P(y|x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}
\]
The logistic regression model

\[P(y|x) = \frac{e^{w_0 + w_1 x}}{1 + e^{w_0 + w_1 x}} = \frac{1}{1 + e^{-(w_0 + w_1 x)}} \]

- Note how it varies with \(w_0 + w_1 x \)
Estimating the model

\[P(y|x) = f(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}} \]

- Given the training data (many \((x, y)\) pairs represented by the dots), estimate \(w_0\) and \(w_1\) for the curve
Estimating the model

- Easier to represent using a $y = +1/-1$ notation

\[
P(y = 1|x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}
\]

\[
P(y = -1|x) = \frac{1}{1 + e^{w_0 + w_1 x}}
\]

\[
P(y|x) = \frac{1}{1 + e^{-y(w_0 + w_1 x)}}
\]
Estimating the model

• Given: Training data

 \((X_1, y_1), (X_2, y_2), \ldots, (X_N, y_N)\)

• \(X_s\) are vectors, \(y_s\) are binary (0/1) class values

• Total probability of data

 \[
P((X_1, y_1), (X_2, y_2), \ldots, (X_N, y_N)) = \prod_{i} P(X_i, y_i)
 \]

 \[
 = \prod_{i} P(y_i | X_i) \cdot P(X_i) = \prod_{i} \frac{1}{1 + e^{-y_i(w_0 + w^T X_i)}} \cdot P(X_i)
 \]
Estimating the model

• Likelihood

\[P(Training\ data) = \prod_i \frac{1}{1 + e^{-y_i(w_0 + w^T X_i)}} P(X_i) \]

• Log likelihood

\[\log P(Training\ data) = \sum_i \log P(X_i) - \sum_i \log \left(1 + e^{-y_i(w_0 + w^T X_i)}\right) \]
Maximum Likelihood Estimate

\[\hat{w}_0, \hat{w}_1 = \arg\max_{w_0, w_1} \log P(\text{Training data}) \]

• Equals (note argmin rather than argmax)

\[\hat{w}_0, \hat{w}_1 = \arg\min_{w_0, w} \sum_i \log \left(1 + e^{-y_i(w_0 + w^T X_i)} \right) \]

• Minimizing the KL divergence between the desired output \(y \) and actual output \(\frac{1}{1+e^{- (w_0 + w^T X_i)}} \)

• Cannot be solved directly, needs gradient descent
Model learned by logistic regression

- The figure shows the class probability over a two-dimensional feature space.
- Any decision threshold \(P(C|X) = \text{Const} \) is a hyperplane.
 - Diagonal line in this case.

Pure Red: 0
Pure Green: 1
Multi-class logistic regression

• The simple logistic regression model can be extended to multiple classes:

\[
P(C|X) = \frac{\exp(W_C^T X)}{\sum_C \exp(W_C^T X)}
\]

- \(W_C^T X\) is, in fact, the discriminant function of the classes
 - We’ve encountered discriminant functions earlier

• Also called a softmax

• Each class \(C_i\) has a probability that is exponentially related to the closeness of the vector \(X\) to a “representative” vector \(w_i\) for the class

• This too can be learned from training data via maximum likelihood estimation
 - Just like the two-class case
Multi-class logistic regression

- The boundary between adjacent classes is a hyperplane (line)
- The decision boundary for any class is convex polytope with hyperplane segments
 - I.e. still a linear classifier
• In many classification problems, linear boundaries are not sufficient
• We need to be able to model more complex boundaries
• This too can be supported by the logistic regression classifier
Logistic regression with non-linear boundaries

• The logistic regression can be modified to have non-linear discriminants:

\[P(C|X) = \frac{\exp(f(X; \theta_C))}{\sum_{C'} \exp(f(X; \theta_{C'}))} \]

 - \(f(X; \theta_C) \) is the discriminant for class C, and has parameter \(\theta_C \)
 - The discriminants determine the shape of the decision boundary

• Non-linear discriminants result in non-linear decision boundaries
 - The parameters \(\theta_C \) for all classes can be learned by maximum likelihood (or MAP) estimation as before
Quadratic discriminant

\[P(C|X) = \frac{\exp(f(X; \theta_C))}{\sum_c \exp(f(X; \theta_c))} \]

- With quadratic discriminants:
 \[f(X; \theta_C) = (X - \alpha_C)\beta_C(X - \alpha_C)^T \]
- Note that decision boundaries are quadratic
- The probability of a class increases (or decreases) as we go away from a boundary
Logistic regression with non-linear boundaries

\[
P(C|X) = \frac{\exp(f(X; \theta_C))}{\sum_{C'} \exp(f(X; \theta_{C'}))}
\]

- For complex decision boundaries, the function \(f(X; \theta_C) \) must be correspondingly complex.
- Currently the most successful approach in these cases is to model \(f(X; \theta_{C'}) \) by a neural network.
 - In fact neural networks with soft-max decision layers may be seen as an instance of a logistic regression with a non-linear discriminant.
- Topic for a later class
Logistic regression with non-linear boundaries

• The logistic regression can be modified to have non-linear discriminants:

\[
P(C|X) = \frac{\exp(f(X; \theta_C))}{\sum_C \exp(f(X; \theta_C))}
\]

• Note: This can also be viewed as non-linearly transforming the data X into a space where a simple linear logistic regression models posteriors well

• \(Z(X) = [f(X; \theta_1) \ f(X; \theta_2) \ ... \ f(X; \theta_K)]^T \)

 – I.e. into a space where the data are most linearly separable

 – We will discuss this in a later lecture on neural networks
Problem with modelling $P(C|X)$

• We have considered modelling the a posteriori probability of the classes directly

• This implicitly assumes that
 – The characteristics of the data for any class remain the same between train and test
 – The relative proportions of the classes too remain the same

• Often the second assumption will not hold
 – The data characteristics remain, but the relative proportions change
 – E.g. the shapes of the differently colored coins don’t change, but the relative proportions of the colors changes between train and test

• We must then modify our approach to Bayes classification to a generative framework
The Bayesian Classifier..

- \(\hat{C} = \arg\max_{C \in \mathcal{C}} P(C|X) \)
 - Choose the class that is most frequent for the given \(X \)

\[
P(C|X) = \frac{P(C)P(X|C)}{P(X)}
\]

- \(\arg\max_{C \in \mathcal{C}} P(C|X) = \arg\max_{C \in \mathcal{C}} P(C)P(X|C) \)
 - Choose the class that is most likely to have produced \(X \)
 - While accounting for the relative frequency of \(C \)
Bayes Classification Rule

• Given a set of classes $\mathcal{C} = \{C_1, C_2, ..., C_N\}$

$$\hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)$$

$P(X|C_i)$ measures the probability that a random instance of class C_i will take the value X
Bayes Classification Rule

- Given a set of classes $\mathcal{C} = \{C_1, C_2, ..., C_N\}$

$$\hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)$$

$P(X|C_i)$ measures the probability that a random instance of class C_i will take the value X.

![Graph showing probability distributions $P(X|C_1)$ and $P(X|C_2)$]
Bayes Classification Rule

- Given a set of classes $\mathcal{C} = \{C_1, C_2, \ldots, C_N\}$

$$\hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)$$

$P(C_i)$ scales them up to match the expected relative proportions of the classes.
Bayes Classification Rule

• Given a set of classes $\mathcal{C} = \{C_1, C_2, ..., C_N\}$

$$\hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)$$

$P(C_i)$ scales them up to match the expected relative proportions of the classes
Bayes Classification Rule

- Given a set of classes \(\mathcal{C} = \{C_1, C_2, ..., C_N\} \)

\[
\hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)
\]

\(P(C_i) \) scales them up to match the expected relative proportions of the classes.
Bayes Classification Rule

- Given a set of classes $\mathcal{C} = \{C_1, C_2, ..., C_N\}$
 \[
 \hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)
 \]
 $P(C_i)$ scales them up to match the expected relative proportions of the classes

Fraction of all instances that belong to C_2 and fall on the wrong side of the boundary and are misclassified
Bayes Classification Rule

- Given a set of classes $\mathcal{C} = \{C_1, C_2, \ldots, C_N\}$

$$\hat{C} = \arg\max_{C \in \mathcal{C}} P(C)P(X|C)$$

$P(C_i)$ scales them up to match the expected relative proportions of the classes
Bayes Classification Rule

• The Bayes classification rule is the statistically optimal classification rule
 – Moving the boundary in either direction will always *increase* the classification error

\[
P(C_2)P(X|C_2) \quad P(C_1)P(X|C_1)
\]
The Bayesian Classifier..

- \(\hat{C} = \arg\max_{C \in \mathcal{C}} P(C|X) = \arg\max_{C \in \mathcal{C}} P(C)P(X|C) \)

- We can now directly learn the class-specific statistical characteristics \(P(X|C) \) from the training data.

- The relative frequency of \(C, P(C) \), can be independently adjusted to our expectations of these frequencies in the test data.
 - These need not match the training data.
Modeling $P(X|C)$

• Challenge: How to learn $P(X|C)$
 – This will not be known beforehand and must be learned from examples of X that belong to class C

• Will generally have unknown and unknowable shape
 – We only observe samples of X

• Must make some assumptions about the form of $P(X|C)$
The problem of dependent variables

• $P(X|C) = P(X_1, X_2, ..., X_D|C)$ must be defined for every combination of $X_1, X_2, ..., X_D$
 – Too many parameters to describe explicitly
 – Most combinations unseen in training data

• $P(X|C)$ may have an arbitrary scatter/shape
 – Hard to characterize mathematically
 – Typically do so by assigning a functional form to it
The problem of dependent variables

- \(P(X|C) = P(X_1, X_2, \ldots, X_D | C) \) must be defined for every combination of \(X_1, X_2, \ldots, X_D \)
 - Too many parameters to describe explicitly
 - Most combinations unseen in training data

- \(P(X|C) \) may have an arbitrary scatter/shape
 - Hard to characterize mathematically
 - Typically do so by assigning a functional form to it
The Naïve Bayes assumption

• Assume all the components are independent of one another
 – The joint probability is the product of the marginal

\[P(X|C) = P(X_1, X_2, ..., X_D|C) = \prod_i P(X_i|C) \]

• Sufficient to learn marginal distributions \(P(X_i|C) \)
 – The problem of having to observe all combinations of \(X_1, X_2, ..., X_D \) never arises
Naïve Bayes – estimating \(P(X_i|C) \)

- \(P(X_i|C) \) may be estimated using conventional maximum likelihood estimation
 - Given a number of training instances belonging to class \(C \)
 - Select the \(i \)-th component of all instances
 - Estimate \(P(X_i|C) \)
 - For discrete-valued \(X_i \) this will be a multinomial distribution
 - For continuous valued \(X_i \) a form must be assumed
 - E.g Gaussian, Laplacian etc
Naïve Bayes – Binary Case

\[P(X|C) = P(X_1, X_2, \ldots, X_D|C) \]

if \(X_i \in \{0, 1\} \) \(2^D - 1 \) parameters for each \(C \)

\[P(X|C) = P(X_1|C) \cdot \ldots \cdot P(X_D|C) \]

\(D \) parameters for each \(C \)
The problem of dependent variables

\[P(X|C) = P(X_1, X_2, ..., X_D | C) \] must be defined for every combination of \(X_1, X_2, ..., X_D \)

- Too many parameters
- Most combinations unseen in training data

\[P(X|C) \] may have an arbitrary scatter/shape

- Hard to characterize mathematically
- Typically do so by assigning a functional form to it
Assigning a functional form to $P(X|C)$

• Assign a functional form to $P(X|C)$

• Common assumptions:
 – Unimodal forms: Gaussian, Laplacian
 – Multimodal forms: Gaussian mixtures
 – Time series: Hidden Markov models
 – Multi-dimensional structures: Markov random fields
Assigning a functional form to $P(X|C)$

• Assign a functional form to $P(X|C)$

• Common assumptions:
 – Unimodal forms: **Gaussian**, Laplacian
 • Most common of all
 – Multimodal forms: Gaussian mixtures
 – Time series: Hidden Markov models
 – Multi-dimensional structures: Markov random fields
Gaussian Distribution

\[p(x, \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right) \]

- **\(x \in \mathbb{R}^n \)**
- **\(\mu \)** Mean Vector
- **\(\Sigma \)** Covariance Matrix
 - Symmetric
 - Positive Definite
Gaussian Distribution

\[\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix} \]
Parameter Estimation

\[p(x, \mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu) \right) \]

Maximum Likelihood Estimators

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

\[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^\top \]
Gaussian classifier

\[p(x, \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right) \]

Different Classes, different Gaussians

\[p(x|C_1) = p(x, \mu_1, \Sigma_1) = \frac{1}{(2\pi)^{n/2} |\Sigma_1|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_1)^\top \Sigma_1^{-1} (x - \mu_1) \right) \]

\[p(x|C_2) = p(x, \mu_2, \Sigma_2) = \frac{1}{(2\pi)^{n/2} |\Sigma_2|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_2)^\top \Sigma_2^{-1} (x - \mu_2) \right) \]

\[\vdots \]

\[p(x|C_k) = p(x, \mu_k, \Sigma_k) = \frac{1}{(2\pi)^{n/2} |\Sigma_k|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_k)^\top \Sigma_k^{-1} (x - \mu_k) \right) \]
Gaussian Classifier

- For each class we need:
 - Mean Vector
 - Covariance Matrix

- Training
 - “Fit” a Gaussian to each class
 - Find the best Gaussian to explain the distribution for the class

- Classification:
 \[\arg \max_i P(C_i)p(x, \mu_i, \Sigma_i)\]

- Problem:
 - Many parameters to train!
 - Dominated by covariance: for \(D\)-dimensional data the covariance matrices requires \(D^2\) parameters each
 - For \(N_c\) classes, a total of \(N_cD^2\) parameters
Homo-skedasticity assumption

• Assume all distributions have the same covariance
 – $\Sigma_i = \Sigma \ \forall \ i$
 – Assumption, may not be true
 – But still works in many cases

• Fewer parameters to train
 – One common covariance matrix for all classes
 – Only D^2 total parameters
 • As opposed to $N_c D^2$ if each class has its own covariance matrix
Homo-skedastic Gaussians

\[\Sigma_1 = \Sigma_2 = \cdots = \Sigma_K = \Sigma \]

- For the binary classification case \((K = 2)\)

Decision boundary:

\[
\frac{1}{(2\pi)^{n/2}\bar{\Sigma}^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_1)^\top \Sigma^{-1} (x - \mu_1) \right) \cdot p(C_1) = \frac{1}{(2\pi)^{n/2}\bar{\Sigma}^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_2)^\top \Sigma^{-1} (x - \mu_2) \right) \cdot p(C_2)
\]

\[
\exp \left(-\frac{1}{2} (x - \mu_1)^\top \Sigma^{-1} (x - \mu_1) \right) \cdot p(C_1) = \exp \left(-\frac{1}{2} (x - \mu_2)^\top \Sigma^{-1} (x - \mu_2) \right) \cdot p(C_2)
\]
Homo-skedastic Gaussians

\[
\exp \left(-\frac{1}{2} (x - \mu_1)^\top \Sigma^{-1} (x - \mu_1) \right) \cdot p(C_1) = \exp \left(-\frac{1}{2} (x - \mu_2)^\top \Sigma^{-1} (x - \mu_2) \right) \cdot p(C_2)
\]

taking log

\[
\left(-\frac{1}{2} (x - \mu_1)^\top \Sigma^{-1} (x - \mu_1) \right) + \log p(C_1) = \left(-\frac{1}{2} (x - \mu_2)^\top \Sigma^{-1} (x - \mu_2) \right) + \log p(C_2)
\]

\[
\mu_1^\top \Sigma^{-1} x - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1 + \log p(C_1) = \mu_2^\top \Sigma^{-1} x - \frac{1}{2} \mu_2^\top \Sigma^{-1} \mu_2 + \log p(C_2)
\]

\[
(\mu_1 - \mu_2)^\top \Sigma^{-1} x - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1 + \frac{1}{2} \mu_2^\top \Sigma^{-1} \mu_2 + \log p(C_1) - \log p(C_2) = 0
\]

\[
W^\top x + c = 0
\]

Linear Boundary!!!
Homo-skedastic Gaussians
Homo-skedastic Gaussians, $K > 2$

- Case $K > 2$ (more than two classes)
- Classification performed as:
 $$\arg\max_i P(C_i)p(x, \mu_i, \Sigma_i)$$
- Taking logs and ignoring the common constant
 $$\arg\max_i -\frac{1}{2} (x - \mu_i)^T \Sigma^{-1} (x - \mu_i) + \log P(C_i)$$
- Expanding out and ignoring common terms
 $$\arg\max_i -\frac{1}{2} x^T \Sigma^{-1} \mu_i - \frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P(C_i)$$
- This is just a linear classifier
Homo-skedastic Gaussians, $K > 2$

- Decision boundaries for
 \[
 \arg\max_i P(C_i)p(x, \mu_i, \Sigma_i)
 \]
- Linear classifier: Decision boundaries are hyperplanes
Homo-skedastic Gaussians, $K > 2$

- Case $K > 2$ (more than two classes)
- Classification performed as:
 \[
 \arg\max_i P(C_i)p(x, \mu_i, \Sigma_i)
 \]
- Taking logs and ignoring the common constant
 \[
 \arg\max_i -\frac{1}{2}(x - \mu_i)^T\Sigma^{-1}(x - \mu_i) + \log P(C_i)
 \]
- Changing the sign and rewriting it as argmin
 \[
 \arg\min_i (x - \mu_i)^T\Sigma^{-1}(x - \mu_i) - 2\log P(C_i)
 \]
Homo-skedastic Gaussians

Mahalanobis Distance

\[D_M(x, y) = \sqrt{(x - y)^\top \Sigma^{-1} (x - y)} \]

- A Gaussian Classifier with common Covariance Matrix is similar to a Nearest Neighbor Classifier
- Classification corresponds to the nearest mean vector
How to estimate the Covariance Matrix?

• Maximum likelihood estimate of covariances of individual classes:

\[\Sigma_C = \frac{1}{N_C} \sum_{i=1}^{N_C} (x_i^{(c)} - \mu_C) (x_i^{(c)} - \mu_C)^T \]

• Estimate of common covariance for all classes

\[\Sigma = \frac{1}{\sum_{C'=1}^{K} N_{C'}} \sum_{C=1}^{K} N_C \Sigma_C \]
Hetero skedastic Gaussians..

• Homoskedastic Gaussians do not capture non-linear decision boundaries
• Also, the assumption that all Gaussians have the same covariance is questionable
• Permitting each Gaussian to have its own covariance results in non-linear decision boundaries
 – “Hetero skedastic” Gaussians
Hetero-skedastic Gaussians

Different Covariance Matrices

1D case. $K = 2$

Decision Boundary

$$p(x|C_1)p(C_1) = p(x|C_2)p(C_2)$$

$$\log \frac{\sigma_2}{\sigma_1} + \frac{1}{2} \left(\frac{x - \mu_2}{\sigma_2} \right)^2 - \frac{1}{2} \left(\frac{x - \mu_1}{\sigma_1} \right)^2 - \log \frac{P(C_2)}{P(C_1)} = 0$$

$$(x - x_1)(x - x_2) = 0$$
Hetero-skedastic Gaussians

\[x_1 \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 8 \end{bmatrix}\right), \quad x_2 \sim \mathcal{N}\left(\begin{bmatrix} 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}\right) \]
Digit recognition

$ 2.56
Gaussian Classifier for Digit recognition

\[p(x, \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]
Showing the average of each digit

• Average digit

0 1 2 3 4 5 6 7 8 9
Bayes classification

\[\arg \max_i p(C_i)p(x, \mu_i, \Sigma) \]

- Normalize the Posterior
Inadequacy of Gaussian classifiers

- Gaussian classifiers can only capture simple linear or quadratic decision boundaries
- Often, the decision boundaries required are more complex
- In this case we must employ a Gaussian Mixture classifier

$$\arg\max_i P(C_i)p(x|C_i)$$

- \(p(x|C_i)\) is modelled by a Gaussian mixture
GMM classifier

- For each class, train a GMM (with EM)

\[p(x|C_i) = \sum_{j=1}^{K} \pi_j^{(i)} p(x|\mu_j^{(i)}, \Sigma_j^{(i)}) \]

- Classify according to

\[\text{arg max}_i p(x|C_i) \cdot p(C_i) \]
Bayesian Classification with Gaussian Mixtures

- Plotting $P(C_i)p(x|C_i)$ for all classes
 - Left: Two-class classification, Right: Three-class classification
 - Each class modelled by a mixture of three Gaussians
- Note the complex decision boundary
Estimating $P(C)$

$$\arg \max_i P(C_i)p(x, \mu_i, \Sigma_i)$$

- Have not explained where the class prior $P(C_i)$ comes from

- This can be dependent on the test data

- Typical solutions:
 - Estimate from training data
 - Optimize on development or held-out test data
 - Heuristic guess
 - Conservative estimates
 - Set the prior of classes that have high cost if incorrectly detected to be low
 - Set prior of classes that have high cost if incorrectly missed to be low
 - Etc..
Topics not covered

• Maximum a posteriori estimation
 – When we make assumptions about the parameters (means, covariances) themselves

• MAP regression with Gaussians
 – Predicting continuous-valued RVs assuming Gaussian distributions

• MAP regression with Gaussian Mixtures
 – Predicting continuous-valued RVs with Gaussian mixture distributions

• Time-series and other structured data
 – Partially covered in a later lecture