

Machine Learning for Signal Processing Project Ideas

Class 5. 15 Sep 2016

Instructor: Bhiksha Raj

Course Projects

- Covers 30% of your grade
- 10-12 weeks of work
- Required:
 - Serious commitment to project
 - Extra points for working demonstration
 - Project Report
 - Poster presented in poster session
 - 8 Dec 2016
 - Graded by anonymous external reviewers in addition to the course instructors

Course Projects

- Projects will be done by teams of students
 - Ideal team size: 3
 - Find yourself a team
 - If you wish to work alone, that is OK
 - But we will not require less of you for this
 - If you cannot find a team by yourselves, you will be assigned to a team
 - Teams will be listed on the website
 - All currently registered students will be put in a team eventually
- Will require background reading and literature survey
 - Learn about the problem

Projects

- Teams must inform us of their choice of project by 30th
 September 2016
 - The later you start, the less time you will have to work on the project

Quality of projects

- Project must include aspects of signal analysis and machine learning
 - Prediction, classification or compression of signals
 - Using machine learning techniques
- Several projects from previous years have led to publications
 - Conference and journal papers
 - Best paper awards
 - Doctoral and Masters' dissertations

- So you think you can sing?: Fixing Karaoke
- Self-paced learning in multimedia event detection with social signal processing
- Improving intonation in audio book speech synthesis
- Your keyboard is not your friend: reading typed text from audio recordings
- Learning successful strategy in adversarial games
- Gesture phase segmentation
- Electric load prediction for airport buildings
- Unsupervised template learning for birdsong identification
- Realtime keyword spotting in video games

- Loop querier searching the rhythmic pattern
- Vision-based montecarlo localization for autonomous vehicle
- Beatbox to drum conversion
- City localization on flikr videos using only audio
- Facial landmarks based video frontalization and its application in face recognition
- Audioshop: Modifying and editing singing voice
- Predicting and classifying RF signal strength in an environment with obstacles
- Realtime detection of basketball players

- IMPROVING SPATIALIZATION ON HEADPHONES FOR STEREO MUSIC
- PREDICTING THE OUTCOME OF ROULETTE
- FACIAL REPLACEMENT IN VIDEOS
- ISOLATED SIGN WORD RECOGNITION SYSTEM
- ACCENTED ENGLISH DIALECT CLASSIFICATION
- BRAIN IMAGE CLASSIFIER
- FACIAL EXPRESSION RECOGNITION
- MOOD BASED CLASSIFICATION OF SONGS TO IDENTIFY ACOUSTIC FEATURES THAT ALLEVIATE DEPRESSION
- PERSON IDENTIFICATION THROUGH FOOTSTEP-INDUCED FLOOR VIBRATION
- DETECT HUMAN HEAD-ORIENTATION BASED ON CONVOLUTIONAL NEURAL NETWORK AND DEPTH CAMERA
- NEURAL NETWORK BASED SLUDGE VOLUME INDEX PREDICTION

- 8-BIT MUSIC NOTE IDENTIFICATION TURNING MARIO INTO METAL
- STREET VIEW HOUSE NUMBER RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS
- TRAIN-BASED INFRASTRUCTURE MONITORING
- MANIFOLD INTERPOLATION OF X-RAY RADIOGRAPHS
- A SMARTPHONE BASED INDOOR POSITIONING SYSTEM AUGMENTED WITH INFRARED SENSING
- ROCK, PAPER, SCISSORS -- HAND GESTURE RECOGNITION
- LANGUAGE MODELS WITH SEMANTIC CONSTRAINTS
- LEARNING TO PREDICT WHERE A DRIVER LOOKS
- REAL TIME MONITORING OF STUDENT'S LEARNING PERFORMANCE

- Automotive vision localization
- Lyric recognition
- Imaging without a camera
- Handwriting recognition with a Kinect
- Gender classification of frontal facial images
- Deep neural networks for speech recognition
- Predicting mortality in the ICU
- Human action tagging
- Art Genre classification
- Soccer tracking
- Image manipulation using patch transforms
- Audio classification
- Foreground detection using adaptive mixture models

11

Projects from previous years: 2012

- Skin surface input interfaces
 - Chris Harrison
- Visual feedback for needle steering system
- Clothing recognition and search
- Time of flight countertop
 - Chris Harrison
- Non-intrusive load monitoring using an EMF sensor
 - Mario Berges
- Blind sidewalk detection
- Detecting abnormal ECG rhythms
- Shot boundary detection (in video)
- Stacked autoencoders for audio reconstruction
 - Rita Singh
- Change detection using SVD for ultrasonic pipe monitoring
- Detecting Bonobo vocalizations
 - Alan Black
- Kinect gesture recognition for musical control

Projects from previous years: 2011

- Spoken word detection using seam carving on spectrograms
 - Rita Singh
- Bioinformatics pipeline for biomarker discovery from oxidative lipidomics of radiation damage
- Automatic annotation and evaluation of solfege
- Left ventricular segmentation in MR images using a conditional random field
- Non-intrusive load monitoring
 - Mario Berges
- Velocity detection of speeding automobiles from analysis of audio recordings
- Speech and music separation using probabilistic latent component analysis and constant-Q transforms

Project Complexity

Depends on what you want to do

Complexity of the project will be considered in grading.

 Projects typically vary from cutting-edge research to reimplementation of existing techniques. Both are fine.

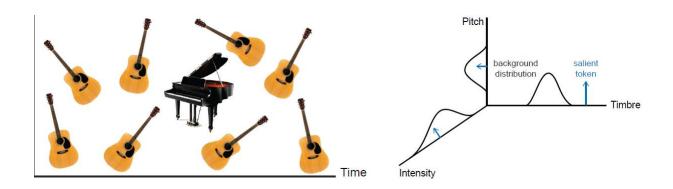
Incomplete Projects

- Be realistic about your goals.
- Incomplete projects can still get a good grade if
 - You can demonstrate that you made progress
 - You can clearly show why the project is infeasible to complete in one semester
- Remember: You will be graded by peers

"Local" Projects...

- Several project ideas routinely proposed by various faculty/industry partners
 - Sarnoff labs, NASA, Mitsubishi, Adobe...
- Local faculty
 - Alan Black is usually good for a project or two
 - LP Morency has fantastic ideas on analysis of multimodal recordings of H-H (and H-C) communication
 - Roger Dannenberg is a world leader in computational music
 - Mario Berges has helped in the past
 - Fernando de la Torre
 - Rita Singh does nice work on speech forensics
 - Others...
- Johns Hopkins: We have several data sources in Hopkins
 - Students may team up with partners from JHU

1. Reading the Brain (Hopkins)



- We have a collection of EEG responses to specific sound stimuli.
- Multiple recordings for each person
 - Mulitple sessions for each stimulus
- Detect stimuli from recordings
 - Mounya Elhilali

Reading the Brain

- Subject watches silent movie while listening to musical notes while paying attention to movie
 - Notes deviate from norm
 - How does the brain respond to deviations
- Also
 - Denoising body signals
 - Denoising electrode connectivity issues
- http://journal.frontiersin.org/article/10.3389/fnhum.2014.00327/full

More brain

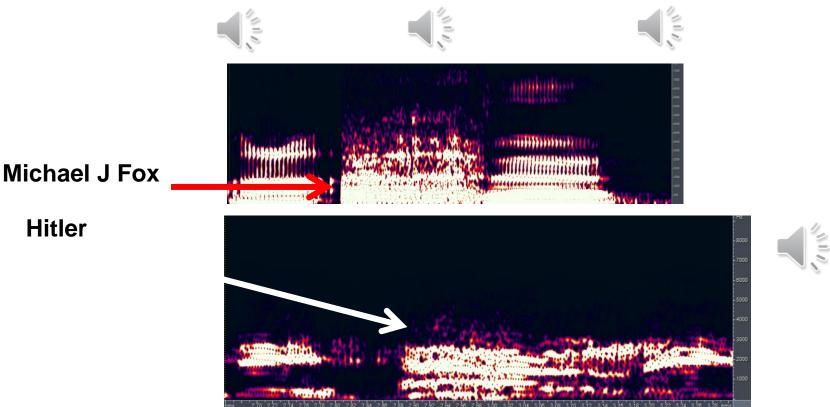
- EEG data where the person is listening to two sounds
 - left and right ears listen to two different sounds
- Determine which part of the brain deals with each ear.

2. Hitler Circa 1934

Closing Address To The Nazi Party Congress Nuremberg, Germany, September 14, 1934 Adolf Hitler

A historical moment that changed the world

What is in the human voice?


Closing Address To The Nazi Party Congress Nuremberg, Germany, September 14, 1934 Adolf Hitler

- A historical moment that changed the world
- But there's something here that may have prevented it..

Parkinsons!!

- Hitler's voice
- Video evidence depicts that Hitler exhibited progressive motor function deterioration from 1933 to 1945.

Available Data

Colombian (PC-GITA)	German	Czech
50 PD, 50 HC	88 PD, 88 HC	20 PD, 15 HC
Sound-proof booth		
Age ~ 61	Age ~ 64	Age ~ 60
Speech tasks: Vowels, pa-ta-ka, words, sentences, read text, monologue		

- Dedicated tests → We know what was said (good for automatic analysis but not for unobtrusive monitoring)
- Monologues, e.g. What did you do yesterday?
 (close to unobtrusive monitoring)

PD Speech: Characteristics

- Reduced loudness
- Monotonic speech
- Breathy voice
- Imprecise articulation
- Accelerated or slowed
- Stutter-like

Hypokinetic dysarthric Speech

Colombian patient

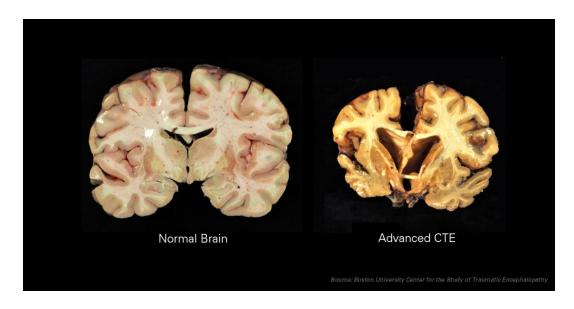
Female, Age: 75

UPDRS-III: 52

Additional Data

Dataset	Description
Multimoda I	Speech, gait, and hand-writing of 30 PD
Longitudin al	Speech of 26 PD recorded in different sessions across 4 years
Genetics	Speech of 3 groups of speakers: 6 PD with the mutation 7 with the mutation but not diagnosed PD 6 non-PD, non-mutation, but relatives
At-home	Speech, gait, and handwriting of 7 PD in 4 all day sessions

Challenge


Detect Parkinsons from voice

- Bonus analyze historical figures
 - The Hiter result needs to be published

Supervisor: Rita Singh

3. Chronic Traumatic Encephelopathy

- Chronic Traumatic Encephelopathy is a progressive neurological disorder that affects the brains of individuals who have experienced repeated blows to the head
- Increasing evidence that CTE affects athletes of all ages, who are involved in any contact sport
 - American football, boxing, ice hockey, rugby, soccer, professional wrestling...

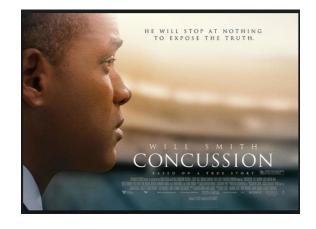
CTE in the news

WATCH SCHEDULE INVESTIGATIONS

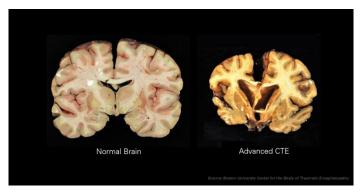
Players Test Positive for Brain

New: 87 Deceased NFL

Disease


SEPTEMBER 18, 2015 / by JASON M. BRESLOW

NFL acknowledges, for first time, link between football, brain disease



- Currently one of the most prominent sports-related health problems
 - Gained prominence recently from the death of several well-known athletes
 - Although known for a long time as the "punch-drunk" syndrome

The CTE Problem

- Problem: CTE can only be confirmed through dissection of patients' brains post-mortem
- No clinical recordings at all
 - Since we don't know if the patients have CTE
- On the other hand:
 - Several famous personalities were found to have CTE
 - Many recordings of them on YouTube etc.

Detecting CTE

- Hypothesis: CTE is exhibited through behavior
 - Speech, gaze, gesture, gait
- Proposal: Gather data of famous CTE patients from public sources
- Attempt to develop diagnostic from behavioral charactistics
- If you succeed, they may make a movie about you

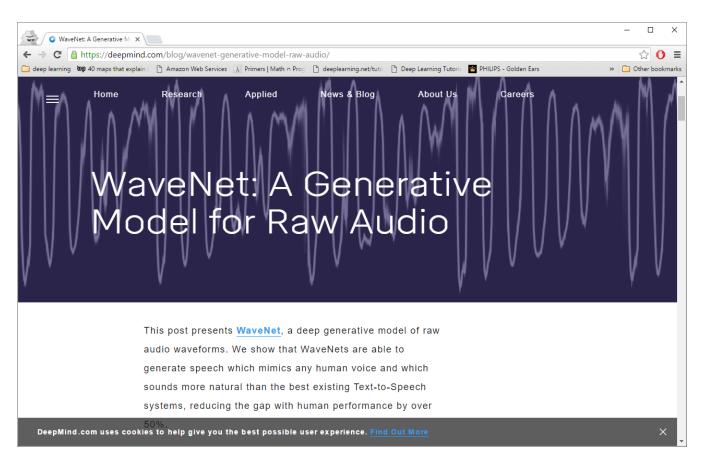
Potential Projects from Alan Black

- 4. Find F0 in story telling
 - F0 is easy to find in isolated sentences
 - What about full paragraphs
 - Storytellers use much wider range
- 5. Find F0 shapes/accent types
 - Use HMM to recognize "types" of accents
 - (trajectory modeling)
 - Following "tilt" and Moeller model

VILSP Machinelasming For Signa Processing Group

Parametric Synthesis

- 6. Better parametric representation of speech
 - Particularly excitation parameterization
- 7. Better Acoustic measures of quality
 - Use Blizzard answers to build/check objective measure
- 8. Statistical Klatt Parametric synthesis
 - Using "knowledge-base" parameters
 - F0, aspiration, nasality, formants
 - Automatically derive Klatt parameters for db
 - Use them for statistical parametric synthesis


MLSP Machinelauming For Signa Processing Group

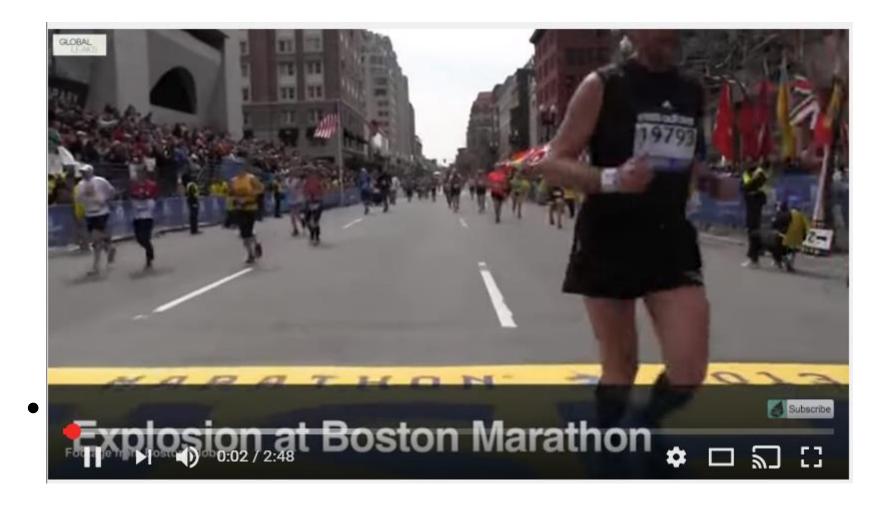
Speech without Text

- 9. Speech processing without written form
 - Derive symbolic form from speech (doneish)
 - Discover "words"/"syllables"
 - Derive speech translation models
- 10. Build a cross linguistic synthesizer
 - · Hindi text in, but speaks in Konkani
- 11. Audio only in target language
 - Speech to speech translation
 - Dialog System

12. Wavenet

- Latest from deepmind
- The biggest advance in speech synthesis this millennium

Wavenet challenge


- Uses RNNs
- Duplicate Wavenet
 - With fewer resources

Other DNN/RNN formalisms

Advisors: A. Black, B. Raj

13. Largescale audio retrieval

About 455.000 results

A challenge

Boston Bombing Day 1 | The Stunning Stop the Killers Made After the Attack

ABC News 🖾

4 months ago • 86,708 views

As chaos, destruction erupts, authorities jumpstart investigation into Boston Marathon bombings. Day 2: http://bit.ly/1XKMH2J [This ...

- Hundreds of people recorded the event and uploaded to YouTube
 - Each of the recordings is recording the exact same sounds
- FBI has one recording
- They want to recover all the other recordings
 - To compose an entire timeline and get evidence

Audio Fingerprinting Challenge

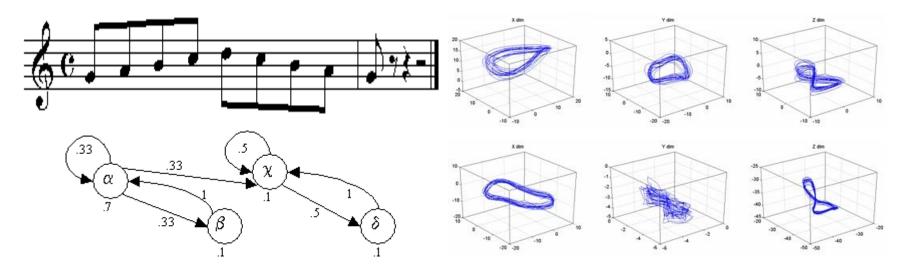
- Given huge collection of multimedia recordings
- Given a snippet of a recording of an event
- Recover all other recordings of exactly the same event
 - Not similar events
 - Recordings may have been taken from different perspectives,
 different locations etc.
 - Video may not match at all
 - Matching video does not indicate identical event
 - Evidence in audio

14. Layout Mapping



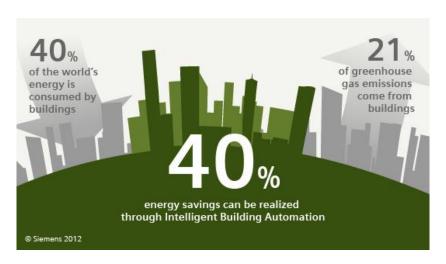
- You walk around these spaces all day, yet you are lost!
- Your phone walks with you.
- Use sensor (accelerometer, other sensors) readings to build up a *layout* of the space and label it

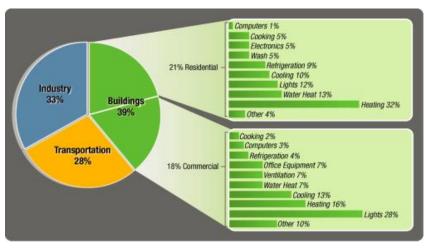
Music Ideas: Roger Dannenberg 15: Finding Chords



 Build a classifier to find all C-major chords in music recordings. Build a collage from the discovered sounds.

16. Computational Creativity


- "Create" music from existing pieces
 - Model ensembles of music through graphical models. Generate new music from the snippets
 - Model music trajectories as low-dimensional trajectories in embedding space.



Ideas from Mario Berges

17. Energy disaggregation

- Energy disaggregation as a binary matrix factorization problem, approximated via deep nets (http://nilmworkshop.org/2016/slides/HenningLange.p
 df)
- Based only on trajectory of current / power levels, disaggregate consumption of individual devices

18. Anomaly detection

- Anomaly detection on whole-building energy consumption data for campus buildings
 - Data sets available

- Determine anomalous events in energy consumption
 - Can be hard to find
 - Could have serious consequences

19. Room Occupancy Traces

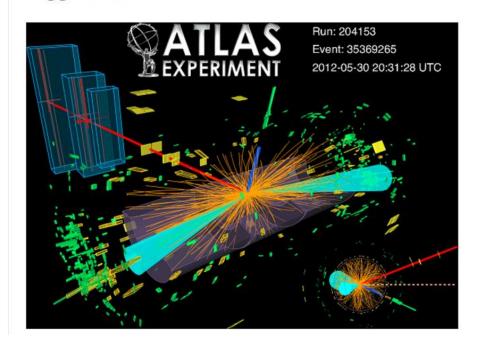
 Analysis of per-room occupancy traces (# of people in every room, every second) for an office building throughout 6 months.

Important to optimize energy consumption

20. Classifying sensor type

- Classifying sensor type from just raw measurement time-series (i.e., is this the time series of temperature measurements, or is it humidity?).
 - See, for example: https://dl.acm.org/citation.cfm?doid=28 21650.2821670

Najim Dehak


21. Signature verification

Is this really X?

Najim Dehak

Use the ATLAS experiment to identify the Higgs boson

22. Higgs Boson Machine Learning Challenge https://www.kaggle.com/c/higgs-boson/data

Machine learning to find properties of the boson

Najim Dehak

- 23. DNNs based on LDA or NCA
- 24. Discriminative training for generative models.
- 25. PLDA, Gaussian classifier for face recognition and speaker verification.

You get the idea

- You may pick any of these problems or come up with a fun one of your own
- They must exercise your MLSP skills
- Please form teams and inform me and TAs of teams asap
 - Or we will assign you to a team
- Please send us project proposals before 25th
 - Try to break down the steps in solving your problem in your proposal
 - Needed to evaluate feasibility