Machine Learning for Signal Processing

Regression and Prediction

Instructor: Bhiksha Raj
A Common Problem

• Can you spot the glitches?
How to fix this problem?

• “Glitches” in audio
 – Must be detected
 – How?

• Then what?

• Glitches must be “fixed”
 – Delete the glitch
 • Results in a “hole”
 – Fill in the hole
 – How?
Interpolation..

- “Extend” the curve on the left to “predict” the values in the “blank” region
 - Forward prediction
- Extend the blue curve on the right leftwards to predict the blank region
 - Backward prediction
- How?
 - Regression analysis..
Detecting the Glitch

- Regression-based reconstruction can be done anywhere
- Reconstructed value will not match actual value
- Large error of reconstruction identifies glitches
What is a regression

• Analyzing relationship between variables
• Expressed in many forms
• Wikipedia
 – Linear regression, Simple regression, Ordinary least squares, Polynomial regression, General linear model, Generalized linear model, Discrete choice, Logistic regression, Multinominal logit, Mixed logit, Probit, Multinomial probit,

• Generally a tool to predict variables
Regressions for prediction

- $y = f(x; \Theta) + e$

- Different possibilities
 - y is a scalar
 - y is real
 - y is categorical (classification)
 - y is a vector
 - x is a vector
 - x is a set of real valued variables
 - x is a set of categorical variables
 - x is a combination of the two
 - $f(.)$ is a linear or affine function
 - $f(.)$ is a non-linear function
 - $f(.)$ is a \textit{time-series} model
A linear regression

• Assumption: relationship between variables is linear
 – A linear *trend* may be found relating *x* and *y*
 – *y* = *dependent* variable
 – *x* = *explanatory* variable
 – Given *x*, *y* can be predicted as an affine function of *x*
An imaginary regression..

- [link](http://pages.cs.wisc.edu/~kovar/hall.html)
- Check this shit out (Fig. 1). That's bonafide, 100%-real data, my friends. I took it myself over the course of two weeks. And this was not a leisurely two weeks, either; I busted my ass day and night in order to provide you with nothing but the best data possible. Now, let's look a bit more closely at this data, remembering that it is absolutely first-rate. Do you see the exponential dependence? I sure don't. I see a bunch of crap.

 Christ, this was such a waste of my time.

 Banking on my hopes that whoever grades this will just look at the pictures, I drew an exponential through my noise. I believe the apparent legitimacy is enhanced by the fact that I used a complicated computer program to make the fit. I understand this is the same process by which the top quark was discovered.
Linear Regressions

• \(y = a^T x + b + e \)
 – \(e \) = prediction error

• Given a “training” set of \(\{ x, y \} \) values: estimate \(a \) and \(b \)
 – \(y_1 = a^T x_1 + b + e_1 \)
 – \(y_2 = a^T x_2 + b + e_2 \)
 – \(y_3 = a^T x_3 + b + e_3 \)
 – …

• If \(a \) and \(b \) are well estimated, prediction error will be small
Linear Regression to a scalar

\[y_1 = a^T x_1 + b + e_1 \]
\[y_2 = a^T x_2 + b + e_2 \]
\[y_3 = a^T x_3 + b + e_3 \]

- Define:
 \[y = [y_1 \ y_2 \ y_3 \ldots] \]
 \[x = \begin{bmatrix} x_1 & x_2 & x_3 & \ldots \end{bmatrix} \]
 \[e = [e_1 \ e_2 \ e_3 \ldots] \]
 \[A = \begin{bmatrix} a \\ b \end{bmatrix} \]

- Rewrite
 \[y = A^T X + e \]
Learning the parameters

\[y = A^T X + e \]

\[\hat{y} = A^T X \] Assuming no error

• Given training data: several \(x, y \)
• Can define a “divergence”: \(D(y, \hat{y}) \)
 – Measures how much \(\hat{y} \) differs from \(y \)
 – Ideally, if the model is accurate this should be small
• Estimate \(a, b \) to minimize \(D(y, \hat{y}) \)
The prediction error as divergence

\[y_1 = a^T x_1 + b + e_1 \]
\[y_2 = a^T x_2 + b + e_2 \]
\[y_3 = a^T x_3 + b + e_3 \]

\[y = a^T X + e = \hat{y} + e \]

\[D(y, \hat{y}) = E = e_1^2 + e_2^2 + e_3^2 + \ldots \]
\[= (y_1 - a^T x_1 - b)^2 + (y_2 - a^T x_2 - b)^2 + (y_3 - a^T x_3 - b)^2 + \ldots \]

\[E = (y - A^T X)(y - A^T X)^T = \|y - A^T X\|^2 \]

- Define divergence as sum of the squared error in predicting \(y \)
Prediction error as divergence

\[y = A^T x + e \]

- \(e \) = prediction error
- Find the “slope” \(a \) such that the total squared length of the error lines is minimized
Solving a linear regression

\[y = A^T X + e \]

- Minimize squared error

\[E = \| y - A^T X \|^2 \]

\[A^T = ypinv(X) \]

\[A = pinv(X)^T y^T \]
More Explicitly

• Minimize squared error

\[E = \| y - X^T A \|^2 = (y - A^T X)(y - A^T X)^T \]

\[= yy^T + A^T XX^T A - 2yX^T A \]

• Differentiating w.r.t \(A \) and equating to 0

\[dE = \left(2A^T XX^T - 2yX^T \right) dA = 0 \]

\[A^T = yX^T (XX^T)^{-1} = ypinv(X) \]

\[A = (XX^T)^{-1} Xy^T \]
Regression in multiple dimensions

- Also called *multiple regression*
- Equivalent of saying:

\[
\begin{align*}
y_1 &= A^T x_1 + b + e_1 \\
y_2 &= A^T x_2 + b + e_2 \\
y_3 &= A^T x_3 + b + e_3
\end{align*}
\]

- Fundamentally no different from N separate single regressions
 - But we can use the relationship between ys to our benefit

\[
y_i = a_i^T x_i + b + e_i
\]

y_i is a vector

\[
y_{ij} = j^{th \text{ component of vector } y_i}
\]

\[
a_i = i^{th \text{ column of } A}
\]

\[
b_j = j^{th \text{ component of } b}
\]

\[
y_{i1} = a_1^T x_i + b_1 + e_{i1} \\
y_{i2} = a_2^T x_i + b_2 + e_{i2} \\
y_{i3} = a_3^T x_i + b_3 + e_{i3}
\]
Multiple Regression

\[Y = [y_1, y_2, y_3, \ldots] \quad X = \begin{bmatrix} x_1 & x_2 & x_3 & \ldots \\ 1 & 1 & 1 & \ldots \end{bmatrix} \quad \hat{A} = \begin{bmatrix} A \\ b \end{bmatrix} \]

\[E = [e_1, e_2, e_3, \ldots] \]

\[Y = \hat{A}^T X + E \]

\[DIV = \sum_i \left\| y_i - \hat{A}^T \bar{x}_i \right\|^2 \]

• Minimizing

\[\hat{A}^T = Y pinv(X) = YY^T \left(XX^T \right)^{-1} \]

\[\hat{A} = \left(XX^T \right)^{-1} XY^T \]
A Different Perspective

• y is a noisy reading of $A^T x$

$$y = A^T x + e$$

• Error e is Gaussian

$$e \sim N(0, \sigma^2 I)$$

• Estimate A from

$$Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N]$$
The **Likelihood** of the data

\[y = A^T x + e \quad e \sim N(0, \sigma^2 I) \]

- Probability of observing a specific \(y \), given \(x \), for a particular matrix \(A \)

\[P(y \mid x; A) = N(y; A^T x, \sigma^2 I) \]

- Probability of collection: \(\Lambda = [\lambda^1 \lambda^5 \ldots \lambda^N] \quad X = [x^1 x^5 \ldots x^N] \)

\[P(Y \mid X; A) = \prod_i N(y_i; A^T x_i, \sigma^2 I) \]

- Assuming IID for convenience (not necessary)
A Maximum Likelihood Estimate

\[y = A^T x + e \quad e \sim N(0, \sigma^2 I) \quad Y = [y_1, y_2 \ldots y_N] \quad X = [x_1, x_2 \ldots x_N] \]

\[P(Y | X) = \prod_i \frac{1}{\sqrt{(2\pi\sigma^2)^D}} \exp \left(\frac{-1}{2\sigma^2} \| y_i - A^T x_i \|^2 \right) \]

\[\log P(Y | X; A) = C - \sum_i \frac{1}{2\sigma^2} \| y_i - A^T x_i \|^2 \]

- Maximizing the log probability is identical to minimizing the error
 - Identical to the least squares solution

\[A^T = YX^T (XX^T)^{-1} = Y \text{pinv}(X) \quad A = (XX^T)^{-1} XY^T \]
Predicting an output

• From a collection of training data, have learned A
• Given x for a new instance, but not y, what is y?
• Simple solution: $\hat{y} = A^T X$
Applying it to our problem

• Prediction by regression

• Forward regression

• $x_t = a_1 x_{t-1} + a_2 x_{t-2} \ldots a_k x_{t-k} + e_t$

• Backward regression

• $x_t = b_1 x_{t+1} + b_2 x_{t+2} \ldots b_k x_{t+k} + e_t$
Applying it to our problem

- Forward prediction

\[
\begin{bmatrix}
 x_t \\
 x_{t-1} \\
 \vdots \\
 x_{K+1}
\end{bmatrix}
= \begin{bmatrix}
 x_{t-1} & x_{t-2} & \cdots & x_{t-K} \\
 x_{t-2} & x_{t-3} & \cdots & x_{t-K-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_K & x_{K-1} & \cdots & x_1
\end{bmatrix}
\begin{bmatrix}
 a_t \\
 e_t \\
 e_{t-1} \\
 \vdots \\
 e_{K+1}
\end{bmatrix}
\]

\[x = Xa_t + e\]

\[pinv(X)x = a_t\]
Applying it to our problem

- Backward prediction

\[
\begin{bmatrix}
 x_{t-K-1} \\
 x_{t-K-2} \\
 \vdots \\
 x_{1}
\end{bmatrix}
= \begin{bmatrix}
 x_t & x_{t-1} & \ldots & x_{t-K} \\
 x_{t-1} & x_{t-2} & \ldots & x_{t-K-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{K+1} & x_K & \ldots & x_2
\end{bmatrix} \mathbf{b}_t + \begin{bmatrix}
 e_{t-K-1} \\
 e_{t-K-2} \\
 \vdots \\
 e_1
\end{bmatrix}
\]

\[
\bar{x} = \bar{X} \mathbf{b}_t + \mathbf{e}
\]

\[
pinv(\bar{X})\bar{x} = \mathbf{b}_t
\]
Finding the burst

• At each time
 – Learn a “forward” predictor a_t
 – At each time, predict next sample $x_{t}^{est} = \sum_i a_{t,k} x_{t-k}$
 – Compute error: $ferr_t = |x_t - x_{t}^{est}|^2$
 – Learn a “backward” predict and compute backward error
 • $berr_t$
 – Compute average prediction error over window, threshold
 – If the error exceeds a threshold, identify burst
Filling the hole

- Learn “forward” predictor at left edge of “hole”
 - For each missing sample
 - At each time, predict next sample $x_t^{\text{est}} = \sum_i a_{t,k} x_{t-k}$
 - Use estimated samples if real samples are not available
- Learn “backward” predictor at left edge of “hole”
 - For each missing sample
 - At each time, predict next sample $x_t^{\text{est}} = \sum_i b_{t,k} x_{t+k}$
 - Use estimated samples if real samples are not available
- Average forward and backward predictions
Reconstruction zoom in

Reconstruction area

Next glitch

Distorted signal

Recovered signal

Interpolation result

Actual data
Incrementally learning the regression

\[A = (XX^T)^{-1} XY^T \]

- Can we learn \(A \) incrementally instead?
 - As data comes in?

- The Widrow Hoff rule

\[a^{t+1} = a^t + \eta(y_t - \hat{y}_t)x_t \quad \hat{y}_t = (a^t)^T x_t \]

- Note the structure
 - Can also be done in batch mode!

Requires knowledge of \(all \ (x, y) \) pairs
Predicting a value

\[A = \left(XX^T\right)^{-1}XY^T \]

\[\hat{y} = A^T x = YX^T \left(XX^T\right)^{-1}x \]

- What are we doing exactly?
 - For the explanation we are assuming no “\(b\)” (\(X\) is 0 mean)
 - Explanation generalizes easily even otherwise

\[C = XX^T \]

- Let \(\hat{x} = C^{-\frac{1}{2}}x \) and \(\hat{X} = C^{-\frac{1}{2}}X \)
- Whitening \(x \)
- \(N^{-0.5} C^{-0.5} \) is the whitening matrix for \(x \)

\[\hat{y} = YX^T C^{-\frac{1}{2}}C^{-\frac{1}{2}}x = Y\hat{X}^T \hat{x}_i \]
Predicting a value

\[\hat{y} = Y \hat{X}^T \hat{x} = \sum_i y_i \hat{x}_i \hat{x} \]

\[\hat{y} = Y \hat{X}^T \hat{x} = \frac{1}{N} \left[y_1 \quad \ldots \quad y_N \right] \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} \hat{x} = \sum_i y_i \left(\hat{x}_i \hat{x} \right) \]

- What are we doing exactly?
Predicting a value

\[\hat{y} = \sum_{i} y_i (x_i^T \hat{x}) \]

- Given training instances \((x_i, y_i)\) for \(i = 1..N\), estimate \(y\) for a new test instance of \(x\) with unknown \(y\):
- \(y\) is simply a \textit{weighted sum of the} \(y_i\) \textit{instances from the training data}
- The weight of any \(y_i\) is simply the inner product between its corresponding \(x_i\) and the new \(x\)
 - With due whitening and scaling..
What are we doing: A different perspective

\[\hat{y} = A^T x = YX^T \left(XX^T \right)^{-1} x \]

- Assumes \(XX^T \) is invertible
- What if it is not
 - Dimensionality of \(X \) is greater than number of observations?
 - Underdetermined
- In this case \(X^TX \) will generally be invertible

\[A = X \left(X^T X \right)^{-1} Y^T \]
\[\hat{y} = Y \left(X^T X \right)^{-1} X^T x \]
High-dimensional regression

\[\hat{y} = Y(X^T X)^{-1} X^T x \]

- $X^T X$ is the “Gram Matrix”

\[
G = \begin{bmatrix}
 x_1^T x_1 & x_1^T x_2 & \cdots & x_1^T x_N \\
 x_2^T x_1 & x_2^T x_2 & \cdots & x_2^T x_N \\
 \vdots & \vdots & \ddots & \vdots \\
 x_N^T x_1 & x_N^T x_2 & \cdots & x_N^T x_N \\
\end{bmatrix}
\]

\[\hat{y} = YG^{-1}X^T x \]
High-dimensional regression

\[\hat{y} = YG^{-1}X^T x \]

• Normalize \(Y \) by the inverse of the gram matrix

\[\bar{Y} = YG^{-1} \]

• Working our way down..

\[\hat{y} = \bar{Y}X^T x \]

\[\hat{y} = \sum \bar{y}_i x_i^T x \]
Linear Regression in High-dimensional Spaces

\[\hat{y} = \sum_{i} \bar{y}_i x_i^T x \]

\[\bar{Y} = YG^{-1} \]

• Given training instances \((x_i, y_i)\) for \(i = 1..N\), estimate \(y\) for a new test instance of \(x\) with unknown \(y\):

• \(y\) is simply a *weighted sum of the normalized \(y_i\) instances from the training data*
 – The normalization is done via the Gram Matrix

• The weight of any \(y_i\) is simply the inner product between its corresponding \(x_i\) and the new \(x\)
Relationships are not always linear

- How do we model these?
- Multiple solutions
Non-linear regression

- \(y = \Lambda \varphi(x) + e \)

\[x \rightarrow \varphi(x) = [\varphi_1(x) \ \varphi_2(x) \ldots \varphi_N(x)] \]

\[X \rightarrow \Phi(X) = [\varphi(x_1) \ \varphi(x_2) \ldots \varphi(x_K)] \]

- \(Y = \Lambda \Phi(X) + e \)
- Replace \(X \) with \(\Phi(X) \) in earlier equations for solution

\[\Lambda = \left(\Phi(X)\Phi(X)^T\right)^{-1} \Phi(X)Y^T \]
Problem

- \(Y = A \Phi(X) + e \)
- Replace \(X \) with \(\Phi(X) \) in earlier equations for solution

\[
A = \left(\Phi(X) \Phi(X)^T \right)^{-1} \Phi(X) Y^T
\]

- \(\Phi(X) \) may be in a very high-dimensional space
- The high-dimensional space (or the transform \(\Phi(X) \)) may be unknown.
The regression is in high dimensions

- **Linear regression:**
 \[\hat{y} = \sum_i \bar{y}_i x_i^T x \]
 \[\bar{Y} = YG^{-1} \]

- **High-dimensional regression**
 \[
 G = \begin{bmatrix}
 \Phi(x_1)^T \Phi(x_1) & \Phi(x_2)^T \Phi(x_2) & \cdots & \Phi(x_1)^T \Phi(x_N) \\
 \Phi(x_2)^T \Phi(x_1) & \Phi(x_2)^T \Phi(x_2) & \cdots & \Phi(x_2)^T \Phi(x_N) \\
 \vdots & \vdots & \ddots & \vdots \\
 \Phi(x_1)^T \Phi(x_1) & \Phi(x_N)^T \Phi(x_2) & \cdots & \Phi(x_N)^T \Phi(x_N)
 \end{bmatrix}
 \]

 \[\bar{Y} = YG^{-1} \]
 \[\hat{y} = \sum_i \bar{y}_i \Phi(x_i)^T \Phi(x) \]
Doing it with Kernels

• **High-dimensional regression with Kernels:**

\[
K(x, y) = \Phi(x)^T \Phi(y)
\]

\[
G = \begin{bmatrix}
K(x_1, x_1) & K(x_1, x_1) & \ldots & K(x_1, x_N) \\
K(x_2, x_1) & K(x_2, x_2) & \ldots & K(x_2, x_N) \\
\vdots & \vdots & \ddots & \vdots \\
K(x_N, x_1) & K(x_N, x_2) & \ldots & K(x_N, x_N)
\end{bmatrix}
\]

• Regression in Kernel Hilbert Space..

\[
\bar{Y} = YG^{-1}
\]

\[
\hat{y} = \sum_i \bar{y}_i K(x_i, x)
\]
A different way of finding nonlinear relationships: Locally linear regression

• Previous discussion: Regression parameters are optimized over the entire training set

• Minimize

\[E = \sum_{all \ i} \left| y_i - A^T x_i - b \right|^2 \]

• Single global regression is estimated and applied to all future \(x \)

• Alternative: Local regression

• *Learn a regression that is specific to \(x \)*
Being non-committal: Local Regression

• Estimate the regression to be applied to any x using training instances near x

$$E = \sum_{x_j \in \text{neighborhood}(x)} \left\| y_i - A^T x_i - b \right\|^2$$

• The resultant regression has the form

$$y = \sum_{x_j \in \text{neighborhood}(x)} d(x, x_j) y_j + e$$

– Note: this regression is specific to x
 • A separate regression must be learned for every x
Local Regression

\[y = \sum_{x_j \in \text{neighborhood}(d(x))} d(x, x_j)y_j + e \]

- But what is \(d()\)?
 - For linear regression \(d()\) is an inner product
- More generic form: Choose \(d()\) as a function of the distance between \(x\) and \(x_j\)
- If \(d()\) falls off rapidly with |\(x\) and \(x_j|\) the “neighborhood” requirement can be relaxed

\[y = \sum_{all} d(x, x_j)y_j + e \]
Kernel Regression: \(d() = K() \)

\[
\hat{y} = \frac{\sum K_h(x - x_i)y_i}{\sum K_h(x - x_i)}
\]

- Typical Kernel functions: Gaussian, Laplacian, other density functions
 - Must fall off rapidly with increasing distance between \(x \) and \(x_j \)
- Regression is \textit{local} to every \(x \): Local regression
- Actually a non-parametric MAP estimator of \(y \)
 - But first.. MAP estimators,
Map Estimators

• MAP (Maximum A Posteriori): Find a “best guess” for y (statistically), given known x

$$y = \arg\max_y P(Y|x)$$

• ML (Maximum Likelihood): Find that value of y for which the statistical best guess of x would have been the observed x

$$y = \arg\max_y P(x|Y)$$

• MAP is simpler to visualize
MAP estimation: Gaussian PDF

Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.
Learning the parameters of the Gaussian

\[\mathbf{z} = \begin{bmatrix} y \\ x \end{bmatrix} \]

\[
\mu_z = \frac{1}{N} \sum_{i=1}^{N} \mathbf{z}_i
\]

\[
C_z = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \mu_z)(\mathbf{z}_i - \mu_z)^T
\]

\[
\mu_z = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix}
\]

\[
C_z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix}
\]
Learning the parameters of the Gaussian

\[\mu_z = \frac{1}{N} \sum_{i=1}^{N} z_i \]

\[\mu_z = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix} \]

\[C_z = \frac{1}{N} \sum_{i=1}^{N} (z_i - \mu_z)(z_i - \mu_z)^T \]

\[C_z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \]

\[\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[C_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)^T \]

\[z = \begin{bmatrix} y \\ x \end{bmatrix} \]
MAP estimation: Gaussian PDF

Assume X and Y are jointly Gaussian

The parameters of the Gaussian are learned from training data.
Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.

Now we are given an X, but no Y. What is Y?

Level set of Gaussian X_0
MAP estimator for Gaussian RV
MAP estimation: Gaussian PDF
MAP estimation: The Gaussian at a particular value of X
MAP estimation: The Gaussian at a particular value of X

Most likely value
MAP Estimation of a Gaussian RV

\[Y = \arg \max_y P(y|X) \]
MAP Estimation of a Gaussian RV
MAP Estimation of a Gaussian RV

\[Y = \arg\max_y P(y \mid X) \]
So what is this value?

- Clearly a line
- Equation of Line:

\[
\hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x)
\]

- Scalar version given; vector version is identical

\[
\hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x)
\]

- Derivation? Later in the program a bit
 - Note the similarity to regression
This is a *multiple* regression

\[\hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x) \]

- This is the MAP estimate of \(y \)
 - \(y = \arg\max_Y P(Y|x) \)

- What about the ML estimate of \(y \)
 - \(\arg\max_Y P(x|Y) \)

- Note: Neither of these may be the *regression* line!
 - MAP estimation of \(y \) is the regression on \(Y \) for Gaussian RVs
 - *But this is not the MAP estimation of the regression parameter*
A Closer Look

\[\hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x) \]

- Assuming 0 mean for simplicity

\[\hat{y} = C_{YX} C_{XX}^{-1} x \]
\[\hat{y} = YX^T C_{XX}^{-1} x \]
\[\hat{y} = Y \hat{X}^T \hat{x} \]

A familiar equation

- Linear regression actually gives you an MAP estimate under Gaussian assumption
Its also a minimum-mean-squared error estimate

- General principle of MMSE estimation:
 - y is unknown, x is known
 - Must estimate it such that the expected squared error is minimized

 $Err = E[\|y - \hat{y}\|^2 | x]$

- Minimize above term
Its also a **minimum-mean-squared error** estimate

- Minimize error:

\[
Err = E[\|y - \hat{y}\|^2 | x] = E[(y - \hat{y})^T(y - \hat{y}) | x]
\]

\[
Err = E[y^T y + \hat{y}^T \hat{y} - 2\hat{y}^T y | x] = E[y^T y | x] + \hat{y}^T \hat{y} - 2\hat{y}^T E[y | x]
\]

- Differentiating and equating to 0:

\[
d.Err = 2\hat{y}^T d\hat{y} - 2E[y | x]^T d\hat{y} = 0
\]

\[
\hat{y} = E[y | x]
\]

The MMSE estimate is the mean of the distribution
For the Gaussian: \(\text{MAP} = \text{MMSE} \)

- Most likely value is also the mean value.
- Would be true of any symmetric distribution.
MMSE estimates for mixture distributions

Let $P(y|x)$ be a mixture density

The MMSE estimate of y is given by

$$E[y|x] = \int y \sum_k P(k)P(y|k,x) dy = \sum_k P(k) \int yP(y|k,x)dy = \sum_k P(k)E[y|k,x]$$

Just a weighted combination of the MMSE estimates from the component distributions
MMSE estimates from a Gaussian mixture

- Let $P(x,y)$ be a Gaussian Mixture

\[
\begin{pmatrix} y \\ x \end{pmatrix} = \sum_k P(k)N(z; \mu_k, \Sigma_k)
\]

- $P(y|x)$ is also a Gaussian mixture

\[
P(y | x) = \frac{P(x,y)}{P(x)} = \frac{\sum_k P(k,x,y)}{P(x)} = \frac{\sum_k P(x)P(k | x)P(y | x, k)}{P(x)}
\]

\[
P(y | x) = \sum_k P(k | x)P(y | x, k)
\]
MMSE estimates from a Gaussian mixture

Let \(P(y|x) \) is a Gaussian Mixture

\[
P(y \mid x) = \sum_{k} P(k \mid x) P(y \mid x, k)
\]

\[
P(y, x, k) = N([y; x]; [\mu_{k,y}; \mu_{k,x}], \begin{bmatrix} C_{k,yy} & C_{k,yx} \\ C_{k,xy} & C_{k,xx} \end{bmatrix})
\]

\[
P(y \mid x, k) = N(y; \mu_{k,y} + C_{k,yx} C_{k,xx}^{-1} (x - \mu_{k,x}), \Theta)
\]

\[
P(y \mid x) = \sum_{k} P(k \mid x) N(y; \mu_{k,y} + C_{k,yx} C_{k,xx}^{-1} (x - \mu_{k,x}), \Theta)
\]
MMSE estimates from a Gaussian mixture

\[P(y \mid x) = \sum_k P(k \mid x)N(y; \mu_{k,y} + C_{k,yx} C_{k,xx}^{-1} (x - \mu_{k,x}), \Theta) \]

- \(P(y\mid x) \) is a mixture Gaussian density
- \(E[y\mid x] \) is also a mixture

\[E[y \mid x] = \sum_k P(k \mid x)E[y \mid k, x] \]

\[E[y \mid x] = \sum_k P(k \mid x)\left(\mu_{k,y} + C_{k,yx} C_{k,xx}^{-1} (x - \mu_{k,x})\right) \]
MMSE estimates from a Gaussian mixture

- A mixture of estimates from individual Gaussians
Voice Morphing

- **Align training recordings from both speakers**
 - Cepstral vector sequence
- Learn a GMM on joint vectors
- Given speech from one speaker, find MMSE estimate of the other
- **Synthesize from cepstra**
MMSE with GMM: Voice Transformation

- Festvox GMM transformation suite (Toda)

<table>
<thead>
<tr>
<th></th>
<th>awb</th>
<th>bdl</th>
<th>jmk</th>
<th>slt</th>
</tr>
</thead>
<tbody>
<tr>
<td>awb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jmk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A problem with regressions

- ML fit is sensitive
 - Error is squared
 - Small variations in data \rightarrow large variations in weights
 - Outliers affect it adversely
- Unstable
 - If dimension of X \geq no. of instances
 - (XX^T) is not invertible

$$A = (XX^T)^{-1} XY^T$$
MAP estimation of weights

- Assume weights drawn from a Gaussian
 \[P(a) = N(0, \sigma^2 I) \]
- Max. Likelihood estimate
 \[\hat{a} = \arg \max_a \log P(y \mid X; a) \]
- Maximum \textit{a posteriori} estimate
 \[\hat{a} = \arg \max_a \log P(a \mid y, X) = \arg \max_a \log P(y \mid X, a)P(a) \]
MAP estimation of weights

\[\hat{a} = \arg \max_A \log P(a \mid y, X) = \arg \max_A \log P(y \mid X, a) P(a) \]

- \(P(a) = N(0, \sigma^2 I) \)
- \(\log P(a) = C - \log \sigma - 0.5\sigma^{-2} \|a\|^2 \)

\[
\log P(y \mid X, a) = C - \frac{1}{2\sigma^2} (y - a^T X)^T (y - a^T X)^T
\]

\[\hat{a} = \arg \max_A C' - \log \sigma - \frac{1}{2\sigma^2} (y - a^T X)^T (y - a^T X)^T - 0.5\sigma^2 a^T a \]

- Similar to ML estimate with an additional term
MAP estimate of weights

\[dL = \left(2a^TXX^T + 2yX^T + 2\sigma I\right)da = 0 \]

\[a = (XX^T + \sigma I)^{-1}XY^T \]

- Equivalent to *diagonal loading* of correlation matrix
 - Improves condition number of correlation matrix
 - Can be inverted with greater stability
 - Will not affect the estimation from well-conditioned data
 - Also called Tikhonov Regularization
 - Dual form: Ridge regression

- **MAP estimate of weights**
 - Not to be confused with MAP estimate of Y
MAP estimate priors

- Left: Gaussian Prior on W
- Right: Laplacian Prior
MAP estimation of weights with Laplacian prior

• Assume weights drawn from a Laplacian
 \[P(a) = \lambda^{-1} \exp(-\lambda^{-1}|a|_1) \]

• Maximum a posteriori estimate

\[\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1}|a|_1 \]

• No closed form solution
 – Quadratic programming solution required
 • Non-trivial
MAP estimation of weights with Laplacian prior

• Assume weights drawn from a Laplacian

 \[P(a) = \lambda^{-1}\exp(-\lambda^{-1}|a|_1) \]

• Maximum a posteriori estimate

\[
\hat{a} = \arg\max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1}|a|_1
\]

• Identical to L_1 regularized least-squares estimation
\(\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1} |a|_1 \)

- No closed form solution
 - Quadratic programming solutions required

- Dual formulation

\[
\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T \quad \text{subject to} \quad |a|_1 \leq t
\]

- “LASSO” – Least absolute shrinkage and selection operator
LASSO Algorithms

• Various convex optimization algorithms

• LARS: Least angle regression

• Pathwise coordinate descent..

• Matlab code available from web
Regularized least squares

- Regularization results in selection of suboptimal (in least-squares sense) solution
 - One of the loci outside center
- Tikhonov regularization selects shortest solution
- L_1 regularization selects sparsest solution

Image Credit: Tibshirani
LASSO and Compressive Sensing

- Given Y and X, estimate sparse a
- LASSO:
 - X = explanatory variable
 - Y = dependent variable
 - a = weights of regression
- CS:
 - X = measurement matrix
 - Y = measurement
 - a = data
An interesting problem: Predicting War!

• Economists measure a number of social indicators for countries weekly
 – Happiness index
 – Hunger index
 – Freedom index
 – Twitter records
 – ...

• Question: Will there be a revolution or war next week?
An interesting problem: Predicting War!

• Issues:
 – Dissatisfaction builds up – not an instantaneous phenomenon
 • Usually
 – War / rebellion build up much faster
 • Often in hours

• Important to predict
 – Preparedness for security
 – Economic impact
Predicting War

Given

- Sequence of economic indicators for each week
- Sequence of unrest markers for each week
 - At the end of each week we know if war happened or not that week
- Predict probability of unrest next week
 - This could be a new unrest or persistence of a current one
Predicting Time Series

• Need \textit{time-series models}

• HMMs – later in the course