Machine Learning for Signal Processing

Data driven representations:

1. Eigenfaces and Eigenrepresentations

Class 5. 15 Sep 2015

Instructor: Bhiksha Raj
Recall: Representing images

• The most common element in the image: background
 – Or rather large regions of relatively featureless shading
 – Uniform sequences of numbers
Adding more bases

- Checkerboards with different variations

\[\text{Image} \approx w_1B_1 + w_2B_2 + w_3B_3 + \ldots \]

\[
W = \begin{bmatrix}
w_1 \\
w_2 \\
w_3 \\
\vdots
\end{bmatrix}
\quad B = [B_1 \ B_2 \ B_3]
\]

\[BW \approx \text{Image} \]

\[W = \text{pinv}(B) \text{Image} \]

\[\text{PROJECTION} = BW \]

Getting closer at 625 bases!
“Bases”

- “Bases” are the “standard” units such that all instances can be expressed as a weighted combination of these units.
- Ideal requirements: Bases must be orthogonal.
- Checkerboards are one choice of bases:
 - Orthogonal
 - But not “smooth”
- Other choices of bases: Complex exponentials, Wavelets, etc..

\[\text{image} \approx w_1B_1 + w_2B_2 + w_3B_3 + \ldots \]
Data specific bases?

• **Issue:** The bases we have considered so far are *data agnostic*
 – Checkerboards, Complex exponentials, Wavelets..
 – We use the same bases regardless of the data we analyze
 • Image of face vs. Image of a forest
 • Segment of speech vs. Seismic rumble

• How about data specific bases
 – Bases that consider the underlying data
 • E.g. is there something better than checkerboards to describe faces
 • Something better than complex exponentials to describe music?
The Energy Compaction Property

• Define “better”?

• The description

\[X = w_1 B_1 + w_2 B_2 + w_3 B_3 + ... + w_N B_N \]

• The ideal:

\[\hat{X}_i \approx w_1 B_1 + w_2 B_2 + ... + w_i B_i \quad \text{Error}_i = \left\| X - \hat{X}_i \right\|^2 \]

\[\text{Error}_i < \text{Error}_{i-1} \]

– If the description is terminated at any point, we should still get most of the information about the data

• Error should be small
Data-specific description of faces

• A collection of images
 – All normalized to 100x100 pixels
• What is common among all of them?
 – Do we have a common descriptor?
A typical face

- Assumption: There is a “typical” face that captures most of what is common to all faces
 - Every face can be represented by a scaled version of a typical face
 - We will denote this face as V
- Approximate every face f as $f = w_f V$
- Estimate V to minimize the squared error
 - How? What is V?
A collection of least squares typical faces

- Assumption: There are a set of K “typical” faces that captures most of all faces

- Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + .. + w_{f,k} V_k$
 - V_2 is used to “correct” errors resulting from using only V_1. So on average
 $$\|f - (w_{f,1} V_{f,1} + w_{f,2} V_{f,2})\|^2 < \|f - w_{f,1} V_{f,1}\|^2$$
 - V_3 corrects errors remaining after correction with V_2
 $$\|f - (w_{f,1} V_{f,1} + w_{f,2} V_{f,2} + w_{f,3} V_{f,3})\|^2 < \|f - (w_{f,1} V_{f,1} + w_{f,2} V_{f,2})\|^2$$
 - And so on..
 - $V = [V_1 \ V_2 \ V_3]$

- Estimate V to minimize the squared error
 - How? What is V?
A recollection

M =

\[U = \text{S} = \text{pinv}(\text{N}) \text{M} \]

\[\text{U} = \text{NS} \approx \text{M} \]

N =

• Finding the best explanation of music \(M \) in terms of notes \(N \)
• Also finds the score \(S \) of \(M \) in terms of \(N \)
How about the other way?

\[M = \]

\[S = \]

\[N = M \text{ Pinv}(S) \]

\[U = N S \approx M \]

\[N = M \text{ pinv}(S) \]

- Finding the *notes* \(N \) given music \(M \) and score \(S \)
- Also finds best explanation of \(M \) in terms of \(S \)
Find the four notes and their score that generate the closest approximation to M
The same problem

\[F = \begin{align*} \end{align*} \]

Typical faces

\[W \]

\[U = \text{Approximation} \]

- Here V, W and U are ALL unknown and must be determined
 - Such that the squared error between U and F is minimum

- For each face
 - \[f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + \ldots + w_{f,K} V_K \]

- For the collection of faces: \[F \approx V W \]
 - \(V \) is \(D \times K \) and \(W \) is \(K \times N \)
 - \(D \) is the no. of pixels, \(N \), is the no. of faces in the set
Abstracting the problem:
Finding the *FIRST* typical face

- Each “point” represents a face in “pixel space”
Abstracting the problem:
Finding the *FIRST* typical face

- Each “point” represents a face in “pixel space”
- Any “typical face” \mathbf{V} is a vector in this space
Abstracting the problem:
Finding the \textit{FIRST} typical face

- Each “point” represents a face in “pixel space”
- The “typical face” V is a vector in this space
- The \textit{approximation} $w_f V$ for any face f is the \textit{projection} of f onto V
- The distance between f and its projection $w_f V$ is the \textit{projection error} for f
Abstracting the problem:
Finding the **FIRST** typical face

- Every face in our data will suffer error when approximated by its projection on V
- The total squared length of all error lines is the *total squared projection error*
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1: Find the V for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
Abstracting the problem: Finding the *FIRST* typical face

• The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
• This “minimum squared error” V is our “best” first typical face
• *It is also the first* *Eigen face*
Formalizing the Problem: Error from approximating a single vector

• Consider: approximating $x = wv$
 – E.g x is a face, and “v” is the “typical face”

• Finding an approximation wv which is closest to x
 – In a Euclidean sense
 – Basically projecting x onto v
Formalizing the Problem: Error from approximating a single vector

- Projection of a vector \mathbf{x} on to a vector \mathbf{v}
 \[
 \hat{\mathbf{x}} = \mathbf{v} \frac{\mathbf{v}^T \mathbf{x}}{|\mathbf{v}|^2}
 \]
- Assuming \mathbf{v} is of unit length:
 \[
 \hat{\mathbf{x}} = \mathbf{v} \mathbf{v}^T \mathbf{x}
 \]

\[
error = \mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x}
\]

Squared error:
\[
\text{squared error} = \left\| \mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x} \right\|^2
\]
Error from approximating a single vector

- Minimum squared approximation error from approximating \(x \) as it as \(wv \)

\[
e(x) = \left\| x - vv^T x \right\|^2
\]

- Optimal value of \(w \): \(w = v^T x \)
Error from approximating a single vector

- Error from projecting a vector \(\mathbf{x} \) onto a unit vector \(\mathbf{v} \)

\[
\begin{align*}
e(\mathbf{x}) &= \left\| \mathbf{x} - \mathbf{w}^T \mathbf{x} \right\|^2 \\
&= (\mathbf{x} - \mathbf{w}^T \mathbf{x})^T (\mathbf{x} - \mathbf{w}^T \mathbf{x}) \\
&= (\mathbf{x}^T - \mathbf{x}^T \mathbf{w}^T)(\mathbf{x} - \mathbf{w}^T \mathbf{x}) \\
&= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{w}^T \mathbf{w}^T \mathbf{x} \\
&= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{w}^T \mathbf{w} \mathbf{w}^T \mathbf{x}
\end{align*}
\]
Error from approximating a single vector

• Error from projecting a vector \mathbf{x} onto a vector onto a unit vector \mathbf{v}

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{v}^T \mathbf{x} \right\|^2$$

$$e(\mathbf{x}) = \left(\mathbf{x} - \mathbf{v}^T \mathbf{x} \right)^T \left(\mathbf{x} - \mathbf{v}^T \mathbf{x} \right) = \left(\mathbf{x}^T - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \right) \left(\mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x} \right)$$

$$= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$

$$= 1$$
Error from approximating a single vector

- Error from projecting a vector \(x \) on to a vector onto a unit vector \(v \)

\[
e(x) = \left(x - v v^T x \right)^T \left(x - v v^T x \right) = \left(x^T - x^T v v^T \right) \left(x - v v^T x \right)
\]

\[
= x^T x - x^T v v^T x - x^T v v^T x + x^T v v^T x
\]

\[
e(x) = x^T x - x^T v v^T x
\]
Error from approximating a single vector

This is the very familiar Pythagoras’ theorem!!

\[e(x) = x^T x - x^T v v^T x \]

Length of projection
Error for many vectors

• Error for one vector: \(e(x) = x^T x - x^T \mathbf{w} \mathbf{w}^T x \)

• Error for many vectors

\[
E = \sum_i e(x_i) = \sum_i (x_i^T x_i - x_i^T \mathbf{w} \mathbf{w}^T x_i) = \sum_i x_i^T x_i - \sum_i x_i^T \mathbf{w} \mathbf{w}^T x_i
\]

• Goal: Estimate \(\mathbf{v} \) to minimize this error!
Error for many vectors

• Total error:

\[E = \sum_{i} x_i^T x_i - \sum_{i} x_i^T v v^T x_i \]

• Add constraint: \(v^T v = 1 \)

• Constrained objective to minimize:

\[E = \sum_{i} x_i^T x_i - \sum_{i} x_i^T v v^T x_i + \lambda (v^T v - 1) \]
Two Matrix Identities

• Derivative w.r.t \mathbf{v}

$$
\frac{d\mathbf{v}^T \mathbf{v}}{d\mathbf{v}} = 2\mathbf{v}
$$

$$
\frac{d\mathbf{x}^T \mathbf{w}^T \mathbf{x}}{d\mathbf{v}} = \frac{d\mathbf{v}^T \mathbf{x} \mathbf{x}^T \mathbf{v}}{d\mathbf{v}} = 2\mathbf{x} \mathbf{x}^T \mathbf{v}
$$

$$
E = \sum_i x_i^T x_i - \sum_i x_i^T \mathbf{w}^T \mathbf{x}_i + \lambda (\mathbf{v}^T \mathbf{v} - 1)
$$
Minimizing error

\[E = \sum_i x_i^T x_i - \sum_i x_i^T \mathbf{w}^T x_i + \lambda (\mathbf{v}^T \mathbf{v} - 1) \]

• Differentiating w.r.t \(\mathbf{v} \) and equating to 0

\[-2 \sum_i x_i x_i^T \mathbf{v} + 2 \lambda \mathbf{v} = 0\]

\[\left(\sum_i x_i x_i^T \right) \mathbf{v} = \lambda \mathbf{v} \]
The correlation matrix

\[\sum_{i} x_i x_i^T \mathbf{v} = \lambda \mathbf{v} \]

- The encircled term is the correlation matrix

\[\mathbf{X} = \begin{bmatrix} x_1 & x_2 & \ldots & x_N \end{bmatrix} \]

\[\mathbf{X}^T = \text{Transposed Data Matrix} \]

\[\mathbf{X}^T = \text{Data Matrix} \]

\[\sum_{i} x_i x_i^T = \mathbf{X} \mathbf{X}^T = \mathbf{R} \]

\[\mathbf{X} \text{ = Data Matrix} \]

\[\mathbf{X}^T \text{ = Transposed Data Matrix} \]

\[\text{Correlation} \]
The best “basis”

• The minimum-error basis is found by solving

\[\mathbf{Rv} = \lambda \mathbf{v} \]

• \(\mathbf{v} \) is an Eigen vector of the correlation matrix \(\mathbf{R} \)
 – \(\lambda \) is the corresponding Eigen value
What about the total error?

\[E = \sum_{i} x_i^T x_i - \sum_{i} v^T x_i x_i^T v \]

- \(x^T v = v^T x \) (inner product)

\[= \sum_{i} x_i^T x_i - v^T \left(\sum_{i} x_i x_i^T \right) v \]

\[E = \sum_{i} x_i^T x_i - v^T R v = \sum_{i} x_i^T x_i - v^T \lambda v = \sum_{i} x_i^T x_i - \lambda v^T v \]

\[E = \sum_{i} x_i^T x_i - \lambda \]
Minimizing the error

- The total error is

\[E = \sum_{i} x_i^T x_i - \lambda \]

- We already know that the optimal basis is an Eigen vector
- The total error depends on the **negative** of the corresponding Eigen value
- To **minimize** error, we must **maximize** \(\lambda \)
- i.e. Select the Eigen vector with the largest Eigen value
• Compute the correlation matrix for your data
 – Arrange them in matrix X and compute $R = XX^T$

• Compute the *principal* Eigen vector of R
 – The Eigen vector with the largest Eigen value

• This is the typical face
The approximation with the first typical face

- The first typical face models some of the characteristics of the faces
 - Simply by scaling its grey level
- But the approximation has error
 - The second typical face must explain some of this error
The second typical face

- Approximation with only the first typical face has error
- The second face must explain this error
- How do we find this face?
Solution: Iterate

• Get the “error” faces by subtracting the first-level approximation from the original image

\[
\begin{align*}
\text{original} - \text{approximation} &= \text{error} \\
\text{original} - \text{approximation} &= \text{error}
\end{align*}
\]
Solution: Iterate

- Get the “error” faces by subtracting the first-level approximation from the original image

- Repeat the estimation on the “error” images
Abstracting the problem:
Finding the *second* typical face

- Each “point” represents an *error* face in “pixel space”
- Find the vector V_2 such that the projection of these error faces on V_2 results in the least error
Minimizing error

\[E = \sum_{i} e_i^T e_i - \sum_{i} e_i^T w w^T e_i + \lambda(v^T v - 1) \]

- Differentiating w.r.t \(v \) and equating to 0

\[-2 \sum_{i} e_i e_i^T v + 2\lambda v = 0 \]

\[\left(\sum_{i} e_i e_i^T \right) v = \lambda v \]

The same math applies but now to the set of error data points.
Minimizing error

The minimum-error basis is found by solving

\[
R_e v_2 = \lambda v_2
\]

\[
R_e = \sum ee^T
\]

\(v_2 \) is an Eigen vector of the correlation matrix \(R_e \) corresponding to the largest eigen value \(\lambda \) of \(R_e \)
Which gives us our second typical face

- But approximation with the two faces will *still* result in error
- So we need more typical faces to explain *this* error

- We can do this by subtracting the appropriately scaled version of the second “typical” face from the error images and repeating the process
Solution: Iterate

- Get the second-level “error” faces by subtracting the scaled second typical face from the first-level error

- Repeat the estimation on the second-level “error” images
An interesting property

• Each “typical face” will be orthogonal to all other typical faces
 – Because each of them is learned to explain what the rest could not
 – None of these faces can explain one another!
To add more faces

• We can continue the process, refining the error each time
 – An instance of a procedure is called “Gram-Schmidt” orthogonalization

• OR... we can do it all at once
With many typical faces

\[M = \begin{bmatrix} \text{Typical faces} \\ \end{bmatrix} \]

\[W \]

\[U = \text{Approximation} \]

- Approximate every face \(f \) as \(f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k \)

- Here \(W, V \) and \(U \) are ALL unknown and must be determined
 - Such that the squared error between \(U \) and \(M \) is minimum
With multiple bases

- Assumption: all bases v_1, v_2, v_3, \ldots are unit length
- Assumption: all bases are orthogonal to one another: $v_i^T v_j = 0$ if $i \neq j$
 - We are trying to find the optimal K-dimensional subspace to project the data
 - Any set of vectors in this subspace will define the subspace
 - Constraining them to be orthogonal does not change this

- I.e. if $V = [v_1 \ v_2 \ v_3 \ \ldots]$, $V^T V = I$
 - $P_{\text{inv}}(V) = V^T$

- Projection matrix for $V = VP_{\text{inv}}(V) = VV^T$
With multiple bases

- Projection for a vector: \(\hat{x} = VV^T x \)
- Error vector: \(x - \hat{x} = x - VV^T x \)
- Error length: \(e(x) = x^T x - x^T VV^T x \)

\(V \) represents a K-dimensional subspace.
With multiple bases

- Error for one vector:
 \[e(x) = x^T x - x^T VV^T x \]

- Error for many vectors

 \[E = \sum_i x_i^T x_i - \sum_i x_i^T VV^T x_i \]

- Goal: Estimate \(V \) to minimize this error!
Minimizing error

• With constraint $V^T V = I$, objective to minimize

$$E = \sum_i x_i^T x_i - \sum_i x_i^T V V^T x_i + \text{trace}(\Lambda (V^T V - I))$$

– Note: now Λ is a diagonal matrix

– The constraint simply ensures that $v^T v = 1$ for every basis

• Differentiating w.r.t V and equating to 0

$$-2 \left(\sum_i x_i x_i^T \right) V + 2 \Lambda V = 0$$

$$RV = \Lambda V$$
Finding the optimal K bases

- Compute the Eigendecomposition of the correlation matrix
- Select K Eigen vectors
- But which K?
- Total error =
- Select K eigen vectors corresponding to the K largest Eigen values
Eigen Faces!

- Arrange your input data into a matrix X
- Compute the correlation $R = XX^T$
- Solve the Eigen decomposition: $RV = \Lambda V$
- The Eigen vectors corresponding to the K largest eigen values are our optimal bases
- We will refer to these as *eigen faces*.
How many Eigen faces

- How to choose “K” (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix
 - In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
 - The correlation matrix is 10000x10000
Eigen faces

\[[U, S] = \text{eig}(\text{correlation}) \]

\[
S = \begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
. & . & . \\
0 & 0 & \lambda_{10000}
\end{bmatrix} \quad U = \begin{bmatrix}
eigenface_1 \\
eigenface_2 \\
\vdots \\
eigenface_k
\end{bmatrix}
\]

- Compute the eigen vectors
 - Only 300 of the 10000 eigen values are non-zero
 - Why?
- Retain eigen vectors with high eigen values (>0)
 - Could use a higher threshold
Eigen Faces

- The eigen vector with the highest eigen value is the first typical face.
- The vector with the second highest eigen value is the second typical face.
- Etc.

\[
U = \begin{bmatrix}
\text{eigenface}_1 \\
\text{eigenface}_2 \\
\vdots
\end{bmatrix}
\]
Representing a face

\[
\text{Representation} = [w_1 \ w_2 \ w_3 \ \ldots]^T
\]

- The weights with which the eigen faces must be combined to compose the face are used to represent the face!
Energy Compaction Example

• One outcome of the “energy compaction principle”: the approximations are recognizable

• Approximating a face with one basis:

$$ f = w_1 v_1 $$
Energy Compaction Example

• One outcome of the “energy compaction principle”: the approximations are recognizable

• Approximating a face with one Eigenface:

\[f = w_1 v_1 \]
Energy Compaction Example

• One outcome of the “energy compaction principle”: the approximations are recognizable

• Approximating a face with 10 eigenfaces:

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} \]
Energy Compaction Example

- One outcome of the “energy compaction principle”: the approximations are recognizable

\[f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \ldots + w_{10} \mathbf{v}_{10} + \ldots + w_{30} \mathbf{v}_{30} \]
Energy Compaction Example

• One outcome of the “energy compaction principle”: the approximations are recognizable

• Approximating a face with 60 eigenfaces:

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} + \ldots + w_{30} v_{30} + \ldots + w_{60} v_{60} \]
How did I do this?

• Hint: only changing weights assigned to Eigen faces..
Class specificity

• The Eigenimages (bases) are very specific to the class of data they are trained on
 – Faces here
• They will not be useful for other classes
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
Class specificity

- Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 1 basis

\[f = w_1 v_1 \]
Class specificity

- Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 10 bases

\[
f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10}
\]
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 30 bases

\[f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \ldots + w_{10} \mathbf{v}_{10} + \ldots + w_{30} \mathbf{v}_{30} \]
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
• With 100 bases

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} + \ldots + w_{30} v_{30} + \ldots + w_{100} v_{100} \]
Universal bases

• Universal bases.

• End up looking a lot like discrete cosine transforms!!!!

• DCTs are the best “universal” bases
 – If you don’t know what your data are, use the DCT
An audio example

- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors
Eigenvalues and Eigenvectors

- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
 - Most Eigen values are close to zero
 - The corresponding eigenvectors are “unimportant”
Eigenvalues and Eigenvectors

• The vectors in the spectrogram are linear combinations of all 1025 Eigen vectors
• The Eigen vectors with low Eigen values contribute very little
 – The average value of a_i is proportional to the square root of the Eigenvalue
 – Ignoring these will not affect the composition of the spectrogram

$$\text{Vec} = a_1 \cdot \text{eigenvec}_1 + a_2 \cdot \text{eigenvec}_2 + a_3 \cdot \text{eigenvec}_3 \ldots$$
An audio example

\[V_{\text{reduced}} = [V_1 \ldots V_{25}] \]

\[M_{\text{lowdim}} = \text{Pinv}(V_{\text{reduced}})M \]

• The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
 – Only the 25-dimensional weights are shown
• The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram
An audio example

$M_{\text{reconstructed}} = V_{\text{reduced}}M_{\text{lowdim}}$

- The same spectrogram constructed from only the 25 Eigen vectors with the highest Eigen values
 - Looks similar
 - With 100 Eigenvectors, it would be indistinguishable from the original
 - Sounds pretty close
 - But now sufficient to store 25 numbers per vector (instead of 1024)
Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
 – Will take a very long time on your laptop

SVD
 – Only need to perform “Thin” SVD. Very fast
 • U = 10000 x 300
 – The columns of U are the eigen faces!
 – The Us corresponding to the “zero” eigen values are not computed
 • S = 300 x 300
 • V = 300 x 300
Using SVD to compute Eigenbases

\[[U, S, V] = \text{SVD}(X) \]

• U will have the Eigenvectors

• Thin SVD for 100 bases:
 \[[U, S, V] = \text{svds}(X, 100) \]

• Much more efficient
Eigen Decomposition of data

- Nothing magical about faces or sound – can be applied to any data.
 - Eigen analysis is one of the key components of data compression and representation
 - Represent N-dimensional data by the weights of the K leading Eigen vectors
 - Reduces effective dimension of the data from N to K
 - But requires knowledge of Eigen vectors
Eigen decomposition of what?

- Eigen decomposition of the \textit{correlation} matrix
- Is there an alternate way?
Linear vs. Affine

• The model we saw
 – Approximate every face f as
 $$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$$
 – Linear combination of bases

• If you add a constant
 $$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$$
 – Affine combination of bases
Estimation with the constant

• Estimate

\[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]

• Let's do this incrementally first:

• \(f \approx m \)
 – For every face
 – Find \(m \) to optimize the approximation
Estimation with the constant

• Estimate
 \[f \approx m \]
 – for every \(f \)!
• Error over all faces
 \[E = \sum_f ||f - m||^2 \]
• Minimizing the error with respect to \(m \), we simply get
 \[m = \frac{1}{N} \sum_f f \]
• The mean of the data
Estimation the remaining

• Same procedure as before:
 – Remaining “typical faces” must model what the constant m could not

• Subtract the constant from every data point
 – $\hat{f} = f - m$

• Now apply the model:
 – $\hat{f} = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k$

• This is just Eigen analysis of the “mean-normalized” data
 – Also called the “centered” data
Estimating the Affine model

\[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]

- First estimate the mean \(m \)

 \[m = \frac{1}{N} \sum_f f \]

- Compute the correlation matrix of the “centered” data \(\hat{f} = f - m \)

 \[- C = \sum_f \hat{f} \hat{f}^T = \sum_f (f - m)(f - m)^T \]

- This is the covariance matrix of the set of \(f \)
Estimating the Affine model

\[f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m \]

• First estimate the mean \(m \)
 \[m = \frac{1}{N} \sum_{f} f \]

• Compute the covariance matrix
 \[C = \sum_{f} (f - m)(f - m)^T \]

• Eigen decompose!
 \[CV = \Lambda V \]

• The Eigen vectors corresponding to the top \(k \) Eigen values give us the bases \(V_k \)
Properties of the affine model

• The bases $V_1, V_2, ..., V_k$ are all orthogonal to one another
 – Eigen vectors of the symmetric Covariance matrix
• But they are not orthogonal to m
 – Because m is an unscaled constant

• We could jointly estimate all $V_1, V_2, ..., V_k$ and m by minimizing

$$\sum_f \| f - (\sum_f w_{f,i} V_i + m) \|^2 + \text{trace}(\Lambda(V^T V - I))$$
Linear vs. Affine

• The model we saw
 – Approximate **every** face f as
 \[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k \]
 – The *Karhunen Loeve Transform*
 – Retains maximum **Energy** for any order k

• If you add a constant
 \[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]
 – *Principal Component Analysis*
 – Retains maximum **Variance** for any order k
How do they relate

- Relationship between correlation matrix and covariance matrix
 \[R = C + mm^T \]

- *Karhunen Loeve* bases are Eigen vectors of \(R \)
- *PCA* bases are Eigen vectors of \(C \)
- How do they relate
 - Not easy to say..
The Eigen vectors

- The Eigen vectors of C are the major axes of the ellipsoid Cv, where v are the vectors on the unit sphere
The Eigen vectors

• The Eigen vectors of R are the major axes of the ellipsoid $Cv + mm^Tv$

• Note that mm^T has rank 1 and mm^Tv is a line
The Eigen vectors

- The principal Eigenvector of R lies between the principal Eigen vector of C and m

$$e_R = \alpha e_C + (1 - \alpha) \frac{m}{\|m\|}$$

$$0 \leq \alpha \leq 1$$

- Similarly the principal Eigen value

$$\lambda_R = \alpha \lambda_C + (1 - \alpha) \|m\|^2$$

- Similar logic is not easily extendable to the other Eigenvectors, however
Eigenvectors

• Turns out: Eigenvectors of the correlation matrix represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly

• The SVD of data matrix X uncovers these vectors
 • KLT
• Turns out: Eigenvectors of the covariance represent the major and minor axes of an ellipse centered at the mean which encloses the data most compactly

• PCA uncovers these vectors

• In practice, “Eigen faces” refers to PCA faces, and not KLT faces
What about sound?

• Finding Eigen bases for speech signals:
• Look like DFT/DCT
• Or wavelets

• DFTs are pretty good most of the time
Eigen Analysis

- Can often find surprising features in your data
- Trends, relationships, more
- Commonly used in recommender systems

- An interesting example..
Eigen Analysis

- Cheng Liu’s research on pipes..
- SVD automatically separates useful and uninformative features

Figure 1. Experiment setup @Wean Hall mechanical space. Pipe with arrow indicates a 10” diameter hot water pipe carrying pressurized hot water flow, on which piezoelectric sensors are installed every 10 ft. A National instruments data acquisition system is used to acquire and store the data for later processing.

Figure 2. Damage detection results compared with conventional methods. Top: Ground truth of whether the pipe is damaged or not. Middle: Conventional method only captures temperature variations, and shows no indication of the presence of damage. Bottom: The SVD method clearly picks up the steps where damage are introduced and removed.