Machine Learning for Signal Processing
Linear Gaussian Models

Class 14. 3 Nov 2015

Instructor: Bhiksha Raj
Recap: MAP Estimators

- MAP (Maximum A Posteriori): Find most probable value of y given x

$$y = \arg\max_y P(Y|x)$$
MAP estimation

- x and y are jointly Gaussian

$$z = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$E[z] = \mu_z = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$

$$\text{Var}(z) = C_{zz} = \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix}$$

$$C_{xy} = E[(x - \mu_x)(y - \mu_y)^T]$$

$$P(z) = N(\mu_z, C_{zz}) = \frac{1}{\sqrt{2\pi |C_{zz}|}} \exp\left(-0.5(z - \mu_z)^T C_{zz}^{-1} (z - \mu_z) \right)$$

- z is Gaussian
MAP estimation: Gaussian PDF
MAP estimation: The Gaussian at a particular value of X
Conditional Probability of $y \mid x$

$$P(y \mid x) = N(\mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x), C_{yy} - C_{yx} C_{xx}^{-1} C_{xy})$$

$$E_{y\mid x}[y] = \mu_{y\mid x} = \mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x)$$

$$Var(y \mid x) = C_{yy} - C_{yx} C_{xx}^{-1} C_{xy}$$

- The conditional probability of y given x is also Gaussian
 - The slice in the figure is Gaussian
- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
 - Uncertainty is reduced
MAP estimation: The Gaussian at a particular value of X
MAP Estimation of a Gaussian RV

\[\hat{y} = \arg \max_y P(y \mid x) = E_{y \mid x}[y] \]
Its also a minimum-mean-squared error estimate

• Minimize error:

\[\text{Err} = E[\|y - \hat{y}\|^2 | x] = E[(y - \hat{y})^T (y - \hat{y}) | x] \]

\[\text{Err} = E[y^T y + \hat{y}^T \hat{y} - 2\hat{y}^T y | x] = E[y^T y | x] + \hat{y}^T \hat{y} - 2\hat{y}^T E[y | x] \]

• Differentiating and equating to 0:

\[d.\text{Err} = 2\hat{y}^T d\hat{y} - 2E[y | x]^T d\hat{y} = 0 \]

\[\hat{y} = E[y | x] \]

The MMSE estimate is the mean of the distribution
For the Gaussian: MAP = MMSE

Most likely value is also the MEAN value.

- Would be true of any symmetric distribution
A Likelihood Perspective

- \(y \) is a noisy reading of \(a^T x \)
 \[
y = a^T x + e
\]
- Error \(e \) is Gaussian
 \[
e \sim N(0, \sigma^2 I)
\]
- Estimate \(A \) from
 \[
 Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N]
 \]
The *Likelihood* of the data

\[y = a^T x + e \quad \text{e} \sim N(0, \sigma^2 I) \]

• Probability of observing a specific \(y \), given \(x \), for a particular matrix \(a \)

\[P(y \mid x; a) = N(y; a^T x, \sigma^2 I) \]

• Probability of collection: \(\mathbf{X} = [\mathbf{x}^1 \mathbf{x}^3 \ldots \mathbf{x}^N] \quad \mathbf{Y} = [y^1 y^3 \ldots y^N] \)

\[P(Y \mid X; a) = \prod_i N(y_i; a^T x_i, \sigma^2 I) \]

• Assuming IID for convenience (not necessary)
A Maximum Likelihood Estimate

\[y = a^T x + e \quad e \sim N(0, \sigma^2 I) \quad Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N] \]

\[P(Y | X) = \prod_i \frac{1}{\sqrt{(2\pi\sigma^2)^D}} \exp\left(\frac{-1}{2\sigma^2} \| y_i - a^T x_i \|^2 \right) \]

\[\log P(Y | X; a) = C - \sum_i \frac{1}{2\sigma^2} \| y_i - a^T x_i \|^2 \]

\[\log P(Y | X, a) = C - \frac{1}{2\sigma^2} \text{trace} \left((Y - a^T X)^T (Y - a^T X) \right) \]

- Maximizing the log probability is identical to minimizing the least squared error
A problem with regressions

• ML fit is sensitive
 – Error is squared
 – Small variations in data \rightarrow large variations in weights
 – Outliers affect it adversely

• Unstable
 – If dimension of $\mathbf{X} \geq$ no. of instances
 • (\mathbf{XX}^T) is not invertible

\[
A = (\mathbf{XX}^T)^{-1} \mathbf{XY}^T
\]
MAP estimation of weights

- Assume weights drawn from a Gaussian
 \[P(a) = N(0, \sigma^2 I) \]
- Max. Likelihood estimate
 \[\hat{a} = \arg \max_a \log P(Y \mid X; a) \]
- Maximum \textit{a posteriori} estimate
 \[\hat{a} = \arg \max_a \log P(a \mid Y, X) = \arg \max_a \log P(Y \mid X, a) P(a) \]
MAP estimation of weights

\[\hat{a} = \arg \max_A \log P(a | Y, X) = \arg \max_A \log P(Y | X, a) P(a) \]

- \(P(a) = N(0, \sigma^2 I) \)
- \(\log P(a) = C - \log \sigma - 0.5\sigma^{-2} \|a\|^2 \)

\[\log P(Y | X, a) = C - \frac{1}{2\sigma^2} \text{trace}\left((Y - a^T X)^T (Y - a^T X)\right) \]

\[\hat{a} = \arg \max_A C' - \log \sigma - \frac{1}{2\sigma^2} \text{trace}\left((Y - a^T X)^T (Y - a^T X)\right) - 0.5\sigma^2 a^T a \]

- Similar to ML estimate with an additional term
MAP estimate of weights

\[dL = \left(2a^T XX^T + 2yX^T + 2\sigma I \right) da = 0 \]

\[a = (XX^T + \sigma I)^{-1} XY^T \]

• Equivalent to *diagonal loading* of correlation matrix
 – Improves condition number of correlation matrix
 • Can be inverted with greater stability
 – Will not affect the estimation from well-conditioned data
 – Also called Tikhonov Regularization
 • Dual form: Ridge regression

• **MAP estimate of weights**
 – Not to be confused with MAP estimate of Y
MAP estimate priors

- Left: Gaussian Prior on W
- Right: Laplacian Prior

\[
\frac{1}{2b} \exp \left(-\frac{|x - \mu|}{b} \right)
\]
MAP estimation of weights with laplacian prior

- Assume weights drawn from a Laplacian
 \[P(a) = \lambda^{-1} \exp(-\lambda^{-1}|a|_1) \]
- Maximum a posteriori estimate

\[
\hat{a} = \arg\max_a C' - \text{trace}\left((Y - a^T X)^T (Y - a^T X) \right) - \lambda^{-1}|a|_1
\]

- No closed form solution
 - Quadratic programming solution required
 - Non-trivial
MAP estimation of weights with laplacian prior

• Assume weights drawn from a Laplacian
 \[P(a) = \lambda^{-1} \exp(-\lambda^{-1}|a|_1) \]

• Maximum a posteriori estimate
 \[
 \hat{a} = \arg \max_a \text{trace}\left((Y - a^T X)^T (Y - a^T X) \right) - \lambda^{-1}|a|_1
 \]

• Identical to L_1 regularized least-squares estimation
L₁-regularized LSE

\[\hat{a} = \arg \max_a C' - \text{trace} \left((Y - a^T X)^T (Y - a^T X)^T \right) - \lambda^{-1} |a|_1 \]

- No closed form solution
 - Quadratic programming solutions required

- Dual formulation

\[\hat{a} = \arg \max_a C' - \text{trace} \left((Y - a^T X)^T (Y - a^T X)^T \right) \quad \text{subject to} \quad |a|_1 \leq t \]

- “LASSO” – Least absolute shrinkage and selection operator
LASSO Algorithms

- Various convex optimization algorithms
- LARS: Least angle regression
- Pathwise coordinate descent
- Matlab code available from web
Regularized least squares

- Regularization results in selection of suboptimal (in least-squares sense) solution
 - One of the loci outside center
- Tikhonov regularization selects *shortest* solution
- L_1 regularization selects *sparsest* solution

Image Credit: Tibshirani
The different formalisms in L_2

\[\hat{a} = \arg \max_a C' - \text{trace} \left((Y - a^T X)^T (Y - a^T X) \right) - \lambda^{-1} \|a\|^2 \]

\[\hat{a} = \arg \max_a C' - \text{trace} \left((Y - a^T X)^T (Y - a^T X) \right) \quad \text{subject to} \quad \|a\|^2 \leq t \]

- Expand both the ball and the ellipses till the both just meet
- Fix the ball, expand the ellipse till it meets the ball
The different formalisms in L_1

\[\hat{a} = \arg \max_a C' - \text{trace}\left((Y - a^T X)^T (Y - a^T X)^T \right) - \lambda^{-1} |a|_1 \]

\[\hat{a} = \arg \max_a C' - \text{trace}\left((Y - a^T X)^T (Y - a^T X)^T \right) \text{ subject to } |a|_1 \leq t \]

- Expand both the diamond and the ellipses till the both just meet
- Fix the diamond, expand the ellipse till it meets the ball
• General statistical estimators
• All used to predict a variable, based on other parameters related to it.

• Most common assumption: Data are Gaussian, all RVs are Gaussian
 – Other probability densities may also be used.

• For Gaussians relationships are linear as we saw.
Gaussians and more Gaussians..

• Linear Gaussian Models..

• But first a recap
A Brief Recap

- Principal component analysis: Find the K bases that best explain the given data
- Find B and C such that the difference between D and BC is minimum
 - While constraining that the columns of B are orthonormal
Remember Eigenfaces

• Approximate every face f as

$$f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + \ldots + w_{f,k} V_k$$

• Estimate V to minimize the squared error

• **Error is unexplained by $V_1 \ldots V_k$**

• **Error is orthogonal to Eigenfaces**
Eigen Representation

- K-dimensional representation
 - Error is orthogonal to representation
 - Weight and error are specific to data instance

Illustration assuming 3D space

\[w_{11} = w_{11} + \varepsilon_1 \]
Representation

- K-dimensional representation
 - Error is orthogonal to representation
 - Weight and error are specific to data instance

\[w_{12} + \varepsilon_2 \]

Illustration assuming 3D space

Error is at 90° to the eigenface
 Representation

- K-dimensional representation
 - Error is orthogonal to representation

All data with the same representation wV_1 lie a plane orthogonal to wV_1
With 2 bases

\[\text{Error is at } 90^\circ \text{ to the eigenfaces} \]

\[w_{11} + w_{21} + \varepsilon_1 \]

Illustration assuming 3D space

- K-dimensional representation
 - Error is orthogonal to representation
 - Weight and error are specific to data instance
• K-dimensional representation
 – Error is orthogonal to representation
 – Weight and error are specific to data instance

\[w_{12} + w_{22} + \epsilon_2 \]
In Vector Form

\[X_i = w_{1i} V_1 + w_{2i} V_2 + \varepsilon_i \]

- K-dimensional representation
 - Error is orthogonal to representation
 - Weight and error are specific to data instance

Error is at 90° to the eigenfaces
In Vector Form

\[X_i = w_{1i} V_1 + w_{2i} V_2 + \varepsilon_i \]

\[x = Vw + e \]

- \(K \)-dimensional representation
- \(x \) is a \(D \) dimensional vector
- \(V \) is a \(D \times K \) matrix
- \(w \) is a \(K \) dimensional vector
- \(e \) is a \(D \) dimensional vector

Error is at 90° to the eigenface
• For the given data: find the K-dimensional subspace such that it captures most of the variance in the data
 – Variance in remaining subspace is minimal
Constraints

\[x = Vw + e \]

- \(V^TV = I \) : Eigen vectors are orthogonal to each other
- For every vector, error is orthogonal to Eigen vectors
 - \(e^TV = 0 \)
- Over the collection of data
 - Average \(w^Tw = \text{Diagonal} \) : Eigen representations are uncorrelated
 - \(e^Te = \) minimum: Error variance is minimum
 - Mean of error is 0

Error is at 90° to the eigenface
A Statistical Formulation of PCA

\[x = Vw + e \]

\[w \sim N(0, B) \]

\[e \sim N(0, E) \]

- \(x \) is a random variable generated according to a linear relation
- \(w \) is drawn from an \(K \)-dimensional Gaussian with diagonal covariance
- \(e \) is drawn from a 0-mean (\(D-K \))-rank \(D \)-dimensional Gaussian
- Estimate \(V \) (and \(B \)) given examples of \(x \)
Linear Gaussian Models!!

$$x = Vw + e$$

$$w \sim N(0, B)$$

$$e \sim N(0, E)$$

- x is a random variable generated according to a linear relation
- w is drawn from a Gaussian
- e is drawn from a 0-mean Gaussian
- Estimate V given examples of x
 - In the process also estimate B and E
Linear Gaussian Models!!

- x is a random variable generated according to a linear relation
- w is drawn from a Gaussian
- e is drawn from a 0-mean Gaussian

Estimate V given examples of x
- In the process also estimate B and E

PCA is a specific instance of a linear Gaussian model with particular constraints
- $B = \text{Diagonal}$
- $\mathbf{v}^T \mathbf{v} = 1$
- E is low rank
Linear Gaussian Models

\[x = \mu + Vw + e \quad w \sim N(0, B) \]
\[e \sim N(0, E) \]

• Observations are linear functions of two uncorrelated Gaussian random variables
 – A “weight” variable \(w \)
 – An “error” variable \(e \)
 – Error not correlated to weight: \(E[e^Tw] = 0 \)

• Learning LGMs: Estimate parameters of the model given instances of \(x \)
 – The problem of learning the distribution of a Gaussian RV
LGMs: Probability Density

\[\mathbf{x} = \mu + \mathbf{Vw} + \mathbf{e} \]
\[\mathbf{w} \sim N(0, B) \]
\[\mathbf{e} \sim N(0, E) \]

• The mean of \(\mathbf{x} \):

\[\mathbb{E}[\mathbf{x}] = \mu + \mathbf{V}E[\mathbf{w}] + \mathbb{E}[\mathbf{e}] = \mu \]

• The Covariance of \(\mathbf{x} \):

\[\mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^T] = \mathbf{V}B\mathbf{V}^T + \mathbf{E} \]
The probability of \mathbf{x}

$$\mathbf{x} = \boldsymbol{\mu} + \mathbf{Vw} + \mathbf{e}$$

$$\mathbf{w} \sim N(0, \mathbf{B})$$

$$\mathbf{e} \sim N(0, \mathbf{E})$$

$$\mathbf{x} \sim N(\boldsymbol{\mu}, \mathbf{VBV}^T + \mathbf{E})$$

$$P(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^D | \mathbf{VBV}^T + \mathbf{E}|}} \exp\left(-0.5(\mathbf{x} - \boldsymbol{\mu})^T(\mathbf{VBV}^T + \mathbf{E})^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- \mathbf{x} is a linear function of Gaussians: \mathbf{x} is also Gaussian
- Its mean and variance are as given
Estimating the variables of the model

\[x = \mu + Vw + e \]

\[w \sim N(0, B) \]
\[e \sim N(0, E) \]

\[x \sim N(\mu, VBV^T + E) \]

- Estimating the variables of the LGM is equivalent to estimating \(P(x) \)
 - The variables are \(\mu, V, B \) and \(E \)
Estimating the model

\[x = \mu + Vw + e \]

\[w \sim N(0, B) \]
\[e \sim N(0, E) \]

\[x \sim N(\mu, VBV^T + E) \]

• The model is indeterminate:
 – \(Vw = VCC^{-1}w = (VC)(C^{-1}w) \)
 – We need extra constraints to make the solution unique

• Usual constraint: \(B = I \)
 – Variance of \(w \) is an identity matrix
Estimating the variables of the model

\[x = \mu + Vw + e \]

\[w \sim N(0, I) \]
\[e \sim N(0, E) \]

\[x \sim N(\mu, VV^T + E) \]

- Estimating the variables of the LGM is equivalent to estimating \(P(x) \)
 - The variables are \(\mu, V, \) and \(E \)
The Maximum Likelihood Estimate

\[\mathbf{x} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{VV}^T + \mathbf{E}) \]

- Given training set \(\mathbf{x}_1, \mathbf{x}_2, .. \mathbf{x}_N \), find \(\mathbf{\mu}, \mathbf{V}, \mathbf{E} \)

- The ML estimate of \(\mathbf{\mu} \) does not depend on the covariance of the Gaussian

\[\mathbf{\mu} = \frac{1}{N} \sum_i \mathbf{x}_i \]
We can safely assume “centered” data
- $\mu = 0$

If the data are not centered, “center” it
- Estimate mean of data
 - Which is the maximum likelihood estimate
- Subtract it from the data
Simplified Model

\[x = Vw + e \]

\[w \sim N(0, I) \]
\[e \sim N(0, E) \]

\[x \sim N(0, VV^T + E) \]

- Estimating the variables of the LGM is equivalent to estimating \(P(x) \)
 - The variables are \(V \), and \(E \)
Estimating the model

\[x = Vw + e \]

\[x \sim N(0, VV^T + E) \]

- Given a collection of \(x_i \) terms
 - \(x_1, x_2, \ldots, x_N \)
- Estimate \(V \) and \(E \)
- \(w \) is unknown for each \(x \)
- But if assume we know \(w \) for each \(x \), then what do we get:
Estimating the Parameters

\[x_i = Vw_i + e \]

\[P(e) = N(0, E) \]

\[P(x \mid w) = N(Vw, E) \]
Reminder: x and w are jointly Gaussian

$x = Vw + e$

\[P(x) = N(0, VV^T + E) \]

\[P(w) = N(0, I) \]

\[C_{xz} = E[(x - \mu_x)(w - \mu_w)^T] = V \]

\[
C_{zz} = \begin{bmatrix} C_{xx} & C_{xw} \\ C_{wx} & C_{ww} \end{bmatrix} = \begin{bmatrix} VV^T + E & V \\ V^T & I \end{bmatrix}
\]

\[\mu_z = \begin{bmatrix} \mu_x \\ \mu_w \end{bmatrix} = 0 \]

$\mathbf{z} = \begin{bmatrix} x \\ w \end{bmatrix}$

• x and w are jointly Gaussian!
MAP estimation: Gaussian PDF
MAP estimation: The Gaussian at a particular value of X
Conditional Probability of $x \mid w$

$$P(x \mid w) = N(\mu_x + C_{xw} C_{ww}^{-1} (w - \mu_w), C_{xx} - C_{xw} C_{ww}^{-1} C_{wx})$$

$$= N(C_{xw} C_{ww}^{-1} w, C_{xx} - C_{xw} C_{ww}^{-1} C_{wx})$$

$$E_{x \mid w}[x] = C_{xw} C_{ww}^{-1} w$$

$$Var(x \mid w) = C_{xx} - C_{xw} C_{ww}^{-1} C_{wx}$$

• Comparing to

$$P(x \mid w) = N(Vw, E)$$

• We get:

$$V = C_{xw} C_{ww}^{-1}$$

$$E = C_{xx} - C_{xw} C_{ww}^{-1} C_{wx}$$
Or more explicitly

\[C_{ww} = \frac{1}{N} \sum_{i} w_{i} w_{i}^{T} \]

\[C_{xw} = \frac{1}{N} \sum_{i} x_{i} w_{i}^{T} \]

\[V = C_{xw} C_{ww}^{-1} \]

\[E = C_{xx} - C_{xw} C_{ww}^{-1} C_{wx} \]

\[V = \left(\sum_{i} x_{i} w_{i}^{T} \right) \left(\sum_{i} w_{i} w_{i}^{T} \right)^{-1} \]

\[E = \frac{1}{N} \left(\sum_{i} x_{i} x_{i}^{T} - V \sum_{i} w_{i} x_{i}^{T} \right) \]
Estimating LGMs: If we know w

$$x_i = Vw_i + e$$

$$P(e) = N(0, E)$$

$$V = \left(\sum_i x_i w_i^T \right) \left(\sum_i w_i w_i^T \right)^{-1}$$

$$E = \frac{1}{N} \left(\sum_i x_i x_i^T - V \sum_i w_i x_i^T \right)$$

- But in reality we don’t know the w for each x
 - So how to deal with this?

- EM..
Recall EM

• We figured out how to compute parameters if we knew the missing information
• Then we “fragmented” the observations according to the posterior probability $P(z|x)$ and counted as usual
• In effect we took the expectation with respect to the a posteriori probability of the missing data: $P(z|x)$
EM for LGMs

\[x_i = Vw_i + e \]

\[P(e) = N(0, E) \]

\[V = \left(\sum_i x_i w_i^T \right) \left(\sum_i w_i w_i^T \right)^{-1} \]

\[E = \frac{1}{N} \left(\sum_i x_i x_i^T - V \sum_i w_i w_i^T \right) \]

\[V = \left(\sum_i x_i E_{w|x_i} [w^T] \right) \left(\sum_i E_{w|x_i} [ww^T] \right)^{-1} \]

\[E = \frac{1}{N} \sum_i x_i x_i^T - \frac{1}{N} V \sum_i E_{w|x_i} [w] x_i^T \]

• Replace unseen data terms with expectations taken w.r.t. \(P(w|x_i) \)
EM for LGMs

\[
x_i = Vw_i + e
\]

\[
P(e) = N(0, E)
\]

\[
V = \left(\sum_i x_iw_i^T \right) \left(\sum_i w_iw_i^T \right)^{-1}
\]

\[
E = \frac{1}{N} \left(\sum_i x_ix_i^T - V \sum_i w_ix_i^T \right)
\]

- Replace unseen data terms with expectations taken w.r.t. \(P(w|x_i) \)
Flipping the problem

- How do we estimate the above terms?
- MAP to the rescue!!

\[E_{w|x_i}[w] \]
\[E_{w|x_i}[ww^T] \]
Expected Value of \(w \) given \(x \)

\[x = Vw + e \]

\[P(e) = N(0, E) \quad P(w) = N(0, I) \]

\[P(x) = N(0, VV^T + E) \]

• \(x \) and \(w \) are jointly Gaussian!
 – \(x \) is Gaussian
 – \(w \) is Gaussian
 – They are linearly related

\[z = \begin{bmatrix} x \\ w \end{bmatrix} \quad P(z) = N(\mu_z, C_{zz}) \]
Recall: \(w \) and \(x \) are jointly Gaussian

\[
x = Vw + e
\]

\[
e \sim N(0, E) \quad P(w) = N(0, I)
\]

\[
P(x) = N(0, VV^T + E)
\]

\[
C_{xx} = VV^T + E \quad C_{ww} = I
\]

\[
C_{xw} = E[(x - \mu_x)(w - \mu_w)^T] = V
\]

\[
P(z) = N(\mu_z, C_{zz})
\]

\[
\mu_z = \begin{bmatrix} \mu_x \\ \mu_w \end{bmatrix} = 0
\]

\[
C_{zz} = \begin{bmatrix} C_{xx} & C_{xw} \\ C_{wx} & C_{ww} \end{bmatrix}
\]

* \(x \) and \(w \) are jointly Gaussian! *
$P(w \mid z)$

- $P(w \mid z)$ is a Gaussian

\[
P(w \mid x) = N(\mu_w + C_{wx} C_{xx}^{-1} (x - \mu_x), C_{ww} - C_{wx} C_{xx}^{-1} C_{xw})
\]

\[
= N(C_{wx} C_{xx}^{-1} x, C_{ww} - C_{wx} C_{xx}^{-1} C_{xw})
\]

\[
= N(V^T (VV^T + E)^{-1} x, I - V^T (VV^T + E)^{-1} V)
\]

$\text{Var}(w \mid x) = I - V^T (VV^T + E)^{-1} V$

$E_{w \mid x_i}[w] = V^T (VV^T + E)^{-1} x_i$

$E_{w \mid x_i}[ww^T] = \text{Var}(w \mid x) + E_{w \mid x_i}[w] E_{w \mid x_i}[w]^T$

$E_{w \mid x_i}[ww^T] = I - V^T (VV^T + E)^{-1} V + E_{w \mid x_i}[w] E_{w \mid x_i}[w]^T$
LGM: The complete EM algorithm

\[x = Vw + e \]

\[e \sim N(0, E) \quad P(w) = N(0, I) \]

\[P(x) = N(0, VV^T + E) \]

- Initialize \(V \) and \(E \)

- E step:
 \[E_{w|x_i}[w] = V^T (VV^T + E)^{-1} x_i \]

 \[E_{w|x_i}[ww^T] = I - V^T (VV^T + E)^{-1} V + E_{w|x_i}[w]E_{w|x_i}[w]^T \]

- M step:
 \[V = \left(\sum_i x_i E_{w|x_i}[w^T] \right) \left(\sum_i E_{w|x_i}[ww^T] \right)^{-1} \]

 \[E = \frac{1}{N} \sum_i x_i x_i^T - \frac{1}{N} V \sum_i E_{w|x_i}[w]x_i^T \]
So what have we achieved

• Employed a complicated EM algorithm to learn a \textit{Gaussian} PDF for a variable x

• What have we gained???

• Next class:
 – PCA
 • Sensible PCA
 • EM algorithms for PCA
 – Factor Analysis
 • FA for feature extraction
LGMs : Application 1

Learning principal components

\[x = Vw + e \]
\[w \sim N(0, I) \]
\[e \sim N(0, E) \]

• Find directions that capture most of the variation in the data
• Error is orthogonal to these variations
The full covariance matrix of a Gaussian has D^2 terms.

- Fully captures the relationships between variables.
- Problem: **Needs a lot of data to estimate robustly**
To be continued..

• Other applications..
• Next class