Machine Learning for Signal Processing

Eigenfaces and Eigenrepresentations

Class 6. 16 Sep 2014

Instructor: Bhiksha Raj
Administrivia

- Project teams?

- Project proposals?
 - Please send proposals to TA, and cc me
 - Rahul Raj is no longer a TA

- Reminder: Assignment 1 due in ?? days
Recall: Representing images

• The most common element in the image: background
 – Or rather large regions of relatively featureless shading
 – Uniform sequences of numbers
Adding more bases

• Checkerboards with different variations

\[Image \approx w_1B_1 + w_2B_2 + w_3B_3 + \ldots \]

\[
W = \begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3 \\
 .
\end{bmatrix}
B = [B_1 \ B_2 \ B_3]
\]

\[BW \approx Image \]

\[W = pinv(B)Image \]

\[PROJECTION = BW \]

Getting closer at 625 bases!
“Bases”

- “Bases” are the “standard” units such that all instances can be expressed as a weighted combination of these units.
- Ideal requirements: Bases must be orthogonal.
- Checkerboards are one choice of bases:
 - Orthogonal
 - But not “smooth”
- Other choices of bases: Complex exponentials, Wavelets, etc..

\[\text{image} \approx w_1B_1 + w_2B_2 + w_3B_3 + \ldots \]
Data specific bases?

• **Issue:** All the bases we have considered so far are *data agnostic*
 – Checkerboards, Complex exponentials, Wavelets..
 – We use the same bases regardless of the data we analyze
 • Image of face vs. Image of a forest
 • Segment of speech vs. Seismic rumble

• How about data specific bases
 – Bases that consider the underlying data
 • E.g. is there something better than checkerboards to describe faces
 • Something better than complex exponentials to describe music?
The Energy Compaction Property

• Define “better”?

• The description

\[X = w_1 B_1 + w_2 B_2 + w_3 B_3 + \ldots + w_N B_N \]

• The ideal:

\[\hat{X}_i \approx w_1 B_1 + w_2 B_2 + \ldots + w_i B_i \]

\[\text{Error}_i = \| X - \hat{X}_i \|^2 \]

\[\text{Error}_i < \text{Error}_{i-1} \]

– If the description is terminated at any point, we should still get most of the information about the data

• Error should be small
Data-specific description of faces

• A collection of images
 – All normalized to 100x100 pixels
• What is common among all of them?
 – Do we have a common descriptor?
Assumption: There is a “typical” face that captures most of what is common to all faces

- Every face can be represented by a scaled version of a typical face
- We will denote this face as V

Approximate every face f as $f = w_f V$

Estimate V to minimize the squared error
- How? What is V?
A collection of least squares typical faces

• Assumption: There are a set of K “typical” faces that captures most of all faces

• Approximate every face f as $f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + .. + w_{f,k} V_k$

 – V_2 is used to “correct” errors resulting from using only V_1. So on average

 \[
 \| f - (w_{f,1} V_{f,1} + w_{f,2} V_{f,2}) \|^2 < \| f - w_{f,1} V_{f,1} \|^2
 \]

 – V_3 corrects errors remaining after correction with V_2

 \[
 \| f - (w_{f,1} V_{f,1} + w_{f,2} V_{f,2} + w_{f,3} V_{f,3}) \|^2 < \| f - (w_{f,1} V_{f,1} + w_{f,2} V_{f,2}) \|^2
 \]

 – And so on..

 – $V = [V_1 \ V_2 \ V_3]$

• Estimate V to minimize the squared error

 – How? What is V?
A recollection

Finding the best explanation of music M in terms of notes N
Also finds the score S of M in terms of N

$M = N$

$S = P_{\text{inv}}(N) \cdot M$

$U = \approx S = p_{\text{inv}}(N)M$

$U = M$
How about the other way?

Finding the notes N given music M and score S

Also finds best explanation of M in terms of S
Find the four notes and their score that generate the closest approximation to M.

$M = \quad \downarrow$

$S = \quad ?$

$N = \quad ?$

$U = \quad ?$

$U = NS \approx M$
The same problem

Here \(V, W \) and \(U \) are ALL unknown and must be determined

Such that the squared error between \(U \) and \(F \) is minimum

For each face

\[f = w_{f,1} V_1 + w_{f,2} V_2 + w_{f,3} V_3 + \ldots + w_{f,K} V_K \]

For the collection of faces:

\[F \approx VW \]

- \(V \) is \(D \times K \) and \(W \) is \(K \times N \)
 - \(D \) is the no. of pixels, \(N \) is the no. of faces in the set
- Find \(V \) and \(W \) such that \(||F - VW||^2 \) is minimized
Abstracting the problem:
Finding the \textit{FIRST} typical face

- Each “point” represents a face in “pixel space”
Abstracting the problem:
Finding the **FIRST** typical face

- Each “point” represents a face in “pixel space”
- Any “typical face” V is a vector in this space
Abstracting the problem:
Finding the **FIRST** typical face

- Each “point” represents a face in “pixel space”
- The “typical face” V is a vector in this space
- The *approximation* $w_f V$ for any face f is the *projection* of f onto V
- The distance between f and its projection $w_f V$ is the *projection error* for f
Abstracting the problem:
Finding the *FIRST* typical face

- *Every* face in our data will suffer error when approximated by its projection on V
- The total squared length of all error lines is the *total squared projection error*
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face \(V_1 \):
 Find the \(V \) for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

• The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
Abstracting the problem:
Finding the *FIRST* typical face

- The problem of finding the first typical face V_1:
 Find the V for which the total projection error is minimum!
- This “minimum squared error” V is our “best” first typical face
- *It is also the first Eigen face*
Formalizing the Problem: Error from approximating a single vector

1. Consider: approximating $x = wv$
 - E.g. x is a face, and "v" is the "typical face"

2. Finding an approximation wv which is closest to x
 - In a Euclidean sense
 - Basically projecting x onto v
Formalizing the Problem: Error from approximating a single vector

- Projection of a vector \mathbf{x} on to a vector \mathbf{v}
 \[\hat{\mathbf{x}} = \mathbf{v} \frac{\mathbf{v}^T \mathbf{x}}{|\mathbf{v}|} \]

- Assuming \mathbf{v} is of unit length:
 \[\hat{\mathbf{x}} = \mathbf{vv}^T \mathbf{x} \]

\[error = \mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{vv}^T \mathbf{x} \]

\[squared\ error = \left\| \mathbf{x} - \mathbf{vv}^T \mathbf{x} \right\|^2 \]
Error from approximating a single vector

- Minimum squared approximation error from approximating x as it as wv

$$e(x) = \|x - vv^T x\|^2$$

- Optimal value of w: $w = v^T x$
Error from approximating a single vector

- Error from projecting a vector \mathbf{x} onto a vector onto a unit vector \mathbf{v}

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{v}\mathbf{v}^T \mathbf{x} \right\|^2$$

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}\mathbf{v}^T \mathbf{x})^T (\mathbf{x} - \mathbf{v}\mathbf{v}^T \mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T \mathbf{v}\mathbf{v}^T) (\mathbf{x} - \mathbf{v}\mathbf{v}^T \mathbf{x})$$

$$= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v}\mathbf{v}^T \mathbf{x} - \mathbf{x}^T \mathbf{v}\mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v}\mathbf{v}^T \mathbf{v}\mathbf{v}^T \mathbf{x}$$
Error from approximating a single vector

- Error from projecting a vector \mathbf{x} onto a unit vector \mathbf{v}

$$ e(\mathbf{x}) = \left| \left| \mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x} \right| \right|^2 $$

$$ e(\mathbf{x}) = (\mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x})^T (\mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x}) = (\mathbf{x}^T - \mathbf{x} \mathbf{v} \mathbf{v}^T) (\mathbf{x} - \mathbf{v} \mathbf{v}^T \mathbf{x}) $$

$$ = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} - \mathbf{x} \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{v} \mathbf{v}^T \mathbf{x} $$

$$ = \mathbf{1} $$

16 Sep 2014
Error from approximating a single vector

- Error from projecting a vector \mathbf{x} on to a vector onto a unit vector \mathbf{v}

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{v}^T \mathbf{x} \right\|^2$$

$$e(\mathbf{x}) = (\mathbf{x} - \mathbf{v}^T \mathbf{x})^T (\mathbf{x} - \mathbf{v}^T \mathbf{x}) = (\mathbf{x}^T - \mathbf{x}^T \mathbf{v} \mathbf{v}^T) (\mathbf{x} - \mathbf{v}^T \mathbf{x})$$

$$= \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x} + \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$

$$e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{x}$$
Error from approximating a single vector

This is the very familiar pythagoras’ theorem!!

$$e(x) = x^T x - x^T v \cdot v^T x$$

Length of projection
Error for many vectors

• Error for one vector: \[e(x) = x^T x - x^T \mathbf{w} \mathbf{w}^T x \]

• Error for many vectors

\[E = \sum_i e(x_i) = \sum_i \left(x_i^T x_i - x_i^T \mathbf{w} \mathbf{w}^T x_i \right) = \sum_i x_i^T x_i - \sum_i x_i^T \mathbf{w} \mathbf{w}^T x_i \]

• Goal: Estimate \(\mathbf{v} \) to minimize this error!
Error for many vectors

- Total error:
 \[
 E = \sum_{i} x_i^T x_i - \sum_{i} x_i^T v v^T x_i
 \]

- Add constraint: \(v^T v = 1 \)

- Constrained objective to minimize:
 \[
 E = \sum_{i} x_i^T x_i - \sum_{i} x_i^T v v^T x_i + \lambda (v^T v - 1)
 \]
Two Matrix Identities

• Derivative w.r.t \mathbf{v}

\[
\frac{d\mathbf{v}^T \mathbf{v}}{d\mathbf{v}} = 2\mathbf{v}
\]

\[
\frac{d\mathbf{x}^T \mathbf{v}\mathbf{v}^T \mathbf{x}}{d\mathbf{v}} = \frac{d\mathbf{v}^T \mathbf{x}\mathbf{x}^T \mathbf{v}}{d\mathbf{v}} = 2\mathbf{x}\mathbf{x}^T \mathbf{v}
\]
Minimizing error

\[E = \sum_{i} x_i^T x_i - \sum_{i} x_i^T v v^T x_i + \lambda (v^T v - 1) \]

• Differentiating w.r.t \(v \) and equating to 0

\[-2 \sum_{i} x_i x_i^T v + 2 \lambda v = 0 \]

\[\left(\sum_{i} x_i x_i^T \right) v = \lambda v \]
The correlation matrix

\[\sum_i x_i x_i^T = \lambda \mathbf{v} \]

• The encircled term is the *correlation matrix*

\[X = \begin{bmatrix} x_1 & x_2 & \ldots & x_N \end{bmatrix} \]

\[X^T = \text{Transposed Data Matrix} \]

\[X = \text{Data Matrix} \]

\[\sum_i x_i x_i^T = XX^T = R \]

= Correlation
The best “basis”

- The minimum-error basis is found by solving
 \[\mathbf{Rv} = \lambda \mathbf{v} \]

- \(\mathbf{v} \) is an Eigen vector of the correlation matrix \(\mathbf{R} \)
 - \(\lambda \) is the corresponding Eigen value
What about the total error?

\[E = \sum_{i} x_i^T x_i - \sum_{i} x_i^T v v^T x_i \]

- \(x^T v = v^T x \) (inner product)

\[
E = \sum_{i} x_i^T x_i - \sum_{i} v^T x_i x_i^T v = \sum_{i} x_i^T x_i - v^T \left(\sum_{i} x_i x_i^T \right) v
\]

\[
E = \sum_{i} x_i^T x_i - v^T R v = \sum_{i} x_i^T x_i - v^T \lambda v = \sum_{i} x_i^T x_i - \lambda v^T v
\]

\[E = \sum_{i} x_i^T x_i - \lambda \]
Minimizing the error

- The total error is

\[E = \sum_{i} x_i^T x_i - \lambda \]

- We already know that the optimal basis is an Eigen vector.

- The total error depends on the negative of the corresponding Eigen value.

- To minimize error, we must maximize \(\lambda \).

- i.e. Select the Eigen vector with the largest Eigen value.
The typical face

• Compute the correlation matrix for your data
 – Arrange them in matrix X and compute $R = XX^T$

• Compute the principal Eigen vector of R
 – The Eigen vector with the largest Eigen value

• This is the typical face
The second typical face

- The first typical face models some of the characteristics of the faces
 - Simply by scaling its grey level
- But the approximation has error
- The second typical face must explain some of this error
The second typical face

• Approximation with only the first typical face has error
• The second face must explain this error
• How do we find this face?
Solution: Iterate

- Get the “error” faces by subtracting the first-level approximation from the original image
Solution: Iterate

- Get the “error” faces by subtracting the first-level approximation from the original image

- Repeat the estimation on the “error” images
Abstracting the problem: Finding the *second* typical face

- Each “point” represents an *error* face in “pixel space”
- Find the vector V_2 such that the projection of these error faces on V_2 results in the least error
Minimizing error

\[E = \sum_i e_i^T e_i - \sum_i e_i^T vv^T e_i + \lambda(v^T v - 1) \]

• Differentiating w.r.t \(v \) and equating to 0

\[-2 \sum_i e_i e_i^T v + 2\lambda v = 0 \]

\[\left(\sum_i e_i e_i^T \right) v = \lambda v \]

The same math applies but now to the set of error data points.
The minimum-error basis is found by solving

$$R_e v_2 = \lambda v_2$$

$$R_e = \sum ee^T$$

• v_2 is an Eigen vector of the correlation matrix R_e corresponding to the largest eigen value λ of R_e
Which gives us our second typical face

- But approximation with the two faces will *still* result in error
- So we need more typical faces to explain *this* error

- We can do this by subtracting the appropriately scaled version of the second “typical” face from the error images and repeating the process
Solution: Iterate

- Get the second-level “error” faces by subtracting the scaled second typical face from the first-level error

- Repeat the estimation on the second-level “error” images
An interesting property

• Each “typical face” will be orthogonal to all other typical faces
 – Because each of them is learned to explain what the rest could not
 – None of these faces can explain one another!
To add more faces

• We can continue the process, refining the error each time
 – An instance of a procedure is called “Gram-Schmidt” orthogonalization

• OR... we can do it all at once
With many typical faces

Approximate every face \(f \) as \(f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k \)

Here \(W, V \) and \(U \) are ALL unknown and must be determined
 - Such that the squared error between \(U \) and \(M \) is minimum
With multiple bases

• Assumption: all bases v_1, v_2, v_3, \ldots are unit length

• Assumption: all bases are orthogonal to one another: $v_i^T v_j = 0$ if $i \neq j$

 – We are trying to find the optimal K-dimensional subspace to project the data

 – Any set of vectors in this subspace will define the subspace

 – Constraining them to be orthogonal does not change this

• I.e. if $V = [v_1 \ v_2 \ v_3 \ldots]$, $V^T V = I$

 – $\text{Pinv}(V) = V^T$

• Projection matrix for $V = V \text{Pinv}(V) = V V^T$
With multiple bases

- Projection for a vector
 \[\hat{x} = VV^T x \]

- Error vector
 \[x - \hat{x} = x - VV^T x \]

- Error length
 \[e(x) = x^T x - x^T VV^T x \]

Represents a K-dimensional subspace
With multiple bases

- Error for one vector:
 \[e(x) = x^T x - x^T V V^T x \]

- Error for many vectors:
 \[E = \sum_i x_i^T x_i - \sum_i x_i^T V V^T x_i \]

- Goal: Estimate \(V \) to minimize this error!
Minimizing error

• With constraint $V^T V = I$, objective to minimize

$$E = \sum_i x_i^T x_i - \sum_i x_i^T V V^T x_i + \text{trace}(\Lambda(V^T V - I))$$

– Note: now Λ is a diagonal matrix
– The constraint simply ensures that $v^T v = 1$ for every basis

• Differentiating w.r.t V and equating to 0

$$-2\left(\sum_i x_i x_i^T\right)V + 2\Lambda V = 0$$

$$RV = \Lambda V$$
Finding the optimal K bases

• Compute the Eigendecomposition of the correlation matrix
• Select K Eigen vectors
• But which K?
• Total error =
 \[E = \sum_{i} x_i^T x_i - \sum_{j=1}^{K} \lambda_j \]
• Select K eigen vectors corresponding to the K largest Eigen values
Eigen Faces!

- Arrange your input data into a matrix X
- Compute the correlation $R = XX^T$
- Solve the Eigen decomposition: $RV = \Lambda V$
- The Eigen vectors corresponding to the K largest eigen values are our optimal bases
- We will refer to these as *eigen faces*.
How many Eigen faces

- How to choose “K” (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix
 - In my example: 300 faces. So the matrix is 10000 x 300
- Multiply the matrix by its transpose
 - The correlation matrix is 10000x10000
Eigen faces

\[[U,S] = \text{eig}(\text{correlation}) \]

\[
S = \begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_{10000}
\end{bmatrix}
\]

\[
U = \begin{bmatrix}
eigenface_1 \\
eigenface_2
\end{bmatrix}
\]

- Compute the eigen vectors
 - Only 300 of the 10000 eigen values are non-zero
 - Why?
- Retain eigen vectors with high eigen values (>0)
 - Could use a higher threshold
The eigen vector with the highest eigen value is the first typical face.

The vector with the second highest eigen value is the second typical face.

Etc.
Representing a face

\[\text{Representation} = \begin{bmatrix} w_1 & w_2 & w_3 & \ldots \end{bmatrix}^T \]

- The weights with which the eigen faces must be combined to compose the face are used to represent the face!
Energy Compaction Example

• One outcome of the “energy compaction principle”: the approximations are recognizable

• Approximating a face with one basis:

\[f = w_1 v_1 \]
Energy Compaction Example

- One outcome of the “energy compaction principle”: the approximations are recognizable

- Approximating a face with one Eigenface:

 \[f = w_1 v_1 \]
Energy Compaction Example

- One outcome of the “energy compaction principle”: the approximations are recognizable

- Approximating a face with 10 eigenfaces:

\[f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10} \]
Energy Compaction Example

• One outcome of the “energy compaction principle”: the approximations are recognizable

• Approximating a face with 30 eigenfaces:

\[f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \ldots + w_{10} \mathbf{v}_{10} + \ldots + w_{30} \mathbf{v}_{30} \]
Energy Compaction Example

- One outcome of the “energy compaction principle”: the approximations are recognizable

- Approximating a face with 60 eigenfaces:

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} + \ldots + w_{30} v_{30} + \ldots + w_{60} v_{60} \]
How did I do this?

- Hint: only changing weights assigned to Eigen faces..
Class specificity

- The Eigenimages (bases) are very specific to the class of data they are trained on
 - Faces here
- They will not be useful for other classes
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 1 basis

\[f = w_1 v_1 \]
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 10 bases

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} \]
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

• With 30 bases

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} + \ldots + w_{30} v_{30} \]
Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
• With 100 bases

\[f = w_1 v_1 + w_2 v_2 + \ldots + w_{10} v_{10} + \ldots + w_{30} v_{30} + \ldots + w_{100} v_{100} \]
Universal bases

- Universal bases..

- End up looking a lot like discrete cosine transforms!!!!

- *DCTs are the best “universal” bases*
 - *If you don’t know what your data are, use the DCT*
SVD instead of Eigen

- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis?
 - Will take a very long time on your laptop
- SVD
 - Only need to perform “Thin” SVD. Very fast
 - $U = 10000 \times 300$
 - The columns of U are the eigen faces!
 - The Us corresponding to the “zero” eigen values are not computed
 - $S = 300 \times 300$
 - $V = 300 \times 300$
Using SVD to compute Eigenbases

\[[U, S, V] = \text{SVD}(X)\]

- U will have the Eigenvectors

- Thin SVD for 100 bases:
 \[[U, S, V] = \text{svds}(X, 100)\]

- Much more efficient
Eigen Decomposition of data

• Nothing magical about faces – can be applied to any data.
 – Eigen analysis is one of the key components of data compression and representation
 – Represent N-dimensional data by the weights of the K leading Eigen vectors
 • Reduces effective dimension of the data from N to K
 • But requires knowledge of Eigen vectors
Eigen decomposition of what?

- Eigen decomposition of the *correlation* matrix

- Is there an alternate way?
Linear vs. Affine

• The model we saw
 – Approximate every face f as
 \[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k \]
 – Linear combination of bases

• If you add a constant
 \[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]
 – Affine combination of bases
Estimation with the constant

• Estimate

\[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]

• Lets do this incrementally first:
 • \(f \approx m \)
 – For every face
 – Find \(m \) to optimize the approximation
Estimation with the constant

• Estimate
 \[f \approx m \]
 – for every \(f \)!

• Error over all faces
 \[E = \sum_f ||f - m||^2 \]

• Minimizing the error with respect to \(m \), we simply get
 \[-m = \frac{1}{N} \sum_f f \]

• The mean of the data
Estimation the remaining

• Same procedure as before:
 – Remaining “typical faces” must model what the constant m could not

• Subtract the constant from every data point
 – $\hat{f} = f - m$

• Now apply the model:
 – $\hat{f} = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k$

• This is just Eigen analysis of the “mean-normalized” data
 – Also called the “centered” data
Estimating the Affine model

\[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]

- First estimate the mean \(m \)
 \[m = \frac{1}{N} \sum_{f} f \]

- Compute the correlation matrix of the “centered” data \(\hat{f} = f - m \)
 \[C = \sum_{f} \hat{f} \hat{f}^T = \sum_{f} (f - m)(f - m)^T \]

 - This is the covariance matrix of the set of \(f \)
Estimating the Affine model

\[f = w_{f,1} V_1 + w_{f,2} V_2 + \ldots + w_{f,k} V_k + m \]

- First estimate the mean \(m \)
 \[m = \frac{1}{N} \sum_{f} f \]

- Compute the covariance matrix
 \[C = \sum_{f} (f - m) (f - m)^T \]

- Eigen decompose!
 \[CV = \Lambda V \]

- The Eigen vectors corresponding to the top \(k \) Eigen values give us the bases \(V_k \)
Properties of the affine model

• The bases V_1, V_2, \ldots, V_k are all orthogonal to one another
 – Eigen vectors of the symmetric Covariance matrix
• But they are not orthogonal to m
 – Because m is an unscaled constant

• We could jointly estimate all V_1, V_2, \ldots, V_k and m by minimizing

$$\sum f \| f - (\sum w_{f,i}V_i + m) \|^2 + \text{trace}(\Lambda(V^TV - I))$$
Linear vs. Affine

• The model we saw
 – Approximate **every** face f as
 $$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$$
 – The *Karhunen Loeve Transform*
 – Retains maximum **Energy** for any order k

• If you add a constant
 $$f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$$
 – *Principal Component Analysis*
 – Retains maximum **Variance** for any order k
How do they relate

• Relationship between correlation matrix and covariance matrix
 \[\mathbf{R} = \mathbf{C} + \mathbf{mm}^\text{T} \]

• *Karhunen Loeve* bases are Eigen vectors of \(\mathbf{R} \)
• *PCA* bases are Eigen vectors of \(\mathbf{C} \)
• How do they relate
 – Not easy to say..
The Eigen vectors

- The Eigen vectors of C are the major axes of the ellipsoid Cv, where v are the vectors on the unit sphere
The Eigen vectors

- The Eigen vectors of R are the major axes of the ellipsoid $\mathbf{Cv} + \mathbf{mm}^Tv$

- Note that \mathbf{mm}^T has rank 1 and \mathbf{mm}^Tv is a line
The Eigen vectors

- The principal Eigenvector of R lies between the principal Eigen vector of C and m

$$e_R = \alpha e_C + (1 - \alpha) \frac{m}{\|m\|}$$

0 $\leq \alpha \leq 1$

- Similarly the principal Eigen value

$$\lambda_R = \alpha \lambda_C + (1 - \alpha) \|m\|^2$$

- Similar logic is not easily extendable to the other Eigenvectors, however
Eigenvectors

• Turns out: Eigenvectors of the correlation matrix represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly

• The SVD of data matrix X uncovers these vectors
 • KLT
• Turns out: Eigenvectors of the covariance represent the major and minor axes of an ellipse centered at the mean which encloses the data most compactly

• PCA uncovers these vectors

• In practice, “Eigen faces” refers to PCA faces, and not KLT faces
What about sound?

- Finding Eigen bases for speech signals:
 - Look like DFT/DCT
 - Or wavelets

- DFTs are pretty good most of the time
Eigen Analysis

• Can often find surprising features in your data
• Trends, relationships, more
• Commonly used in recommender systems

• An interesting example..
Cheng Liu’s research on pipes.

- SVD automatically separates useful and uninformative features.
Eigen Analysis

• But for all of this, we need to “preprocess” data

• Eliminate unnecessary aspects
 – E.g. noise, other externally caused variations..