Machine Learning for Signal Processing
Regression and Prediction

Class 16. 28 Oct 2014

Instructor: Bhiksha Raj
Matrix Identities

\[f(\mathbf{x}) \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \quad df(\mathbf{x}) = \begin{bmatrix} \frac{df}{dx_1} \\ \frac{df}{dx_2} \\ \vdots \\ \frac{df}{dx_D} \end{bmatrix} \]

- The derivative of a scalar function w.r.t. a vector is a vector
Matrix Identities

\[f(\mathbf{x}) = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ x_{21} & x_{22} & \cdots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{D1} & x_{D2} & \cdots & x_{DD} \end{bmatrix} \]

\[df(\mathbf{x}) = \begin{bmatrix} \frac{df}{dx_{11}} & \frac{df}{dx_{12}} & \cdots & \frac{df}{dx_{1D}} \\ \frac{df}{dx_{21}} & \frac{df}{dx_{22}} & \cdots & \frac{df}{dx_{2D}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{df}{dx_{D1}} & \frac{df}{dx_{D2}} & \cdots & \frac{df}{dx_{DD}} \end{bmatrix} \]

- The derivative of a scalar function w.r.t. a vector is a vector
- The derivative w.r.t. a matrix is a matrix
Matrix Identities

\[\mathbf{F}(\mathbf{x}) = \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_N \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \]

\[\begin{bmatrix} dF_1 \\ dF_2 \\ \vdots \\ dF_N \end{bmatrix} = \begin{bmatrix} \frac{dF_1}{dx_1} & \frac{dF_1}{dx_2} & \cdots & \frac{dF_1}{dx_D} \\ \frac{dF_2}{dx_1} & \frac{dF_2}{dx_2} & \cdots & \frac{dF_2}{dx_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{dF_N}{dx_1} & \frac{dF_N}{dx_2} & \cdots & \frac{dF_N}{dx_D} \end{bmatrix} \]

- The derivative of a vector function w.r.t. a vector is a matrix
 - Note transposition of order
• In general: Differentiating an $M \times N$ function by a $U \times V$ argument results in an $M \times N \times U$ tensor derivative.
Matrix derivative identities

\[d(Xa) = Xda \]
\[d(a^T X) = X^T da \]

\[d(AX) = (dA)X \; ; \; d(XA) = X(dA) \]

\[d(a^T Xa) = a^T (X + X^T)da \]

\[d(\text{trace}(A^T XA)) = d(\text{trace}(XAA^T)) = d(\text{trace}(AA^TX)) = (X^T + X)dA \]

• Some basic linear and quadratic identities
A Common Problem

• Can you spot the glitches?
How to fix this problem?

• “Glitches” in audio
 – Must be detected
 – How?

• Then what?

• Glitches must be “fixed”
 – Delete the glitch
 • Results in a “hole”
 – Fill in the hole
 – How?
Interpolation..

- “Extend” the curve on the left to “predict” the values in the “blank” region
 - *Forward* prediction
- Extend the blue curve on the right leftwards to predict the blank region
 - *Backward* prediction
- How?
 - Regression analysis..
Detecting the Glitch

• Regression-based reconstruction can be done anywhere.
• Reconstructed value will not match actual value.
• Large error of reconstruction identifies glitches.
What is a regression

• Analyzing relationship between variables
• Expressed in many forms
• Wikipedia
 – Linear regression, Simple regression, Ordinary least squares, Polynomial regression, General linear model, Generalized linear model, Discrete choice, Logistic regression, Multinomial logit, Mixed logit, Probit, Multinomial probit,

• Generally a tool to *predict* variables
Regressions for prediction

• \(y = f(x; \Theta) + e \)

• Different possibilities
 – \(y \) is a scalar
 • \(y \) is real
 • \(y \) is categorical (classification)
 – \(y \) is a vector
 – \(x \) is a vector
 • \(x \) is a set of real valued variables
 • \(x \) is a set of categorical variables
 • \(x \) is a combination of the two
 – \(f(.) \) is a linear or affine function
 – \(f(.) \) is a non-linear function
 – \(f(.) \) is a time-series model
A linear regression

• Assumption: relationship between variables is linear
 – A linear trend may be found relating x and y
 – $y = dependent$ variable
 – $x = explanatory$ variable
 – Given x, y can be predicted as an affine function of x
An imaginary regression..

- Check this shit out (Fig. 1). That's bonafide, 100%-real data, my friends. I took it myself over the course of two weeks. And this was not a leisurely two weeks, either; I busted my ass day and night in order to provide you with nothing but the best data possible. Now, let's look a bit more closely at this data, remembering that it is absolutely first-rate. Do you see the exponential dependence? I sure don't. I see a bunch of crap.

 Christ, this was such a waste of my time.

 Banking on my hopes that whoever grades this will just look at the pictures, I drew an exponential through my noise. I believe the apparent legitimacy is enhanced by the fact that I used a complicated computer program to make the fit. I understand this is the same process by which the top quark was discovered.
Linear Regressions

• \(y = Ax + b + e \)
 – \(e \) = prediction error

• Given a “training” set of \(\{x, y\} \) values: estimate \(A \) and \(b \)
 – \(y_1 = Ax_1 + b + e_1 \)
 – \(y_2 = Ax_2 + b + e_2 \)
 – \(y_3 = Ax_3 + b + e_3 \)
 – ...

• If \(A \) and \(b \) are well estimated, prediction error will be small
Linear Regression to a scalar

\[y_1 = a^T x_1 + b + e_1 \]
\[y_2 = a^T x_2 + b + e_2 \]
\[y_3 = a^T x_3 + b + e_3 \]

Define:
\[y = [y_1 \ y_2 \ y_3 \ldots] \]
\[x = \begin{bmatrix} x_1 & x_2 & x_3 & \ldots \end{bmatrix} \]
\[e = [e_1 \ e_2 \ e_3 \ldots] \]

Rewrite
\[y = A^T X + e \]
Learning the parameters

\[y = A^T X + e \]

\[\hat{y} = A^T X \quad \text{Assuming no error} \]

• Given training data: several \(x, y \)
• Can define a “divergence”: \(D(y, \hat{y}) \)
 – Measures how much \(\hat{y} \) differs from \(y \)
 – Ideally, if the model is accurate this should be small
• Estimate \(A, b \) to minimize \(D(y, \hat{y}) \)
The prediction error as divergence

\[y_1 = a^T x_1 + b + e_1 \]
\[y_2 = a^T x_2 + b + e_2 \]
\[y_3 = a^T x_3 + b + e_3 \]

\[y = A^T X + e = \hat{y} + e \]

\[D(y, \hat{y}) = E = e_1^2 + e_2^2 + e_3^2 + ... \]
\[= (y_1 - a^T x_1 - b)^2 + (y_2 - a^T x_2 - b)^2 + (y_3 - a^T x_3 - b)^2 + ... \]

\[E = (y - A^T X)(y - A^T X)^T = \|y - A^T X\|^2 \]

- Define divergence as sum of the squared error in predicting y
Prediction error as divergence

- \(y = a^T x + e \)
 - \(e \) = prediction error
 - Find the “slope” \(a \) such that the total squared length of the error lines is minimized
Solving a linear regression

\[y = A^T X + e \]

- Minimize squared error
 \[E = \| y - X^T A \|^2 = (y - A^T X)(y - A^T X)^T = yy^T + A^T XX^T A - 2yX^T A \]

- Differentiating w.r.t. \(A \) and equating to 0
 \[dE = \left(2A^T XX^T - 2yX^T \right) dA = 0 \]

\[A^T = yX^T (XX^T)^{-1} = ypinv(X) \]

\[A = (XX^T)^{-1} Xy^T \]
Regression in multiple dimensions

- Also called *multiple regression*
- Equivalent of saying:
 \[y_i = A^T x_i + b + e_i \]

 \[y_1 = A^T x_1 + b + e_1 \]
 \[y_2 = A^T x_2 + b + e_2 \]
 \[y_3 = A^T x_3 + b + e_3 \]

 \[y_i \text{ is a vector} \]

 \[y_{ij} = \text{\(j\)th component of vector } y_i \]

 \[a_i = \text{\(i\)th column of } A \]

 \[b_j = \text{\(j\)th component of } b \]

 \[y_{i1} = a_1^T x_i + b_1 + e_{i1} \]
 \[y_{i2} = a_2^T x_i + b_2 + e_{i2} \]
 \[y_{i3} = a_3^T x_i + b_3 + e_{i3} \]

- Fundamentally no different from N separate single regressions
 - But we can use the relationship between \(y\)s to our benefit
Multiple Regression

\[Y = [y_1 \ y_2 \ y_3 \ldots] \quad X = \begin{bmatrix} x_1 & x_2 & x_3 & \ldots \\ 1 & 1 & 1 & \ldots \end{bmatrix} \quad \hat{A} = \begin{bmatrix} A \\ b \end{bmatrix} \]

\[E = [e_1 \ e_2 \ e_3 \ldots] \]

\[Y = \hat{A}^T X + E \]

\[DIV = \sum_i \left\| y_i - \hat{A}^T \bar{x}_i \right\|^2 = trace((Y - \hat{A}^T X)(Y - \hat{A}^T X)^T) \]

• Differentiating and equating to 0

\[d.Div = -2(Y - \hat{A}^T X) X^T d\hat{A} = 0 \quad \text{YX}^T = \hat{A}^T XX^T \]

\[\hat{A}^T = YX^T (XX^T)^{-1} = Ypinv(X) \]

\[\hat{A} = (XX^T)^{-1} XY^T \]
A Different Perspective

• \(y \) is a noisy reading of \(A^T x \)

\[
y = A^T x + e
\]

• Error \(e \) is Gaussian

\[
e \sim N(0, \sigma^2 I)
\]

• Estimate \(A \) from

\[
Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N]
\]
The *Likelihood* of the data

\[y = A^T x + e \quad \text{e} \sim N(0, \sigma^2 I) \]

- Probability of observing a specific \(y \), given \(x \), for a particular matrix \(A \)

\[P(y \mid x; A) = N(y; A^T x, \sigma^2 I) \]

- Probability of collection: \(Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N] \)

\[P(Y \mid X; A) = \prod_{i} N(y_i; A^T x_i, \sigma^2 I) \]

- Assuming IID for convenience (not necessary)
A Maximum Likelihood Estimate

\[y = A^T x + e \quad e \sim N(0, \sigma^2 I) \quad Y = [y_1 \ y_2 \ldots y_N] \quad X = [x_1 \ x_2 \ldots x_N] \]

\[P(Y \mid X) = \prod_i \frac{1}{\sqrt{(2\pi\sigma^2)^D}} \exp\left(-\frac{1}{2\sigma^2} \|y_i - A^T x_i\|^2\right) \]

\[\log P(Y \mid X; A) = C - \sum_i \frac{1}{2\sigma^2} \|y_i - A^T x_i\|^2 \]

\[= C - \frac{1}{2\sigma^2} \text{trace}\left((Y - A^T X)(Y - A^T X)^T\right) \]

- Maximizing the log probability is identical to minimizing the trace
 - Identical to the least squares solution

\[A^T = YX^T \left(XX^T\right)^{-1} = Ypinv(X) \]

\[A = \left(XX^T\right)^{-1} XY^T \]
Predicting an output

• From a collection of training data, have learned A
• Given x for a new instance, but not y, what is y?
• Simple solution: $\hat{y} = A^TX$
Applying it to our problem

• Prediction by regression

• Forward regression

\[x_t = a_1 x_{t-1} + a_2 x_{t-2} \ldots a_k x_{t-k} + e. \]

• Backward regression

\[x_t = b_1 x_{t+1} + b_2 x_{t+2} \ldots b_k x_{t+k} + \]
Applying it to our problem

• Forward prediction

\[
\begin{bmatrix}
 x_t \\
 x_{t-1} \\
 \vdots \\
 x_{K+1}
\end{bmatrix}
= \begin{bmatrix}
 x_{t-1} & x_{t-2} & \cdots & x_{t-K} \\
 x_{t-2} & x_{t-3} & \cdots & x_{t-K-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_K & x_{K-1} & \cdots & x_1
\end{bmatrix}
\begin{bmatrix}
 a_t \\
 e_t \\
 e_{t-1} \\
 \vdots \\
 e_{K+1}
\end{bmatrix}
\]

\[x = Xa_t + e\]

\[\text{pinv}(X)x = a_t\]
Applying it to our problem

- Backward prediction

\[
\begin{bmatrix}
 x_{t-K-1} \\
 x_{t-K-2} \\
 \vdots \\
 x_1
\end{bmatrix}
= \begin{bmatrix}
 x_t & x_{t-1} & \ldots & x_{t-K} \\
 x_{t-1} & x_{t-2} & \ldots & x_{t-K-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{K+1} & x_K & \ldots & x_2
\end{bmatrix}
\begin{bmatrix}
 b_t \\
 e_{t-K-1} \\
 e_{t-K-2} \\
 \vdots \\
 e_1
\end{bmatrix}
\]

\[
\bar{x} = \overline{X}b_t + e
\]

\[
pinv(\overline{X})\bar{x} = b_t
\]
Finding the burst

• At each time
 – Learn a “forward” predictor a_t
 – At each time, predict next sample $x_{t}^{\text{est}} = \sum_i a_{t,k} x_{t-k}$
 – Compute error: $ferr_t = |x_t - x_{t}^{\text{est}}|^2$
 – Learn a “backward” predict and compute backward error
 • $berr_t$
 – Compute average prediction error over window, threshold
Filling the hole

- Learn “forward” predictor at left edge of “hole”
 - For each missing sample
 - At each time, predict next sample $x_t^{est} = \sum_i a_{t,k} x_{t-k}$
 - Use estimated samples if real samples are not available

- Learn “backward” predictor at left edge of “hole”
 - For each missing sample
 - At each time, predict next sample $x_t^{est} = \sum_i b_{t,k} x_{t+k}$
 - Use estimated samples if real samples are not available

- Average forward and backward predictions
Reconstruction zoom in

Reconstruction area

Interpolation result

Distorted signal

Recovered signal

Actual data

Next glitch
Incrementally learning the regression

\[A = (XX^T)^{-1} XY^T \]

Requires knowledge of all (x,y) pairs

• Can we learn A incrementally instead?
 – As data comes in?

• The Widrow Hoff rule

\[a^{t+1} = a^t + \eta(y_t - \hat{y}_t)x_t \]
\[\hat{y}_t = (a^t)^T x_t \]

Scalar prediction version

• Note the structure
 – Can also be done in batch mode!
Predicting a value

\[A = (XX^T)^{-1} XY^T \]

\[\hat{y} = A^T x = YX^T (XX^T)^{-1} x \]

- What are we doing exactly?
 - For the explanation we are assuming no “b” (X is 0 mean)
 - Explanation generalizes easily even otherwise

\[C = XX^T \]

- Let \(\hat{x} = C^{-\frac{1}{2}} x \) and \(\hat{X} = C^{-\frac{1}{2}} X \)
- Whitening x
- \(N^{-0.5} C^{-0.5} \) is the whitening matrix for x

\[\hat{y} = YX^T C^{-\frac{1}{2}} \hat{X}^{-\frac{1}{2}} X = Y\hat{X}^T \hat{x}_i \]
Predicting a value

\[\hat{y} = Y\hat{X}^T \hat{x} = \sum_{i} \hat{x}_i^T \hat{y}_i \]

\[\hat{y} = Y\hat{X}^T \hat{x} = \frac{1}{N} \begin{bmatrix} y_1 & \cdots & y_N \end{bmatrix} \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} = \sum_{i} y_i \left(\hat{x}_i^T \hat{x}_i \right) \]

- What are we doing exactly?
Predicting a value

\[
\hat{y} = \sum_i y_i (\hat{x}^T \hat{x})
\]

- Given training instances \((x_i, y_i)\) for \(i = 1..N\), estimate \(y\) for a new test instance of \(x\) with unknown \(y\):
- \(y\) is simply a *weighted sum of the \(y_i\) instances from the training data*
- The weight of any \(y_i\) is simply the inner product between its corresponding \(x_i\) and the new \(x\)
 - With due whitening and scaling..
What are we doing: A different perspective

\[\hat{y} = A^T x = YX^T (XX^T)^{-1} x \]

- Assumes \(XX^T \) is invertible
- What if it is not
 - Dimensionality of \(X \) is greater than number of observations?
 - Underdetermined
- In this case \(X^T X \) will generally be invertible

\[A = X(X^T X)^{-1} Y^T \quad \hat{y} = Y(X^T X)^{-1} X^T x \]
High-dimensional regression

\[\hat{y} = Y(X^T X)^{-1} X^T x \]

- \(X^T X \) is the “Gram Matrix”

\[G = \begin{bmatrix}
 x_1^T x_1 & x_1^T x_2 & \ldots & x_1^T x_N \\
 x_2^T x_1 & x_2^T x_2 & \ldots & x_2^T x_N \\
 \vdots & \vdots & \ddots & \vdots \\
 x_N^T x_1 & x_N^T x_2 & \ldots & x_N^T x_N
\end{bmatrix} \]

\[\hat{y} = YG^{-1}X^T x \]
High-dimensional regression

\[\hat{y} = YG^{-1}X^T x \]

• Normalize \(Y \) by the inverse of the gram matrix

\[\bar{Y} = YG^{-1} \]

• Working our way down..

\[\hat{y} = \bar{Y}X^T x \]

\[\hat{y} = \sum_i \bar{y}_i x_i^T x \]
Linear Regression in High-dimensional Spaces

\[\hat{y} = \sum_{i} \bar{y}_i x_i^T x \]

\[\bar{Y} = YG^{-1} \]

- Given training instances \((x_i, y_i)\) for \(i = 1..N\), estimate \(y\) for a new test instance of \(x\) with unknown \(y\):
- \(y\) is simply a weighted sum of the normalized \(y_i\) instances from the training data
 - The normalization is done via the Gram Matrix
- The weight of any \(y_i\) is simply the inner product between its corresponding \(x_i\) and the new \(x\)
Relationships are not always linear

- How do we model these?
- Multiple solutions
Non-linear regression

- \(y = \mathbf{A}\phi(\mathbf{x}) + \mathbf{e} \)

\[\mathbf{x} \rightarrow \phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots, \phi_N(\mathbf{x})] \]

\[\mathbf{X} \rightarrow \Phi(\mathbf{X}) = [\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \ldots, \phi(\mathbf{x}_K)] \]

- \(\mathbf{Y} = \mathbf{A}\Phi(\mathbf{X}) + \mathbf{e} \)

- Replace \(\mathbf{X} \) with \(\Phi(\mathbf{X}) \) in earlier equations for solution

\[\mathbf{A} = \left(\Phi(\mathbf{X})\Phi(\mathbf{X})^T \right)^{-1} \Phi(\mathbf{X})\mathbf{Y}^T \]
Problem

- \(Y = A \Phi(X) + e \)
- Replace \(X \) with \(\Phi(X) \) in earlier equations for solution

\[
A = \left(\Phi(X) \Phi(X)^T \right)^{-1} \Phi(X) Y^T
\]

- \(\Phi(X) \) may be in a very high-dimensional space
- The high-dimensional space (or the transform \(\Phi(X) \)) may be unknown..
The regression is in high dimensions

• **Linear regression:**
 \[\hat{y} = \sum_{i} \bar{y}_i x_i^T x \]
 \[\bar{Y} = YG^{-1} \]

• **High-dimensional regression**

\[
G = \begin{bmatrix}
\Phi(x_1)^T \Phi(x_1) & \Phi(x_2)^T \Phi(x_2) & \ldots & \Phi(x_1)^T \Phi(x_N) \\
\Phi(x_2)^T \Phi(x_1) & \Phi(x_2)^T \Phi(x_2) & \ldots & \Phi(x_2)^T \Phi(x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\Phi(x_1)^T \Phi(x_1) & \Phi(x_N)^T \Phi(x_2) & \ldots & \Phi(x_N)^T \Phi(x_N)
\end{bmatrix}
\]

\[\bar{Y} = YG^{-1} \]

\[\hat{y} = \sum_{i} \bar{y}_i \Phi(x_i)^T \Phi(x) \]
Doing it with Kernels

• *High-dimensional regression with Kernels*:

\[K(x, y) = \Phi(x)^T \Phi(y) \]

\[
G = \begin{bmatrix}
K(x_1, x_1) & K(x_1, x_1) & \ldots & K(x_1, x_N) \\
K(x_2, x_1) & K(x_2, x_2) & \ldots & K(x_2, x_N) \\
\vdots & \vdots & \ddots & \vdots \\
K(x_N, x_1) & K(x_N, x_2) & \ldots & K(x_N, x_N)
\end{bmatrix}
\]

• Regression in Kernel Hilbert Space..

\[
\bar{Y} = YG^{-1}
\]

\[
\hat{y} = \sum_i \bar{y}_i K(x_i, x)
\]
A different way of finding nonlinear relationships: Locally linear regression

• Previous discussion: Regression parameters are optimized over the entire training set
• Minimize
 \[
 E = \sum_{\text{all } i} \left| y_i - A^T x_i - b \right|^2
 \]
• Single global regression is estimated and applied to all future \(x \)
• Alternative: *Local regression*
• *Learn a regression that is specific to* \(x \)
Being non-committal: Local Regression

• Estimate the regression to be applied to any \(x \) using training instances near \(x \)

\[
E = \sum_{x_j \in \text{neighborhood}(x)} \left\| y_i - A^T x_i - b \right\|^2
\]

• The resultant regression has the form

\[
y = \sum_{x_j \in \text{neighborhood}(x)} d(x, x_j)y_j + e
\]

– Note: this regression is specific to \(x \)

• A separate regression must be learned for every \(x \)
Local Regression

\[y = \sum_{x_j \in \text{neighborhood}(x)} d(x, x_j) y_j + e \]

• But what is \(d() \)?
 – For linear regression \(d() \) is an inner product

• More generic form: Choose \(d() \) as a function of the distance between \(x \) and \(x_j \)

• If \(d() \) falls off rapidly with \(|x \text{ and } x_j| \) the “neighborhood” requirement can be relaxed

\[y = \sum_{\text{all}} d(x, x_j) y_j + e \]
Kernel Regression: \(d() = K() \)

\[
\hat{y} = \frac{\sum_i K_h(x - x_i)y_i}{\sum_i K_h(x - x_i)}
\]

- Typical Kernel functions: Gaussian, Laplacian, other density functions
 - Must fall off rapidly with increasing distance between \(x \) and \(x_j \)
- Regression is \textit{local} to every \(x \): Local regression
- Actually a non-parametric MAP estimator of \(y \)
 - But first.. MAP estimators,
Map Estimators

• MAP (Maximum A Posteriori): Find a “best guess” for y (statistically), given known x
 $$y = \arg\max_y P(Y|x)$$

• ML (Maximum Likelihood): Find that value of y for which the statistical best guess of x would have been the observed x
 $$y = \arg\max_y P(x|Y)$$

• MAP is simpler to visualize
MAP estimation: Gaussian PDF

Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.
Learning the parameters of the Gaussian

\[z = \begin{bmatrix} y \\ x \end{bmatrix} \]

\[\mu_z = \frac{1}{N} \sum_{i=1}^{N} z_i \]

\[C_z = \frac{1}{N} \sum_{i=1}^{N} (z_i - \mu_z)(z_i - \mu_z)^T \]

\[\mu_z = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix} \]

\[C_z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \]
Learning the parameters of the Gaussian

\[\mu_z = \frac{1}{N} \sum_{i=1}^{N} z_i \]

\[\mu_z = \begin{bmatrix} \mu_y \\ \mu_x \end{bmatrix} \]

\[z = \begin{bmatrix} y \\ x \end{bmatrix} \]

\[C_z = \frac{1}{N} \sum_{i=1}^{N} (z_i - \mu_z)(z_i - \mu_z)^T \]

\[C_z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \]

\[\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[C_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)^T \]
Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.
Assume X and Y are jointly Gaussian.

The parameters of the Gaussian are learned from training data.

Now we are given an X, but no Y. What is Y?
MAP estimator for Gaussian RV
MAP estimation: Gaussian PDF
MAP estimation: The Gaussian at a particular value of X
MAP estimation: The Gaussian at a particular value of X

Most likely value
MAP Estimation of a Gaussian RV

\[Y = \arg\max_y P(y \mid X) \]

![Graph showing MAP estimation of a Gaussian RV]
MAP Estimation of a Gaussian RV

![Graph showing MAP estimation of a Gaussian RV]
MAP Estimation of a Gaussian RV

\[Y = \text{argmax}_y P(y \mid X) \]
So what is this value?

- Clearly a line
- Equation of Line:
 \[
 \hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (x - \mu_x)
 \]
- Scalar version given; vector version is identical
 \[
 \hat{y} = \mu_Y + C_{YX} C_{XX}^{-1} (\mathbf{x} - \mu_x)
 \]
- Derivation? Later in the program a bit
 – Note the similarity to regression
This is a *multiple* regression

\[\hat{y} = \mu_Y + C_{yx} C^{-1}_{xx} (x - \mu_x) \]

- This is the MAP estimate of \(y \)
 - \(y = \arg\max_Y P(Y|x) \)

- What about the ML estimate of \(y \)
 - \(\arg\max_Y P(x|Y) \)

- Note: Neither of these may be the *regression* line!
 - MAP estimation of \(y \) is the regression on \(Y \) for Gaussian RVs
 - *But this is not the MAP estimation of the regression parameter*
Its also a *minimum-mean-squared error* estimate

- General principle of MMSE estimation:
 - y is unknown, x is known
 - Must estimate it such that the *expected* squared error is minimized

\[
Err = E[\|y - \hat{y}\|^2 | x]
\]

- Minimize above term
Its also a \textit{minimum-mean-squared error} estimate

- Minimize error:

\[
Err = E[\|y - \hat{y}\|^2 | x] = E[(y - \hat{y})^T (y - \hat{y})| x]
\]

\[
Err = E[y^T y + \hat{y}^T \hat{y} - 2\hat{y}^T y | x] = E[y^T y | x] + \hat{y}^T \hat{y} - 2\hat{y}^T E[y | x]
\]

- Differentiating and equating to 0:

\[
d.Err = 2\hat{y}^T d\hat{y} - 2E[y | x]^T d\hat{y} = 0
\]

\[
\hat{y} = E[y | x]
\]

The MMSE estimate is the mean of the distribution
For the Gaussian: MAP = MMSE

Most likely value is also the MEAN value.

- Would be true of any symmetric distribution.
MMSE estimates for mixture distributions

- Let $P(y|x)$ be a mixture density.
- The MMSE estimate of y is given by

$$E[y | x] = \int y \sum_k P(k)P(y | k, x) dy = \sum_k P(k)E[y | k, x]$$

- Just a weighted combination of the MMSE estimates from the component distributions.
MMSE estimates from a Gaussian mixture

- Let $P(x,y)$ be a Gaussian Mixture

$$z = \begin{bmatrix} y \\ x \end{bmatrix}$$

$$P(x,y) = P(z) = \sum_k P(k)N(z; \mu_k, \Sigma_k)$$

- $P(y|x)$ is also a Gaussian mixture

$$P(y \mid x) = \frac{P(x,y)}{P(x)} = \frac{\sum_k P(k,x,y)}{P(x)} = \sum_k \frac{P(x)P(k \mid x)P(y \mid x,k)}{P(x)}$$

$$P(y \mid x) = \sum_k P(k \mid x)P(y \mid x,k)$$
MMSE estimates from a Gaussian mixture

- Let $P(y|x)$ is a Gaussian Mixture

$$P(y|x) = \sum_k P(k|x)P(y|x,k)$$

$$P(y,x,k) = N([y;x];[\mu_{k,y};\mu_{k,x}],\begin{bmatrix} C_{k,yy} & C_{k,yx} \\ C_{k,xy} & C_{k,xx} \end{bmatrix})$$

$$P(y|x,k) = N(y;\mu_{k,y} + C_{k,yx}C^{-1}_{k,xx}(x - \mu_{k,x}), \Theta)$$

$$P(y|x) = \sum_k P(k|x)N(y;\mu_{k,y} + C_{k,yx}C^{-1}_{k,xx}(x - \mu_{k,x}), \Theta)$$
MMSE estimates from a Gaussian mixture

\[
P(y \mid x) = \sum_k P(k \mid x) N(y; \mu_{k,y} + C_{k,yy}C^{-1}_{k,xx}(x - \mu_{k,x}), \Theta)
\]

- \(P(y \mid x) \) is a mixture Gaussian density
- \(E[y \mid x] \) is also a mixture

\[
E[y \mid x] = \sum_k P(k \mid x) E[y \mid k, x]
\]

\[
E[y \mid x] = \sum_k P(k \mid x) \left(\mu_{k,y} + C_{k,yy}C^{-1}_{k,xx}(x - \mu_{k,x}) \right)
\]
MMSE estimates from a Gaussian mixture

- A mixture of estimates from individual Gaussians
Voice Morphing

- **Align training recordings from both speakers**
 - Cepstral vector sequence
- Learn a GMM on joint vectors
- Given speech from one speaker, find MMSE estimate of the other
- **Synthesize from cepstra**
MMSE with GMM: Voice Transformation

- Festvox GMM transformation suite (Toda)

<table>
<thead>
<tr>
<th></th>
<th>awb</th>
<th>bdl</th>
<th>jmk</th>
<th>slt</th>
</tr>
</thead>
<tbody>
<tr>
<td>awb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jmk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11755/18797
A problem with regressions

- ML fit is sensitive
 - Error is squared
 - Small variations in data \rightarrow large variations in weights
 - Outliers affect it adversely

- Unstable
 - If dimension of \mathbf{X} \geq no. of instances
 - $(\mathbf{X}\mathbf{X}^T)$ is not invertible

$$A = (\mathbf{X}\mathbf{X}^T)^{-1} \mathbf{X} \mathbf{Y}^T$$
MAP estimation of weights

- Assume weights drawn from a Gaussian
 \[P(a) = \mathcal{N}(0, \sigma^2 I) \]
- Max. Likelihood estimate
 \[\hat{a} = \arg \max_a \log P(y \mid X; a) \]
- Maximum \textit{a posteriori} estimate
 \[\hat{a} = \arg \max_a \log P(a \mid y, X) = \arg \max_a \log P(y \mid X, a) P(a) \]
MAP estimation of weights

\[\hat{a} = \arg \max_A \log P(a \mid y, X) = \arg \max_A \log P(y \mid X, a) P(a) \]

- \(P(a) = N(0, \sigma^2 I) \)
- \(\log P(a) = C - \log \sigma - 0.5\sigma^{-2} \|a\|^2 \)

\[\log P(y \mid X, a) = C - \frac{1}{2\sigma^2} (y - a^T X)^T (y - a^T X)^T \]

\[\hat{a} = \arg \max_A C' - \log \sigma - \frac{1}{2\sigma^2} (y - a^T X)^T (y - a^T X)^T - 0.5\sigma^2 a^T a \]

- Similar to ML estimate with an additional term
MAP estimate of weights

\[dL = \left(2a^TXX^T + 2yX^T + 2\sigma I\right)da = 0 \]

\[a = \left(XX^T + \sigma I\right)^{-1}XY^T \]

• Equivalent to diagonal loading of correlation matrix
 – Improves condition number of correlation matrix
 • Can be inverted with greater stability
 – Will not affect the estimation from well-conditioned data
 – Also called Tikhonov Regularization
 • Dual form: Ridge regression

• MAP estimate of weights
 – Not to be confused with MAP estimate of Y
MAP estimate priors

- Left: Gaussian Prior on W
- Right: Laplacian Prior

\[
\frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)
\]
MAP estimation of weights with laplacian prior

• Assume weights drawn from a Laplacian
 \[- P(a) = \lambda^{-1}\exp(-\lambda^{-1}|a|_1) \]

• Maximum a posteriori estimate

\[
\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1}|a|_1
\]

• No closed form solution
 – Quadratic programming solution required
 • Non-trivial
MAP estimation of weights with laplacian prior

• Assume weights drawn from a Laplacian
 \[P(a) = \lambda^{-1} \exp(-\lambda^{-1}|a|_1) \]

• Maximum \textit{a posteriori} estimate

\[
\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1}|a|_1
\]

• Identical to L\(_1\) regularized least-squares estimation
L$_1$-regularized LSE

$$\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T - \lambda^{-1} |a|_1$$

- No closed form solution
 - Quadratic programming solutions required

- Dual formulation

$$\hat{a} = \arg \max_A C' - (y - a^T X)^T (y - a^T X)^T \text{ subject to } |a|_1 \leq t$$

- “LASSO” – Least absolute shrinkage and selection operator
LASSO Algorithms

• Various convex optimization algorithms

• LARS: Least angle regression

• Pathwise coordinate descent..

• Matlab code available from web
Regularized least squares

- Regularization results in selection of suboptimal (in least-squares sense) solution
 - One of the loci outside center
- Tikhonov regularization selects shortest solution
- L_1 regularization selects sparsest solution

Image Credit: Tibshirani
LASSO and Compressive Sensing

- Given Y and X, estimate sparse a
- LASSO:
 - $X =$ explanatory variable
 - $Y =$ dependent variable
 - $a =$ weights of regression
- CS:
 - $X =$ measurement matrix
 - $Y =$ measurement
 - $a =$ data
An interesting problem: Predicting War!

• Economists measure a number of social indicators for countries weekly
 – Happiness index
 – Hunger index
 – Freedom index
 – Twitter records
 – ...

• Question: Will there be a revolution or war next week?
An interesting problem: Predicting War!

• Issues:
 – Dissatisfaction builds up – not an instantaneous phenomenon
 • Usually
 – War / rebellion build up much faster
 • Often in hours

• Important to predict
 – Preparedness for security
 – Economic impact
Predicting War

Given

- Sequence of economic indicators for each week
- Sequence of unrest markers for each week
 - At the end of each week we know if war happened or not that week
- Predict probability of unrest next week
 - This could be a new unrest or persistence of a current one
Predicting Time Series

• Need *time-series models*

• HMMs – later in the course