Machine Learning for Signal Processing

Clustering

Bhiksha Raj

Class 12. 10 Oct 2013
Statistical Modelling and Latent Structure

• Much of statistical modelling attempts to identify \textit{latent} structure in the data
 – Structure that is not immediately apparent from the observed data
 – But which, if known, helps us explain it better, and make predictions from or about it

• Clustering methods attempt to extract such structure from \textit{proximity}
 – \textit{First-level} structure (as opposed to deep structure)

• We will see other forms of latent structure discovery later in the course
Clustering
How
Clustering

• What is clustering
 – Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)
What is clustering

- Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)
Clustering

• What is clustering
 – Clustering is the determination of naturally occurring grouping of data/instances *(with low within-group variability and high between-group variability)*

• How is it done
 – Find groupings of data such that the groups optimize a “within-group-variability” objective function of some kind
Clustering

• What is clustering
 – Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)

• How is it done
 – Find groupings of data such that the groups optimize a “within-group-variability” objective function of some kind
 – The objective function used affects the nature of the discovered clusters
 • E.g. Euclidean distance vs.
 • Distance from center
Clustering

• What is clustering
 – Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)

• How is it done
 – Find groupings of data such that the groups optimize a “within-group-variability” objective function of some kind
 – The objective function used affects the nature of the discovered clusters
 • E.g. Euclidean distance vs.
 • Distance from center
Why Clustering

• Automatic grouping into “Classes”
 – Different clusters may show different behavior

• Quantization
 – All data within a cluster are represented by a single point

• Preprocessing step for other algorithms
 – Indexing, categorization, etc.
Finding natural structure in data

- Find natural groupings in data for further analysis
- Discover *latent* structure in data
Some Applications of Clustering

• Image segmentation
• **Quantize** every vector to one of K (vector) values
• What are the optimal K vectors? How do we find them? How do we perform the quantization?
• **LBG algorithm**
• How to retrieve all music videos by this guy?
• Build a classifier
 – But how do you represent the video?
Representation: BOW

- Bag of words representations of video/audio/data

Training: Each point is a video frame

Representation: Each number is the #frames assigned to the codeword
Obtaining “Meaningful” Clusters

• Two key aspects:
 – 1. The feature representation used to characterize your data
 – 2. The “clustering criteria” employed
Clustering Criterion

• The “Clustering criterion” actually has two aspects

• Cluster compactness criterion
 – Measure that shows how “good” clusters are
 • The objective function

• Distance of a point from a cluster
 – To determine the cluster a data vector belongs to
“Compactness” criteria for clustering

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
“Compactness” criteria for clustering

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
“Compactness” criteria for clustering

• Distance based measures
 – Total distance between each element in the cluster and every other element in the cluster
 – Distance between the two farthest points in the cluster
“Compactness” criteria for clustering

• Distance based measures
 – Total distance between each element in the cluster and every other element in the cluster
 – Distance between the two farthest points in the cluster
 – Total distance of every element in the cluster from the centroid of the cluster
“Compactness” criteria for clustering

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster
“Compactness” criteria for clustering

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster
“Compactness” criteria for clustering

• Distance based measures
 – Total distance between each element in the cluster and every other element in the cluster
 – Distance between the two farthest points in the cluster
 – Total distance of every element in the cluster from the centroid of the cluster
 – Distance measures are often weighted Minkowski metrics

\[
dist = \sqrt[n]{w_1|a_1-b_1|^n + w_2|a_2-b_2|^n + \ldots + w_M|a_M-b_M|^n}
\]
Clustering: Distance from cluster

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
Clustering: Distance from cluster

• How far is a data point from a cluster?
 – Euclidean or Minkowski distance from the centroid of the cluster
 – Distance from the closest point in the cluster
Clustering: Distance from cluster

• How far is a data point from a cluster?
 – Euclidean or Minkowski distance from the centroid of the cluster
 – Distance from the closest point in the cluster
 – Distance from the farthest point in the cluster
Clustering: Distance from cluster

• How far is a data point from a cluster?
 – Euclidean or Minkowski distance from the centroid of the cluster
 – Distance from the closest point in the cluster
 – Distance from the farthest point in the cluster
 – Probability of data measured on cluster distribution
Clustering: Distance from cluster

• How far is a data point from a cluster?
 – Euclidean or Minkowski distance from the centroid of the cluster
 – Distance from the closest point in the cluster
 – Distance from the farthest point in the cluster
 – Probability of data measured on cluster distribution
 – Fit of data to cluster-based regression
Optimal clustering: Exhaustive enumeration

• All possible combinations of data must be evaluated
 – If there are M data points, and we desire N clusters, the number of ways of separating M instances into N clusters is

\[
\frac{1}{M!} \sum_{i=0}^{N} (-1)^i \binom{N}{i} (N - i)^M
\]

– Exhaustive enumeration based clustering requires that the objective function (the “Goodness measure”) be evaluated for every one of these, and the best one chosen

• This is the only correct way of optimal clustering
 – Unfortunately, it is also computationally unrealistic
Not-quite non sequitur: Quantization

- Linear quantization (uniform quantization):
 - Each digital value represents an equally wide range of analog values
 - Regardless of distribution of data
 - Digital-to-analog conversion represented by a “uniform” table

Signal Value, Bits, Mapped to

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \geq 3.75v$</td>
<td>11</td>
<td>$3 \times \text{const}$</td>
</tr>
<tr>
<td>$3.75v > S \geq 2.5v$</td>
<td>10</td>
<td>$2 \times \text{const}$</td>
</tr>
<tr>
<td>$2.5v > S \geq 1.25v$</td>
<td>01</td>
<td>$1 \times \text{const}$</td>
</tr>
<tr>
<td>$1.25v > S \geq 0v$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Not-quite non sequitur: Quantization

- Non-Linear quantization:
 - Each digital value represents a different range of analog values
 - Finer resolution in high-density areas
 - Mu-law / A-law assumes a Gaussian-like distribution of data
 - Digital-to-analog conversion represented by a “non-uniform” table

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \geq 4v$</td>
<td>11</td>
<td>4.5</td>
</tr>
<tr>
<td>$4v > S \geq 2.5v$</td>
<td>10</td>
<td>3.25</td>
</tr>
<tr>
<td>$2.5v > S \geq 1v$</td>
<td>01</td>
<td>1.25</td>
</tr>
<tr>
<td>$1.0v > S \geq 0v$</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Non-uniform quantization

- If data distribution is not Gaussian-ish?
 - Mu-law / A-law are not optimal
 - How to compute the optimal ranges for quantization?
 - Or the optimal table
The Lloyd Quantizer

- Lloyd quantizer: An iterative algorithm for computing optimal quantization tables for non-uniformly distributed data
- Learned from “training” data
Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table
Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries
Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table

- Assign all training points to the nearest quantization point
 - Draw boundaries

- Reestimate quantization points
Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table

- Assign all training points to the nearest quantization point
 - Draw boundaries

- Reestimate quantization points

- Iterate until convergence
Generalized Lloyd Algorithm: K–means clustering

• K means is an iterative algorithm for clustering vector data

• General procedure:
 – Initially group data into the required number of clusters somehow (initialization)
 – Assign each data point to the closest cluster
 – Once all data points are assigned to clusters, redefine clusters
 – Iterate
K–means

• Problem: Given a set of data vectors, find natural clusters

• Clustering criterion is scatter: distance from the centroid
 – Every cluster has a centroid
 – The centroid represents the cluster

• Definition: The centroid is the weighted mean of the cluster
 – Weight = 1 for basic scheme

\[m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i x_i \]
K–means

1. Initialize a set of centroids randomly
K–means

1. Initialize a set of centroids randomly
2. For each data point x, find the distance from the centroid for each cluster

 \[d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}}) \]
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which d_{cluster} is minimum
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster
 • $d_{cluster} = \text{distance}(x, m_{cluster})$

3. Put data point in the cluster of the closest centroid
 • Cluster for which $d_{cluster}$ is minimum
K-means

1. Initialize a set of centroids randomly

2. For each data point \(x \), find the distance from the centroid for each cluster
 - \(d_{cluster} = \text{distance}(x, m_{cluster}) \)

3. Put data point in the cluster of the closest centroid
 - Cluster for which \(d_{cluster} \) is minimum
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which d_{cluster} is minimum
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which d_{cluster} is minimum
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which $d_{cluster}$ is minimum
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster

 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid

 - Cluster for which d_{cluster} is minimum
K–means

1. Initialize a set of centroids randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which $d_{cluster}$ is minimum

4. When all data points are clustered, recompute centroids
 $$m_{cluster} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i x_i$$
K–means

1. Initialize a set of centroids randomly
2. For each data point x, find the distance from the centroid for each cluster
 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$
3. Put data point in the cluster of the closest centroid
 - Cluster for which d_{cluster} is minimum
4. When all data points are clustered, recompute centroids
 $$m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i x_i$$
5. If not converged, go back to 2
K-Means comments

• The distance metric determines the clusters
 – In the original formulation, the distance is L_2 distance
 • Euclidean norm, $w_i = 1$

$$\text{distance}_{\text{cluster}}(x, m_{\text{cluster}}) = \| x - m_{\text{cluster}} \|_2$$

– If we replace every x by $m_{\text{cluster}}(x)$, we get Vector Quantization

• K-means is an instance of generalized EM

• Not guaranteed to converge for all distance metrics
Initialization

• Random initialization

• Top-down clustering
 – Initially partition the data into two (or a small number of) clusters using K means
 – Partition each of the resulting clusters into two (or a small number of) clusters, also using K means
 – Terminate when the desired number of clusters is obtained
K-Means for Top–Down clustering

1. Start with one cluster
K-Means for Top–Down clustering

1. Start with one cluster
K-Means for Top–Down clustering

1. Start with one cluster

2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
K-Means for Top-Down clustering

1. Start with one cluster

2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
1. Start with one cluster

2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

3. Initialize K means with new set of centroids
K-Means for Top–Down clustering

1. Start with one cluster

2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

3. Initialize K means with new set of centroids

4. Iterate Kmeans until convergence
K-Means for Top–Down clustering

1. Start with one cluster

2. Split each cluster into two:
 – Perturb centroid of cluster slightly (by < 5%) to generate two centroids

3. Initialize K means with new set of centroids

4. Iterate Kmeans until convergence
K-Means for Top–Down clustering

1. Start with one cluster

2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

3. Initialize K means with new set of centroids

4. Iterate Kmeans until convergence

5. If the desired number of clusters is not obtained, return to 2
Non-Euclidean clusters

- Basic K-means results in good clusters in Euclidean spaces
 - Alternately stated, will only find clusters that are “good” in terms of Euclidean distances
- Will not find other types of clusters
Non-Euclidean clusters

- For other forms of clusters we must modify the distance measure
 - E.g. distance from a circle
- May be viewed as a distance in a higher dimensional space
 - I.e Kernel distances
 - Kernel K-means
- Other related clustering mechanisms:
 - Spectral clustering
 - Non-linear weighting of adjacency
 - Normalized cuts..
The Kernel Trick

- Transform the data into a synthetic higher-dimensional space where the desired patterns become natural clusters
 - E.g. the quadratic transform above

- Problem: What is the function/space?

- Problem: Distances in higher dimensional-space are more expensive to compute
 - Yet only carry the same information in the lower-dimensional space

\[f([x,y]) \rightarrow [x,y,z] \]

\[x = x \]

\[y = y \]

\[z = \alpha(x^2 + y^2) \]
Distance in higher-dimensional space

• Transform data x through a possibly unknown function $\Phi(x)$ into a higher (potentially infinite) dimensional space
 $\quad - z = \Phi(x)$

• The distance between two points is computed in the higher-dimensional space
 $\quad - d(x_1, x_2) = \| z_1 - z_2 \|^2 = \| \Phi(x_1) - \Phi(x_2) \|^2$

• $d(x_1, x_2)$ can be computed without computing z
 $\quad -$ Since it is a direct function of x_1 and x_2
Distance in higher-dimensional space

- Distance in lower-dimensional space: A combination of dot products
 \[| |z_1 - z_2| |^2 = (z_1 - z_2)^T(z_1 - z_2) = z_1.z_1 + z_2.z_2 - 2 z_1.z_2 \]

- Distance in higher-dimensional space
 \[d(x_1, x_2) = | |\Phi(x_1) - \Phi(x_2)| |^2 = \Phi(x_1). \Phi(x_1) + \Phi(x_2). \Phi(x_2) - 2 \Phi(x_1). \Phi(x_2) \]

- \(d(x_1, x_2) \) can be computed without knowing \(\Phi(x) \) if:
 - \(\Phi(x_1). \Phi(x_2) \) can be computed for any \(x_1 \) and \(x_2 \) without knowing \(\Phi(.) \)
The Kernel function

• A kernel function $K(x_1, x_2)$ is a function such that:

 $\quad K(x_1, x_2) = \Phi(x_1) \cdot \Phi(x_2)$

• Once such a kernel function is found, the distance in higher-dimensional space can be found in terms of the kernels

 $\quad d(x_1, x_2) = \| \Phi(x_1) - \Phi(x_2) \|^2$

 $\quad = \Phi(x_1) \cdot \Phi(x_1) + \Phi(x_2) \cdot \Phi(x_2) - 2 \Phi(x_1) \cdot \Phi(x_2)$

 $\quad = K(x_1, x_1) + K(x_2, x_2) - 2K(x_1, x_2)$

• But what is $K(x_1, x_2)$?
A property of the dot product

• For any vector \mathbf{v}, $\mathbf{v}^T \mathbf{v} = ||\mathbf{v}||^2 \geq 0$

 – This is just the length of \mathbf{v} and is therefore non-negative

• For any vector $\mathbf{u} = \sum_i a_i \mathbf{v}_i$, $||\mathbf{u}||^2 \geq 0$

 => $(\sum_i a_i \mathbf{v}_i)^T (\sum_i a_i \mathbf{v}_i) \geq 0$

 => $\sum_i \sum_j a_i a_j \mathbf{v}_i \cdot \mathbf{v}_j \geq 0$

• This holds for ANY real $\{a_1, a_2, \ldots\}$
The Mercer Condition

• If \(z = \Phi(x) \) is a high-dimensional vector derived from \(x \) then for all real \(\{a_1, a_2, \ldots \} \) and any set \(\{z_1, z_2, \ldots \} = \{\Phi(x_1), \Phi(x_2), \ldots\} \)

 \[\begin{align*}
 &- \sum_i \sum_j a_i a_j z_i \cdot z_j \geq 0 \\
 &- \sum_i \sum_j a_i a_j \Phi(x_i) \cdot \Phi(x_j) \geq 0
 \end{align*} \]

• If \(K(x_1, x_2) = \Phi(x_1) \cdot \Phi(x_2) \)

 \[\begin{align*}
 &\Rightarrow \sum_i \sum_j a_i a_j K(x_i, x_j) \geq 0
 \end{align*} \]

• Any function \(K() \) that satisfies the above condition is a valid kernel function
The Mercer Condition

• \(K(x_1, x_2) = \Phi(x_1) \cdot \Phi(x_2) \)
 \[\Rightarrow \sum_i \sum_j a_i a_j K(x_i, x_j) \geq 0 \]

• **A corollary**: If any kernel \(K(.) \) satisfies the Mercer condition
 \[d(x_1, x_2) = K(x_1, x_1) + K(x_2, x_2) - 2K(x_1, x_2) \]
 satisfies the following requirements for a “distance”
 - \(d(x, x) = 0 \)
 - \(d(x, y) \geq 0 \)
 - \(d(x, w) + d(w, y) \geq d(x, y) \)
Typical Kernel Functions

- Linear: $K(x, y) = x^T y + c$

- Polynomial $K(x, y) = (ax^T y + c)^n$

- Gaussian: $K(x, y) = \exp(- ||x-y||^2/\sigma^2)$

- Exponential: $K(x, y) = \exp(- ||x-y|| / \lambda)$

- Several others

 — Choosing the right Kernel with the right parameters for your problem is an artform
Kernel K-means

- Perform the K-mean in the Kernel space
 - The space of $z = \Phi(x)$

- The algorithm..
The mean of a cluster

• The average value of the points in the cluster *computed in the high-dimensional space*

\[m_{\text{cluster}} = \frac{1}{N_{\text{cluster}}} \sum_{i \in \text{cluster}} \Phi(x_i) \]

• Alternately the weighted average

\[m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i \Phi(x_i) = C \sum_{i \in \text{cluster}} w_i \Phi(x_i) \]
The mean of a cluster

- The average value of the points in the cluster *computed in the high-dimensional space*

\[m_{\text{cluster}} = \frac{1}{N_{\text{cluster}}} \sum_{i \in \text{cluster}} \Phi(x_i) \]

RECALL: We may never actually be able to compute this mean because \(\Phi(x) \) is not known

- Alternately the weighted average

\[m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i \Phi(x_i) = C \sum_{i \in \text{cluster}} w_i \Phi(x_i) \]
K–means

- Initialize the clusters with a random set of K points
 - Cluster has 1 point

- For each data point \(x \), find the closest cluster

\[
\text{cluster}(x) = \min_{\text{cluster}} d(x, \text{cluster}) = \min_{\text{cluster}} \| \Phi(x) - m_{\text{cluster}} \|^2
\]

\[
d(x, \text{cluster}) = \| \Phi(x) - m_{\text{cluster}} \|^2 = \left(\Phi(x) - C \sum_{i \in \text{cluster}} w_i \Phi(x_i) \right)^T \left(\Phi(x) - C \sum_{i \in \text{cluster}} w_i \Phi(x_i) \right)
\]

\[
= \left(\Phi(x)^T \Phi(x) - 2C \sum_{i \in \text{cluster}} w_i \Phi(x)^T \Phi(x_i) + C^2 \sum_{i \in \text{cluster}} \sum_{j \in \text{cluster}} w_i w_j \Phi(x_i)^T \Phi(x_j) \right)
\]

\[
= K(x, x) - 2C \sum_{i \in \text{cluster}} w_i K(x, x_i) + C^2 \sum_{i \in \text{cluster}} \sum_{j \in \text{cluster}} w_i w_j K(x_i, x_j)
\]

Computed entirely using only the kernel function!
K–means

1. Initialize a set of clusters randomly

\[\text{Cluster} \]
1. Initialize a set of clusters randomly

The centroids are virtual: we don’t actually compute them explicitly!

\[m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i x_i \]
K–means

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
K-means

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which $d_{cluster}$ is minimum
1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 • $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 • Cluster for which d_{cluster} is minimum
K-mean

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which d_{cluster} is minimum
K–means

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 • $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 • Cluster for which d_{cluster} is minimum
K-means

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 • \[d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}}) \]

3. Put data point in the cluster of the closest centroid
 • Cluster for which d_{cluster} is minimum
K-means

1. Initialize a set of clusters randomly

2. For each data point \(x \), find the distance from the centroid for each cluster
 - \[d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}}) \]

3. Put data point in the cluster of the closest centroid
 - Cluster for which \(d_{\text{cluster}} \) is minimum
K–means

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 - $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 - Cluster for which d_{cluster} is minimum
K–means

1. Initialize a set of clusters randomly

2. For each data point \(x \), find the distance from the centroid for each cluster
 - \(d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}}) \)

3. Put data point in the cluster of the closest centroid
 - Cluster for which \(d_{\text{cluster}} \) is minimum

4. When all data points are clustered, recompute centroids
 \[
 m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i x_i
 \]

 • We do not explicitly compute the means
 • May be impossible – we do not know the high-dimensional space
 • We only know how to compute inner products in it
Kernel K–means

1. Initialize a set of clusters randomly

2. For each data point x, find the distance from the centroid for each cluster
 • $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$

3. Put data point in the cluster of the closest centroid
 • Cluster for which d_{cluster} is minimum

4. When all data points are clustered, recompute centroids
 $$m_{\text{cluster}} = \frac{1}{\sum_{i \in \text{cluster}} w_i} \sum_{i \in \text{cluster}} w_i x_i$$

5. If not converged, go back to 2

- We do not explicitly compute the means
- May be impossible – we do not know the high-dimensional space
- We only know how to compute inner products in it
How many clusters?

• Assumptions:
 – Dimensionality of kernel space > no. of clusters
 – Clusters represent separate *directions* in Kernel spaces

• Kernel correlation matrix K
 – $K_{ij} = K(x_i, x_j)$

• Find Eigen values Λ and Eigen vectors e of kernel matrix
 – No. of clusters = no. of dominant $\lambda_i (1^T e_i)$ terms
Spectral Methods

• “Spectral” methods attempt to find “principal” subspaces of the high-dimensional kernel space

• Clustering is performed in the principal subspaces
 – Normalized cuts
 – Spectral clustering

• Involves finding Eigenvectors and Eigen values of Kernel matrix

• Fortunately, provably analogous to Kernel K-means
Other clustering methods

• Regression based clustering
• Find a regression representing each cluster
• Associate each point to the cluster with the best regression
 – Related to kernel methods
Clustering..

- Many many other variants
- Many applications..

- Important: Appropriate choice of feature
 - Appropriate choice of feature may eliminate need for kernel trick..

 - Google is your friend.