Machine Learning for Signal Processing
Fundamentals of Linear Algebra

Class 2. 3 Sep 2013

Instructor: Bhiksha Raj
Administrivia

• Change of classroom: BH A51
 – Being broadcast to west coast

• Registration: Anyone on waitlist still?

• Homework 1: Will appear over weekend.
 – Linear algebra

• Both TAs have office hours from 9.30am-11.30am on Fridays
 – Location TBD, still waiting for info from ECE
Overview

• Vectors and matrices
• Basic vector/matrix operations
• Vector products
• Matrix products
• Various matrix types
• Projections
Book

• Fundamentals of Linear Algebra, Gilbert Strang

• Important to be very comfortable with linear algebra
 – Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
 – Appears through various properties of matrices that are used in machine learning, particularly when applied to images and sound

• Today’s lecture: Definitions
 – Very small subset of all that’s used
 – Important subset, intended to help you recollect
Incentive to use linear algebra

• Pretty notation!

\[\mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{y} \quad \longleftrightarrow \quad \sum_{j} y_j \sum_{i} x_i a_{ij} \]

• Easier intuition
 – *Really convenient geometric interpretations*
 – Operations easy to describe verbally

• Easy code translation!

```c
for i=1:n
  for j=1:m
    c(i)=c(i)+y(j)*x(i)*a(i,j)
  end
end
```

\[C = \mathbf{x} \cdot \mathbf{A} \cdot \mathbf{y} \]
And other things you can do

- Manipulate Images
- Manipulate Sounds

Rotation + Projection + Scaling + Perspective

From Bach’s Fugue in Gm

Decomposition (NMF)
 Scalars, vectors, matrices, ...

• A scalar a is a number
 – $a = 2$, $a = 3.14$, $a = -1000$, etc.

• A vector a is a linear arrangement of a collection of scalars

 \[a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \quad a = \begin{bmatrix} 3.14 \\ -32 \end{bmatrix} \]

• A matrix A is a rectangular arrangement of a collection of scalars

 \[A = \begin{bmatrix} 3.12 & -10 \\ 10.0 & 2 \end{bmatrix} \]

• MATLAB syntax: $a=[1 \ 2 \ 3]$, $A=[1 \ 2;3 \ 4]$
Vectors

- Vectors usually hold sets of numerical attributes
 - X, Y, Z coordinates
 - [1, 2, 0]
 - Earnings, losses, suicides
 - [$0 $1,000,000 3]
 - A location in Manhattan
 - [3av 33st]

- Vectors are either column or row vectors

\[\mathbf{c} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{r} = [a \ b \ c] \quad \mathbf{s} = [\text{...}] \]

- A sound can be a vector, a series of daily temperatures can be a vector, etc ...
Vectors in the abstract

- Ordered collection of numbers
 - Examples: [3 4 5], [a b c d], ..
 - [3 4 5] \neq [4 3 5] \rightarrow Order is important
- Typically viewed as identifying (the path from origin to) a location in an N-dimensional space
Matrices

• Matrices can be square or rectangular

\[S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad R = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad M = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \]

– Images can be a matrix, collections of sounds can be a matrix, etc.

– A matrix can be vertical stacking of row vectors

\[R = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \]

– Or a horizontal arrangement of column vectors

\[R = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \]
Dimensions of a matrix

- The matrix size is specified by the number of rows and columns

\[
c = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad r = \begin{bmatrix} a & b & c \end{bmatrix}
\]

- \(c = 3 \times 1 \) matrix: 3 rows and 1 column
- \(r = 1 \times 3 \) matrix: 1 row and 3 columns

\[
S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad R = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
\]

- \(S = 2 \times 2 \) matrix
- \(R = 2 \times 3 \) matrix
- Pacman = 321 x 399 matrix
Representing an image as a matrix

- 3 pacmen
- A 321 x 399 matrix
 - Row and Column = position
- A 3 x 128079 matrix
 - Triples of x,y and value
- A 1 x 128079 vector
 - “Unraveling” the matrix

- Note: All of these can be recast as the matrix that forms the image
 - Representations 2 and 4 are equivalent
 - The position is not represented
Vectors vs. Matrices

- A vector is a geometric notation for how to get from (0,0) to some location in the space.
- A matrix is simply a collection of vectors!
 - Properties of matrices are average properties of the traveller’s path to the vector destinations.
Basic arithmetic operations

• Addition and subtraction
 – Element-wise operations

\[
a + b = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{bmatrix} \]

\[
a - b = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{bmatrix} \]

\[
A + B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix} \]

• MATLAB syntax: a+b and a-b
Vector Operations

- Operations tell us how to get from origin to the result of the vector operations
 - $(3,4,5) + (3,-2,-3) = (6,2,2)$
Operations example

• Adding random values to different representations of the image
Vector norm

- Measure of how big a vector is:
 - Represented as $\|x\|
 - Geometrically the shortest distance to travel from the origin to the destination
 - As the crow flies
 - Assuming Euclidean Geometry

- MATLAB syntax: `norm(x)`
Transposition

- A transposed row vector becomes a column (and vice versa)

\[
x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad x^T = \begin{bmatrix} a & b & c \end{bmatrix} \quad y = \begin{bmatrix} a & b & c \end{bmatrix}, \quad y^T = \begin{bmatrix} a \\ b \\ c \end{bmatrix}
\]

- A transposed matrix gets all its row (or column) vectors transposed in order

\[
X = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad X^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}
\]

\[
M = \begin{bmatrix} \text{image} \\ \text{image} \end{bmatrix}, \quad M^T = \begin{bmatrix} \text{image} \\ \text{image} \end{bmatrix}
\]

- MATLAB syntax: a’
Vector multiplication

- Multiplication is not element-wise!
- Dot product, or inner product
 - Vectors must have the same number of elements
 - Row vector times column vector = scalar

\[
\begin{bmatrix}
a & b & c
\end{bmatrix}
\begin{bmatrix}
d \\
e \\
f
\end{bmatrix}
= a \cdot d + b \cdot e + c \cdot f
\]

- Outer product or vector direct product
 - Column vector times row vector = matrix

\[
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}
\cdot
\begin{bmatrix}
d & e & f
\end{bmatrix}
= \begin{bmatrix}
a \cdot d & a \cdot e & a \cdot f \\
b \cdot d & b \cdot e & b \cdot f \\
c \cdot d & c \cdot e & c \cdot f
\end{bmatrix}
\]

- MATLAB syntax: `a * b`
Vector dot product in Manhattan

• Example:
 – Coordinates are yards, not ave/st
 – \(\mathbf{a} = [200 \ 1600] \),
 \(\mathbf{b} = [770 \ 300] \)

• The dot product of the two vectors relates to the length of a projection
 – How much of the first vector have we covered by following the second one?
 – Must normalize by the length of the “target” vector

\[
\mathbf{a} \cdot \mathbf{b}^T = \frac{\begin{bmatrix} 200 \\ 1600 \end{bmatrix} \cdot \begin{bmatrix} 770 \\ 300 \end{bmatrix}}{\|\mathbf{a}\| \|\begin{bmatrix} 200 \\ 1600 \end{bmatrix}\|} \approx 393 \text{yd}
\]
Vector dot product

- Vectors are spectra
 - Energy at a discrete set of frequencies
 - Actually 1 x 4096
 - X axis is the index of the number in the vector
 - Represents frequency
 - Y axis is the value of the number in the vector
 - Represents magnitude
Vector dot product

- How much of C is also in E
 - How much can you fake a C by playing an E
 - $\frac{C.E}{|C||E|} = 0.1$
 - Not very much
- How much of C is in C2?
 - $\frac{C.C2}{|C||C2|} = 0.5$
 - Not bad, you can fake it
- To do this, C, E, and C2 must be the same size
Vector outer product

- The column vector is the spectrum
- The row vector is an amplitude modulation
- The outer product is a spectrogram
 - Shows how the energy in each frequency varies with time
 - The pattern in each column is a scaled version of the spectrum
 - Each row is a scaled version of the modulation
Multiplying a vector by a matrix

• Generalization of vector multiplication
 – **Left multiplication**: Dot product of each vector pair
 \[
 A \cdot B = \begin{bmatrix}
 \gets a_1 & \rightarrow \\
 \gets a_2 & \rightarrow \\
 \end{bmatrix} \cdot \begin{bmatrix}
 \uparrow \\
 \downarrow \\
 \end{bmatrix} = \begin{bmatrix}
 a_1 \cdot b \\
 a_2 \cdot b \\
 \end{bmatrix}
 \]
 – Dimensions must match!!
 • No. of columns of matrix = size of vector
 • Result inherits the number of rows from the matrix

• MATLAB syntax: *a*b*
Multiplying a vector by a matrix

• Generalization of vector multiplication
 – **Right multiplication**: Dot product of each vector pair
 \[
 A \cdot B = \begin{bmatrix}
 a_1 & a_2 \\
 b_1 & b_2 \\
 \end{bmatrix}
 = [a.b_1 \ a.b_2]
 \]
 – Dimensions must match!!
 • No. of rows of matrix = size of vector
 • Result inherits the number of columns from the matrix

• MATLAB syntax: \texttt{a*b}
Multiplication of vector space by matrix

- The matrix rotates and scales the space
 - Including its own vectors

\[Y = \begin{bmatrix} 0.3 & 0.7 \\ -1.3 & 1.6 \end{bmatrix} \]
Multiplication of vector space by matrix

- The *normals* to the row vectors in the matrix become the new axes
 - X axis = normal to the *second* row vector
 - Scaled by the inverse of the length of the *first* row vector

\[
Y = \begin{bmatrix}
0.3 & 0.7 \\
-1.3 & 1.6
\end{bmatrix}
\]
Matrix Multiplication

- The k-th axis corresponds to the normal to the hyperplane represented by the 1..k-1,k+1..N-th row vectors in the matrix
 - Any set of K-1 vectors represent a hyperplane of dimension K-1 or less

- The distance along the new axis equals the length of the projection on the k-th row vector
 - Expressed in inverse-lengths of the vector
Matrix Multiplication: Column space

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 a \\
 d
\end{bmatrix} +
\begin{bmatrix}
 b \\
 e
\end{bmatrix} +
\begin{bmatrix}
 c \\
 f
\end{bmatrix}
\]

• So much for spaces .. what does multiplying a matrix by a vector really do?
• It *mixes* the column vectors of the matrix using the numbers in the vector
• The *column space* of the Matrix is the complete set of all vectors that can be formed by mixing its columns
Matrix Multiplication: Row space

\[
\begin{bmatrix}
 x & y \\
 \end{bmatrix}
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
\end{bmatrix}
= x[\begin{bmatrix}
 a & b & c \\
\end{bmatrix}
+ \begin{bmatrix}
 d & e & f \\
\end{bmatrix}]
\]

• Left multiplication mixes the row vectors of the matrix.
• The row space of the Matrix is the complete set of all vectors that can be formed by mixing its rows.
Matrix multiplication: Mixing vectors

A physical example

- The three column vectors of the matrix X are the spectra of three notes
- The multiplying column vector Y is just a mixing vector
- The result is a sound that is the mixture of the three notes

\[
\begin{align*}
X &= \begin{bmatrix}
1 & 3 & 0 \\
. & . & 0 \\
9 & 24 & .
\end{bmatrix} \\
Y &= \begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}
\end{align*}
\]

\[
X \cdot Y = \begin{bmatrix}
7 \\
. \\
2
\end{bmatrix}
\]
Matrix multiplication: Mixing vectors

- Mixing two images
 - The images are arranged as columns
 - position value not included
 - The result of the multiplication is rearranged as an image

\[
\begin{bmatrix}
75.0 \\
25.0
\end{bmatrix}
\begin{bmatrix}
0.25 \\
0.75
\end{bmatrix}
\rightarrow
\begin{bmatrix}
40000 \\
200 \\
200 \\
200
\end{bmatrix}
\]
Multiplying matrices

• Generalization of vector multiplication
 – Outer product of dot products!!

\[
A \cdot B = \begin{bmatrix}
\leftarrow a_1 \rightarrow \\
\leftarrow a_2 \rightarrow \\
\end{bmatrix} \cdot \begin{bmatrix}
\uparrow & \uparrow \\
b_1 & b_2 \\
\downarrow & \downarrow \\
\end{bmatrix} = \begin{bmatrix}
a_1 \cdot b_1 & a_1 \cdot b_2 \\
a_2 \cdot b_1 & a_2 \cdot b_2 \\
\end{bmatrix}
\]

– Dimensions must match!!
 • Columns of first matrix = rows of second
 • Result inherits the number of rows from the first matrix and the number of columns from the second matrix

• MATLAB syntax: a*b
Matrix multiplication: another view

\[
\begin{bmatrix}
a_{11} & \ldots & a_{1N} \\
a_{21} & \ldots & a_{2N} \\
\vdots & \ddots & \vdots \\
a_{M1} & \ldots & a_{MN}
\end{bmatrix}
\begin{bmatrix}
b_{11} & \ldots & b_{NK} \\
\vdots & \ddots & \vdots \\
b_{N1} & \ldots & b_{NK}
\end{bmatrix}
= \begin{bmatrix}
a_{11} \\
\vdots \\
a_{M1}
\end{bmatrix}
\begin{bmatrix}
b_{11} & \ldots & b_{1K} \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
a_{M1} & \ldots & a_{MN}
\end{bmatrix}
\begin{bmatrix}
a_{12} \\
\vdots \\
a_{M2}
\end{bmatrix}
\begin{bmatrix}
b_{21} & \ldots & b_{2K} \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & \ddots \\
b_{N1} & \ldots & b_{NK}
\end{bmatrix}
\]

- The outer product of the first column of A and the first row of B + outer product of the second column of A and the second row of B +

- Sum of outer products
Why is that useful?

- Sounds: Three notes modulated independently
Matrix multiplication: Mixing modulated spectra

• Sounds: Three notes modulated independently
Matrix multiplication: Mixing modulated spectra

- Sounds: Three notes modulated independently
Matrix multiplication: Mixing modulated spectra

- Sounds: Three notes modulated independently
Matrix multiplication: Mixing modulated spectra

- Sounds: Three notes modulated independently
Matrix multiplication: Mixing modulated spectra

• Sounds: Three notes modulated independently
Matrix multiplication: Image transition

- Image 1 fades out linearly
- Image 2 fades in linearly
Matrix multiplication: Image transition

- Each column is one image
 - The columns represent a sequence of images of decreasing intensity
- Image1 fades out linearly
Matrix multiplication: Image transition

- Image 2 fades in linearly
Matrix multiplication: Image transition

- Image 1 fades out linearly
- Image 2 fades in linearly
The Identity Matrix

- An identity matrix is a square matrix where
 - All diagonal elements are 1.0
 - All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

\[
Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]
Diagonal Matrix

\[Y = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \]

- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
 - May flip axes
Diagonal matrix to transform images

• How?
Stretching

\[
\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & . & 2 & . & 2 & 2 & . & 10 \\
1 & 2 & . & 1 & . & 5 & 6 & . & 10 \\
1 & 1 & . & 1 & . & 0 & 0 & . & 1
\end{bmatrix}
\]

- Location-based representation
- Scaling matrix – only scales the X axis
 - The Y axis and pixel value are scaled by identity
- Not a good way of scaling.
Stretching

\[D = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix} \]

\[A = \begin{bmatrix}
1 & .5 & 0 & 0 & . \\
0 & .5 & 1 & .5 & . \\
0 & 0 & 0 & .5 & . \\
0 & 0 & 0 & 0 & . \\
. & . & . & . & .
\end{bmatrix} \quad (N \times 2N) \]

\[\text{Newpic} = EA \]

- Better way
- *Interpolate*
Modifying color

\[
P = \begin{bmatrix} R & G & B \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
Newpic = P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

- Scale only Green
Permutation Matrix

A permutation matrix simply rearranges the axes
- The row entries are axis vectors in a different order
- The result is a combination of rotations and reflections

The permutation matrix effectively permutes the arrangement of the elements in a vector
Permutation Matrix

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

• Reflections and 90 degree rotations of images and objects
Permutation Matrix

- Reflections and 90 degree rotations of images and objects
 - Object represented as a matrix of 3-Dimensional “position” vectors
 - Positions identify each point on the surface
Rotation Matrix

- A rotation matrix rotates the vector by some angle θ
- Alternately viewed, it rotates the axes
 - The new axes are at an angle θ to the old one

$x' = x \cos \theta - y \sin \theta$
$y' = x \sin \theta + y \cos \theta$

$R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

$X = \begin{bmatrix} x \\ y \end{bmatrix}$

$X_{\text{new}} = \begin{bmatrix} x' \\ y' \end{bmatrix}$

$R_\theta X = X_{\text{new}}$
Rotating a picture

- Note the representation: 3-row matrix
 - Rotation only applies on the “coordinate” rows
 - The value does not change
 - Why is pacman grainy?
3-D Rotation

- 2 degrees of freedom
 - 2 separate angles
- What will the rotation matrix be?
Matrix Operations: Properties

• $A + B = B + A$
• $AB \neq BA$
Projections

• What would we see if the cone to the left were transparent if we looked at it from above the plane shown by the grid?
 – Normal to the plane
 – Answer: the figure to the right

• How do we get this? Projection
Consider any plane specified by a set of vectors $W_1, W_2 \ldots$

- Or matrix $[W_1 \ W_2 \ldots]$
- Any vector can be projected onto this plane
- The matrix A that rotates and scales the vector so that it becomes its projection is a projection matrix
Given a set of vectors W_1, W_2, which form a matrix $W = [W_1 \ W_2 ..]$

The projection matrix to transform a vector X to its projection on the plane is

$$P = W (W^T W)^{-1} W^T$$

- We will visit matrix inversion shortly

Magic – any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix

$$P = V (V^T V)^{-1} V^T$$
Projections

• HOW?
Projections

- Draw any two vectors W_1 and W_2 that lie on the plane
 - *ANY two so long as they have different angles*
- Compose a matrix $W = [W_1 \ W_2]$
- Compose the projection matrix $P = W (W^T W)^{-1} W^T$
- Multiply every point on the cone by P to get its projection
- View it 😊
 - I’m missing a step here – what is it?
• The projection actually projects it onto the plane, but you’re still seeing the plane in 3D
 – The result of the projection is a 3-D vector
 – $P = W(W^T W)^{-1} W^T = 3x3, \ P*\text{Vector} = 3x1$
 – The image must be rotated till the plane is in the plane of the paper
 • The Z axis in this case will always be zero and can be ignored
 • How will you rotate it? (remember you know W1 and W2)
Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
 - $P_x = x$ if x is on the plane
 - If the object is already on the plane, there is no further projection to be performed

- The projection of a projection is the projection
 - $P(P_x) = P_x$
 - That is because P_x is already on the plane

- Projection matrices are *idempotent*
 - $P^2 = P$

3 Sep 2013 • Follows from the above 11-755/18-797
Projections: A more physical meaning

• Let W_1, W_2, \ldots, W_k be “bases”

• We want to explain our data in terms of these “bases”
 – We often cannot do so
 – But we can explain a significant portion of it

• The portion of the data that can be expressed in terms of our vectors W_1, W_2, \ldots, W_k, is the projection of the data on the W_1, \ldots, W_k (hyper) plane
 – In our previous example, the “data” were all the points on a cone, and the bases were vectors on the plane
Projection: an example with sounds

- The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
 - I.e. how much can it be explained by the notes
Projection: one note

- The spectrogram (matrix) of a piece of music

\[M = \text{spectrogram}; \quad W = \text{note} \]

\[P = W (W^T W)^{-1} W^T \]

Projected Spectrogram = \(P \times M \)
Projection: one note – cleaned up

- The spectrogram (matrix) of a piece of music

Floored all matrix values below a threshold to zero
Projection: multiple notes

- The spectrogram (matrix) of a piece of music

\[P = W (W^T W)^{-1} W^T \]

Projected Spectrogram = \(P \times M \)
Projection: multiple notes, cleaned up

- The spectrogram (matrix) of a piece of music

\[M = \]

\[W = \]

- \[P = W (W^T W)^{-1} W^T \]
- Projected Spectrogram = \(P \times M \)
Projection and Least Squares

- Projection actually computes a least squared error estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{\text{approx}} = a \cdot \text{note1} + b \cdot \text{note2} + c \cdot \text{note3}..$

 $$V_{\text{approx}} = \begin{bmatrix} \text{note1} \\ \text{note2} \\ \text{note3} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

 - Error vector $E = V - V_{\text{approx}}$
 - Squared error energy for V: $e(V) = \|E\|^2$
 - Total error = sum over all V: $\sum V \{ e(V) \} = \sum V e(V)$
- Projection computes V_{approx} for all vectors such that Total error is minimized
 - It does not give you “a”, “b”, “c”. Though
 - That needs a different operation – the inverse / pseudo inverse
The picture is the equivalent of “painting” the viewed scenery on a glass window.

Feature: The lines connecting any point in the scenery and its projection on the window merge at a common point:
- The eye
- As a result, parallel lines in the scene *apparently* merge to a point.
An aside on Perspective..

- Perspective is the result of convergence of the image to a point
- Convergence can be to multiple points
 - Top Left: One-point perspective
 - Top Right: Two-point perspective
 - Right: Three-point perspective
Representing Perspective

- Perspective was not always understood.
- Carefully represented perspective can create illusions.
Central Projection

- The positions on the “window” are scaled along the line
- To compute \((x,y)\) position on the window, we need \(z\) (distance of window from eye), and \((x',y',z')\) (location being projected)

\[
\frac{x}{x'} = \frac{y}{y'} = \frac{z}{z'}
\]

Property of a line through origin

\[
\alpha = \frac{z}{z'}
\]

\[
x = \alpha x'
\]

\[
y = \alpha y'
\]
Homogeneous Coordinates

- Represent points by a triplet
 - Using yellow window as reference:
 - \((x,y) = (x,y,1)\)
 - \((x',y') = (x,y,c')\) \(c' = \alpha'/\alpha\)
 - Locations on line generally represented as \((x,y,c)\)
 - \(x' = x/c'\), \(y' = y/c'\)
Homogeneous Coordinates in 3-D

- Points are represented using FOUR coordinates
 - \((X,Y,Z,c)\)
 - “c” is the “scaling” factor that represents the distance of the actual scene
- Actual Cartesian coordinates:
 - \(X_{\text{actual}} = X/c\), \(Y_{\text{actual}} = Y/c\), \(Z_{\text{actual}} = Z/c\)

\[
\begin{align*}
\alpha x_1 &= \alpha' x_1' \\
\alpha y_1 &= \alpha' y_1' \\
\alpha z_1 &= \alpha' z_1' \\
\alpha x_2 &= \alpha' x_2' \\
\alpha y_2 &= \alpha' y_2' \\
\alpha z_2 &= \alpha' z_2'
\end{align*}
\]
Homogeneous Coordinates

- In both cases, constant “c” represents distance along the line with respect to a reference window
 - In 2D the plane in which all points have values (x,y,1)
- Changing the reference plane changes the representation
- I.e. there may be *multiple* Homogenous representations (x,y,c) that represent the same cartesian point (x’, y’)

3 Sep 2013 11-755/18-797 78