Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Projections
- More on matrix types
- Matrix determinants
- Matrix inversion
- Eigenanalysis
- Singular value decomposition

Orthogonal/Orthonormal vectors

- Two vectors are orthogonal if they are perpendicular to one another
 - \(A \cdot B = 0 \)
 - A vector that is perpendicular to a plane is orthogonal to every vector on the plane

- Two vectors are orthonormal if
 - They are orthogonal
 - The length of each vector is 1.0
 - Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0

Orthogonal matrices

- Orthogonal Matrix: \(AA^T = A^T A = I \)
 - The matrix is square
 - All row vectors are orthonormal to one another
 - Every vector is perpendicular to the hyperplane formed by all other vectors
 - All column vectors are also orthonormal to one another
 - Observation: In an orthogonal matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0
 - Observation: In an orthogonal matrix no more than one row can have all entries with the same polarity (+ve or -ve)

Orthogonal and Orthonormal Matrices

- Orthogonal matrices will retain the length and relative angles between transformed vectors
 - Essentially, they are combinations of rotations, reflections and permutations
 - Rotation matrices and permutation matrices are all orthonormal

- If the vectors in the matrix are not unit length, it cannot be orthogonal
 - \(AA^T = I, A^T A = I \)
 - \(AA^T = \text{Diagonal} \) or \(A^T A = \text{Diagonal} \), but not both
 - If all the entries are the same length, we can get \(AA^T = A^T A = \text{Diagonal} \), though
 - A non-square matrix cannot be orthogonal
 - \(AA^T \) or \(A^T A \), but not both

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are rank-deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object
Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are rank-deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Non-square Matrices

- Non-square matrices add or subtract axes
 - More rows than columns → add axes
 - But does not increase the dimensionality of the data
 - Fewer rows than columns → reduce axes
 - May reduce dimensionality of the data

Projections are often examples of rank-deficient transforms

M =

W =

- P = W (W^T W)^{-1} W^T; Projected Spectrogram = P * M
- The original spectrogram can never be recovered
- P is rank-deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only a maximum of 4 independent bases
 - Rank of P is 4

The Rank of a Matrix

- The matrix rank is the dimensionality of the transformation of a full-dimensional object in the original space
- The matrix can never increase dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

Non-square Matrices

- Non-square matrices add or subtract axes
 - More rows than columns → add axes
 - But does not increase the dimensionality of the data

The Rank of Matrix

- Projected Spectrogram = P * M
 - Every vector in it is a combination of only 4 bases
 - The rank of the matrix is the smallest no. of bases required to describe the output
 - E.g., if note no. 4 in P could be expressed as a combination of notes 1, 2, and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - The rank of P would be 3!
Matrix rank is unchanged by transposition

- If an N-dimensional object is compressed to a K-dimensional object by a matrix, it will also be compressed to a K-dimensional object by the transpose of the matrix.

Matrix Determinants

- Matrix determinants are only defined for square matrices.
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors.
- Rank deficient matrices have determinant 0.
 - Since they compress full-volume N-dimensional objects into zero-volume N-dimensional objects.
 - E.g., a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area).
- Conversely, all matrices of determinant 0 are rank deficient.
 - Since they compress full-volume N-dimensional objects into zero-volume objects.

Multiplication properties

- Properties of vector/matrix products:
 - Associative: \(A \cdot (B \cdot C) = (A \cdot B) \cdot C \)
 - Distributive: \(A \cdot (B + C) = A \cdot B + A \cdot C \)
 - NOT commutative!!!
 - \(A \cdot B \neq B \cdot A \)
 - left multiplications ≠ right multiplications
 - Transposition:
 - \((A \cdot B)^T = B^T \cdot A^T \)

Determinate properties

- Associative for square matrices: \(|A \cdot B \cdot C| = |A| \cdot |B| \cdot |C| \)
 - Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices.
- Volume of sum \(\pm \) sum of Volumes: \(|B + C| = |B| + |C| \)
- Commutative:
 - The order in which you scale the volume of an object is irrelevant:
 - \(|A \cdot B| = |B \cdot A| = |A| \cdot |B| \)
Matrix Inversion

- A matrix transforms an N-dimensional object to a different N-dimensional object
- What transforms the new object back to the original? — The inverse transformation
- The inverse transformation is called the matrix inverse

Revisiting Projections and Least Squares

- Projection computes a least squared error estimate
- For each vector \(V \) in the music spectrogram matrix
 - Approximation: \(\mathbf{V}_{\text{approx}} = a \mathbf{v}_1 + b \mathbf{v}_2 + c \mathbf{v}_3 \)

 \[
 T = \begin{bmatrix}
 a \\
 b \\
 c
 \end{bmatrix}
 \]

 \[
 \mathbf{V}_{\text{approx}} = T \mathbf{b}
 \]

 - Error vector \(E = V - \mathbf{V}_{\text{approx}} \)
 - Squared error energy for \(V \): \(\mathbf{e}(V) = \|E\|^2 \)
- Projection computes \(\mathbf{V}_{\text{approx}} \) for all vectors such that Total error is minimized
- But WHAT ARE “a”, “b” and “c”?

The Pseudo Inverse (PINV)

- We are approximating spectral vectors \(V \) as the transformation of the vector \([a \ b \ c]^T \)
 - Note — we’re viewing the collection of bases in \(T \) as a transformation
- The solution is obtained using the pseudo inverse
 - This gives us a LEAST SQUARES solution
 - If \(T \) were square and invertible \(\text{Pinv}(T) = T^{-1} \), and \(V = V_{\text{approx}} \)

Explaining music with one note

- Recap: \(P = W \ (W^T W)^{-1} \) — Projected Spectrogram = \(P^* M \)
- Approximation: \(M = W^* X \)
- The amount of \(W \) in each vector = \(X = \text{Pinv}(W)^* M \)
- \(W^* \text{Pinv}(W)^* M = \) Projected Spectrogram
- \(W^* \text{Pinv}(W) = \) Projection matrix\(! \)

Inverting rank-deficient matrices

- Rank deficient matrices “flatten” objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go “back” from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse
Explanation with multiple notes

\[M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[W = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \]

\[X = \text{Pinv}(W) \cdot M; \quad \text{Projected matrix} = W^T X = W^T \text{Pinv}(W) \cdot M \]

Matrix inversion (division)

- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to "undo" a linear transformation
 - Inverse of the unit matrix is itself
 - Inverse of a diagonal is diagonal
 - Inverse of a rotation is a (counter)rotation (its transpose!)
 - Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- For square matrices: Pay attention to multiplication side!
 \[A \cdot B = C, \quad A = C \cdot B^{-1}, \quad B = A^{-1} \cdot C \]
- If matrix is not square use a matrix pseudoinverse:
 \[A \cdot B = C, \quad A = C \cdot B^+, \quad B = A^+ \cdot C \]
- MATLAB syntax: \text{inv}(a), \text{pinv}(a)

How about the other way?

\[M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[V = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \]

\[W = \begin{bmatrix} ? \\ ? \end{bmatrix} \]

\[WV = M \quad W = M \text{Pinv}(V) \quad U = WV \]

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something
 - Sound example: \[\text{sound}(\max) \]
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
 - Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
 - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

Pseudo-inverse (PINV)

- \text{Pinv()} applies to non-square matrices
- \text{Pinv (Pinv(A))} = A
- \[A^* \text{Pinv}(A) = \text{projection matrix!} \]
 - Projection onto the columns of A
- If \[A = K \times N \text{ matrix and } K > N, \text{ A projects N-D vectors into a higher-dimensional K-D space} \]
 - \text{Pinv}(A) = N\times K matrix
 - \text{Pinv}(A)^*A = I \text{ in this case}
- Otherwise \[A^* \text{ Pinv}(A) = I \]

EigenVectors and EigenValues

- Vectors that do not change angle upon transformation
 - They may change length
 \[MV = \lambda V \]
 - \(V \) = eigen vector
 \[\lambda \] = eigen value
Eigen vector example

- Matrix transformation “transforms” the space
 - Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative – implies flipping the paper
- The result is a transformation of the space

Matrix multiplication revisited

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix
Eigen Analysis

- Not all square matrices have nice eigen values and vectors
 - E.g., consider a rotation matrix

 ![Rotation Matrix Diagram]

 - This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases, the Eigen vectors and values are complex

Singular Value Decomposition

- U and V are orthonormal matrices
 - Columns are orthonormal vectors
- S is a diagonal matrix
- The right singular vectors in V are transformed to the left singular vectors in U
 - And scaled by the singular values that are the diagonal entries of S

Singular Value Decomposition

- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
 - Can you identify it?

Singular Value Decomposition

- The left and right singular vectors are not the same
 - If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
 - $\max (|Ax| / |x|) = \sigma_{\text{max}}$
- The smallest singular value is the smallest amount by which a vector is scaled by A
 - $\min (|Ax| / |x|) = \sigma_{\text{min}}$
 - This can be 0 (for low-rank or non-square matrices)

The Singular Values

- Square matrices: product of singular values = determinant of the matrix
 - This is also the product of the eigenvalues
 - I.e., there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
 - An analogous rule applies to the smallest singular value
 - This property is utilized in various problems, such as compressive sensing
SVD vs. Eigen Analysis

- Eigen analysis of a matrix A:
 - Find two vectors such that their absolute directions are not changed by the transform
- SVD of a matrix A:
 - Find two vectors such that the angle between them is not changed by the transform
- For one class of matrices, these two operations are the same

Symmetric Matrices

- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
 - A is orthogonal
- Eigen vectors are always orthogonal
 - At 90 degrees to one another

A matrix vs. its transpose

- Multiplication by matrix A:
 - Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^T:
 - Transforms left singular vectors U to right singular vector V
- A^T: Converts V to U, then brings it back to V
 - Result: Only scaling

Symmetric Matrices

- Eigen vectors V are orthonormal
 - $V_i V_j = 1$
 - $V_i V_j = 0$, $i \neq j$
- Listing all eigen vectors in matrix form V
 - $V^T V = I$
 - $V V^T = I$
 - $V V^T = I$
- $M V = \lambda V$
- In matrix form: $M V = V \Lambda$
 - Λ is a diagonal matrix with all eigen values
- $M = V \Lambda V^T$
Square root of a symmetric matrix

\[C = VAV^T \]

\[\text{Sqrt}(C) = V \cdot \text{Sqrt}(\Lambda) \cdot V^T \]

\[\text{Sqrt}(C) = V \cdot \text{Sqrt}(\Lambda) \cdot V^T \]

\[\text{Sqrt}(\Lambda) \cdot V^T = VAV^T = C \]

- The square root of a symmetric matrix is easily derived from the Eigen vectors and Eigen values
 - The Eigen values of the square root of the matrix are the square roots of the Eigen values of the matrix
 - For correlation matrices, these are also the “singular values” of the data set

Definiteness..

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
 - Real, positive Eigen values represent stretching of the space along the Eigen vector
 - Real, negative Eigen values represent stretching and reflection (across origin) of Eigen vector
 - Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is positive definite if all Eigen values are real and positive, and are greater than 0
 - Transformation can be explained as stretching and rotation
 - If any Eigen value is zero, the matrix is positive semi-definite

Positive Definiteness..

- Property of a positive definite matrix: Defines inner product norms
 - \(x^T A x \) is always positive for any vector \(x \) if \(A \) is positive definite
- Positive definiteness is a test for validity of Gram matrices
 - Such as correlation and covariance matrices
 - We will encounter other gram matrices later

The Correlation and Covariance Matrices

- Consider a set of column vectors ordered as a DxN matrix \(A \)
- The correlation matrix is
 - \(C = (1/N)AA^T \)
 - If the average (mean) of the vectors in \(A \) is subtracted out of all vectors,
 \(C \) is the covariance matrix
 - Covariance = correlation * mean * mean
- Diagonal elements represent average of the squared value of each dimension
 - Off diagonal elements represent how two components are related
 - How much knowing one lets us guess the value of the other

The Correlation Matrix

- Projections along the N Eigen vectors with the largest Eigen values represent the N greatest “energy-carrying” components of the matrix
- Conversely, N “bases” that result in the least square error are the N best Eigen vectors

Square root of the Covariance Matrix
An audio example

- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors

Eigenvalues and Eigenvectors

- The vectors in the spectrogram are linear combinations of all 1025 Eigen vectors
- The Eigen vectors with low Eigen values contribute very little
 - The average value of a_i is proportional to the square root of the Eigenvalue
 - Ignoring these will not affect the composition of the spectrogram

Eigen Reduction

$$M = \text{spectrogram}$$

$$C = MM^T$$

$$V = \text{1025x1025}$$

$$V_{\text{reduced}} = [V_1, \ldots, V_{25}]$$

$$M_{\text{reduced}} = \text{Pinv}(V_{\text{reduced}})M$$

- Compute the Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram – compute the projection on the 25 Eigen vectors

An audio example

- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
 - Only the 25-dimensional weights are shown
 - The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

Eigenvalues and Eigenvectors

- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
 - Most Eigen values are close to zero
 - The corresponding eigenvectors are "unimportant"

An audio example

- The same spectrogram constructed from only the 25 Eigen vectors with the highest Eigen values
 - Looks similar
 - With 100 Eigenvectors, it would be indistinguishable from the original
 - Sounds pretty close
 - But now sufficient to store 25 numbers per vector (instead of 1024)
With only 5 eigenvectors

- The same spectrogram constructed from only the 5 Eigen vectors with the highest Eigen values
 - Highly recognizable

SVD vs. Eigen decomposition

- Singular value decomposition is analogous to the Eigen decomposition of the correlation matrix of the data
 - SVD: \(D = U S V^T \)
 - \(D^2 = U S V^T U V^T = U S^2 U^T \)

- The "left" singular vectors are the Eigen vectors of the correlation matrix
 - Show the directions of greatest importance

- The corresponding singular values are the square roots of the Eigen values of the correlation matrix
 - Show the importance of the Eigen vector

Correlation vs. Covariance Matrix

- Correlation:
 - The N Eigen vectors with the largest Eigen values represent the N greatest "energy-carrying" components of the matrix
 - Conversely, N "bases" that result in the least square error are the N best Eigen vectors
 - Projections onto these Eigen vectors retain the most energy

- Covariance:
 - the N Eigen vectors with the largest Eigen values represent the N greatest "variance-carrying" components of the matrix
 - Conversely, N "bases" that retain the maximum possible variance are the N best Eigen vectors

Thin SVD, compact SVD, reduced SVD

- SVD can be computed much more efficiently than Eigen decomposition
- Thin SVD: Only compute the first N columns of U
 - All that is required if \(N < M \)
- Compact SVD: Only the left and right singular vectors corresponding to non-zero singular values are computed

Eigenvectors, Eigenvalues and Covariances/Correlations

- The eigenvectors and eigenvalues (singular values) derived from the correlation matrix are important
- Do we need to actually compute the correlation matrix?
 - No
- Direct computation using Singular Value Decomposition

Why bother with Eigens/SVD

- Can provide a unique insight into data
 - Strong statistical grounding
 - Can display complex interactions between the data
 - Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
 - A set of elements to compactly describe our data
 - Indispensable for performing compression and classification
- Used over and over and still perform amazingly well
Trace

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\]

\[
\text{Tr}(A) = a_{11} + a_{22} + a_{33} + a_{44}
\]

- The trace of a matrix is the sum of the diagonal entries.
- It is equal to the sum of the Eigen values:

\[
\text{Tr}(A) = \sum a_{ii} = \sum \lambda_i
\]

Decompositions of matrices

- Square A: LU decomposition
 - Decompose A = LU
 - L is a lower triangular matrix
 - All elements above diagonal are 0
 - R is an upper triangular matrix
 - All elements below diagonal are zero
 - Cholesky decomposition: A is symmetric, L = U^T

- QR decompositions: A = QR
 - Q is orthogonal: QQ^T = I
 - R is upper triangular

- Generally used as tools to compute Eigen decomposition or least square solutions

Making vectors and matrices in MATLAB

- Make a row vector: \(a = [1 \ 2 \ 3] \)
- Make a column vector: \(a = [1; 2; 3] \)
- Make a matrix: \(A = [1 \ 2 \ 3; 4 \ 5 \ 6] \)
- Combine vectors: \(A = [b \ c] \text{ or } A = [b; c] \)
- Make a random vector/matrix: \(c = \text{rand}(n,n) \)
- Make an identity matrix: \(I = \text{eye}(n) \)
- Make a sequence of numbers: \(c = 1:10 \) or \(c = 1:0.5:10 \) or \(c = 10:1:100 \)
- Make a ramp: \(c = \text{linspace}(0, 1, 100) \)

Indexing

- To get the \(i \)-th element of a vector: \(a(i) \)
- To get the \(i \)-th \(j \)-th element of a matrix: \(A(i,j) \)
- To get from the \(i \)-th to the \(j \)-th element: \(a(i:j) \)
- To get a sub-matrix: \(A(i:j, k:l) \)
- To get segments: \(a([i:j \ k:l \ m]) \)

Properties of a Trace

- Linearity: \(\text{Tr}(A+B) = \text{Tr}(A) + \text{Tr}(B) \)
 \(\text{Tr}(cA) = c \cdot \text{Tr}(A) \)

- Cycling invariance:
 - \(\text{Tr}(ABCD) = \text{Tr}(DABC) = \text{Tr}(CDAB) = \text{Tr}(BCDA) \)
 - \(\text{Tr}(AB) = \text{Tr}(BA) \)

- Frobenius norm: \(F(A) = \sum_{i,j} a_{ij}^2 = \text{Tr}(AA^T) \)
Arithmetic operations

- Addition/Subtraction
 \[C = A + B \text{ or } C = A - B \]
- Vector/Matrix multiplication
 \[C = A \times B \]
 - Operands must match!
- Element-wise operations
 - Multiplication/division
 \[C = A \times B \text{ or } C = A ./ B \]
 - Exponentiation
 \[C = A.^B \]
 - Elementary functions
 \[C = \sin(A) \text{ or } C = \sqrt{A}, \ldots \]

Getting help with functions

- The help function
 - Type `help` followed by a function name
- Things to try
 - `help help`
 - `help +`
 - `help eig`
 - `help svd`
 - `help plot`
 - `help bar`
 - `help imagesc`
 - `help surf`
 - `help ops`
 - `help matfun`
- Also check out the tutorials and the mathworks site

Linear algebra operations

- Transposition
 \[C = A' \]
 - If A is complex also conjugates use \[C = A.' \] to avoid that
- Vector norm
 \[\text{norm}(x) \] (also works on matrices)
- Matrix inversion
 \[C = \text{inv}(A) \text{ if } A \text{ is square} \]
 \[C = \text{pinv}(A) \text{ if } A \text{ is not square} \]
 - A might not be invertible, you'll get a warning if so
- Eigenanalysis
 \[[u,d] = \text{eig}(A) \]
 - u is a matrix containing the eigenvectors
 - d is a diagonal matrix containing the eigenvalues
- Singular Value Decomposition
 \[[u,s,v] = \text{svd}(A) \text{ or } [u,s,v] = \text{svd}(A,0) \]
 - "thin" versus regular SVD
 - s is diagonal and contains the singular values

Plotting functions

- 1-d plots
 \[\text{plot}(x) \]
 - If x is a vector will plot all its elements
 - If x is a matrix will plot all its columns
 \[\text{bar}(x) \]
 - Ditto but makes a bar plot
- 2-d plots
 \[\text{imagesc}(x) \]
 - plots a matrix as an image
 \[\text{surf}(x) \]
 - makes a surface plot