Clustering

Class 14. 18 Oct 2011

How

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data instances (with low within-group variability and high between-group variability)

Clustering

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data instances (with low within-group variability and high between-group variability)

 - How is it done
 - Find groupings of data such that the groups optimize a "within-group variability" objective function of some kind
Clustering

What is clustering
- Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability).

How is it done
- Find groupings of data such that the groups optimize a “within-group-variability” objective function of some kind.
- The objective function used affects the nature of the discovered clusters.
 - E.g. Euclidean distance and distance from center result in different clusters in this example.

Why Clustering

Automatic grouping into “Classes”
- Different clusters may show different behavior.

Quantization
- All data within a cluster are represented by a single point.

Preprocessing step for other algorithms
- Indexing, categorization, etc.

Clustering criteria

Compactness criterion
- Measure that shows how “good” clusters are.
 - The objective function.

Distance of a point from a cluster
- To determine the cluster a data vector belongs to.

“Compactness” criteria for clustering

Distance based measures
- Total distance between each element in the cluster and every other element in the cluster.
Distance based measures
- Total distance between each element in the cluster and every other element in the cluster
- Distance between the two farthest points in the cluster
- Total distance of every element in the cluster from the centroid of the cluster

Clustering: Distance from cluster
- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster

Distance measures are often weighted Minkowski metrics:
$$\text{dist} = \sqrt{\sum_{i=1}^{n} \left| x_i - y_i \right|^p}$$
Clustering: Distance from cluster

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster
 - Probability of data measured on cluster distribution

Optimal clustering: Exhaustive enumeration

- All possible combinations of data must be evaluated
 - If there are M data points, and we desire N clusters, the number of ways of separating M instances into N clusters is
 \[
 \frac{1}{M!} \sum_{i=1}^{M} (-1)^i \binom{M}{i} (M-i)^N
 \]
 - Exhaustive enumeration based clustering requires that the objective function (the "Goodness measure") be evaluated for every one of these, and the best one chosen
 - This is the only correct way of optimal clustering
 - Unfortunately, it is also computationally unrealistic

Not-quite non sequitur: Quantization

- Linear quantization (uniform quantization):
 - Each digital value represents an equally wide range of analog values
 - Regardless of distribution of data
 - Digital-to-analog conversion represented by a "uniform" table

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ≥ 3.75v</td>
<td>11</td>
<td>3 × const</td>
</tr>
<tr>
<td>3.75v > S ≥ 2.5v</td>
<td>10</td>
<td>2 × const</td>
</tr>
<tr>
<td>2.5v > S ≥ 1.25v</td>
<td>9</td>
<td>1 × const</td>
</tr>
<tr>
<td>1.25v > S ≥ 0v</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Analog value (arrows are quantization levels)
Not-quite non sequitur: Quantization

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>3v > S >= 4v</td>
<td>11</td>
<td>4.5</td>
</tr>
<tr>
<td>2.5v > S >= 3v</td>
<td>10</td>
<td>3.25</td>
</tr>
<tr>
<td>1.0v > S >= 0v</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Non-linear quantization:
- Each digital value represents a different range of analog values
- Finer resolution in high-density areas
- Mu-law / A-law assumes a Gaussian-like distribution of data
- Digital-to-analog conversion represented by a "non-uniform" table

Non-uniform quantization
- If data distribution is not Gaussianish?
 - Mu-law / A-law are not optimal
 - How to compute the optimal ranges for quantization
 - Or the optimal table

The Lloyd Quantizer
- Lloyd quantizer: An iterative algorithm for computing optimal quantization tables for non-uniformly distributed data
- Learned from "training" data

Lloyd Quantizer
- Randomly initialize quantization points
- Right column entries of quantization table
- Assign all training points to the nearest quantization point
- Draw boundaries
- Reestimate quantization points
Lloyd Quantizer

- Randomly initialize quantization points
- Right column entries of quantization table
- Assign all training points to the nearest quantization point
- Draw boundaries
- Reestimate quantization points
- Iterate until convergence

Generalized Lloyd Algorithm: K–means clustering

- K means is an iterative algorithm for clustering vector data
- General procedure:
 - Initially group data into the required number of clusters somehow (initialization)
 - Assign each data point to the closest cluster
 - Once all data points are assigned to clusters, redefine clusters
 - Iterate

K–means

- Problem: Given a set of data vectors, find natural clusters
- Clustering criterion is scatter: distance from the centroid
 - Every cluster has a centroid
 - The centroid represents the cluster
- Definition: The centroid is the weighted mean of the cluster
 - Weight = 1 for basic scheme

K–means

1. Initialize a set of centroids randomly
2. For each data point \(x \), find the distance from the centroid for each cluster
 - \(d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}}) \)
3. Put data point in the cluster of the closest centroid
 - Cluster for which \(d_{\text{cluster}} \) is minimum
K–means

1. Initialize a set of centroids randomly
2. For each data point \(x \), find the distance from the centroid for each cluster
 \[d_{cluster} = \text{distance}(x, m_{cluster}) \]
3. Put data point in the cluster of the closest centroid
 • Cluster for which \(d_{cluster} \) is minimum
4. When all data points clustered, recompute cluster centroid
5. If not converged, go back to 2

\[
\sum_{i} x_i \]

37 18 Oct 2011

38 18 Oct 2011

39 18 Oct 2011

40 18 Oct 2011

41 18 Oct 2011
K-Means

1. Initialize a set of centroids randomly
2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
3. Put data point in the cluster of the closest centroid
 - Cluster for which $d_{cluster}$ is minimum
4. When all data points are clustered, recompute centroids
5. If not converged, go back to 2

K-Means comments

- The distance metric determines the clusters
 - In the original formulation, the distance is L2 distance
 - Euclidean norm, $w_i = 1$
 - If we replace every x by $m_{cluster}(x)$, we get Vector Quantization
 - K-means is an instance of generalized EM
 - Not guaranteed to converge for all distance metrics

Initialization

- Random initialization
- Top-down clustering
 - Initially partition the data into two (or a small number of) clusters using K means
 - Partition each of the resulting clusters into two (or a small number of) clusters, also using K means
 - Terminate when the desired number of clusters is obtained

K-Means for Top–Down clustering

1. Start with one cluster
2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
K-Means for Top–Down clustering

1. Start with one cluster
2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
3. Initialize K means with new set of centroids
4. Iterate Kmeans until convergence
5. If the desired number of clusters is not obtained, return to 2

Non-Euclidean clusters

- Basic K-means results in good clusters in Euclidean spaces
 - Alternately stated, will only find clusters that are "good" in terms of Euclidean distances
- Will not find other types of clusters
For any vector $p \in \mathbb{R}^d$ we must modify the distance measure

- E.g. distance from a circle
- May be viewed as a distance in a higher dimensional space
 - I.e Kernel distances
 - Kernel K-means

Other related clustering mechanisms:
- Spectral clustering
- Non-linear weighting of adjacency
- Normalized cuts...

Distance in higher-dimensional space

- Transform the data into a synthetic higher-dimensional space
 - Where the desired patterns become natural clusters
- E.g. the quadratic transform above
- Problem: What is the function/space?
- Problem: Distances in higher dimensional space are more expensive to compute
- Yet only carry the same information in the lower-dimensional space

Distance in lower-dimensional space: A combination of dot products

- $|\|s_i - x_j\|_2^2 = (x_i - x_j)^T (x_i - x_j) = x_i x_j + x_j x_i - 2 x_i x_j$
- $d(x_i, x_j) = |\|\phi(x_i) - \phi(x_j)\|_2^2$
- $d(x_i, x_j)$ can be computed without computing z
 - Since it is a direct function of x_i and x_j

$\Phi(x) = \{\phi_1(x), \phi_2(x), \phi_3(x), \ldots\}$

- $\phi_i(x)$ can be computed for any x_i and x_j without knowing $\phi_i()$
- $\phi_i(x)$, $\phi_j(x)$ can be computed without knowing $\phi_i()$

A property of the dot product

- For any vector v, $v^Tv = ||v||^2 > 0$
 - This is just the length of v and is therefore non-negative
- For any vector $u = \sum_i a_i v_i$, $||u||^2 > 0$
 - $\Rightarrow (\sum_i a_i v_i)^T (\sum_i a_i v_i) > 0$
 - $\Rightarrow \sum_i a_i v_i v_i^T > 0$
- This holds for ANY real $\{a_1, a_2, \ldots\}$

A kernel function $K(x_i, x_j)$ is a function such that:

- $K(x_i, x_j) = \Phi(x_i), \Phi(x_j)$
- $d(x_i, x_j) = |\|\phi(x_i) - \phi(x_j)\|_2^2$
- But what is $K(x_i, x_j)$?
For each data point
Initialize the clusters with a
\(K \)-means

Typical Kernel Functions
- **Linear**: \(K(x, y) = x^T y + c \)
- **Polynomial**: \(K(x, y) = (ax^T y + c)^p \)
- **Gaussian**: \(K(x, y) = \exp(-||x-y||^2/\sigma^2) \)
- **Exponential**: \(K(x, y) = \exp(-||x-y||/\lambda) \)
- Several others
 - Choosing the right Kernel with the right parameters for your problem is an artform

K–means
- Initialize the clusters with a random set of \(K \) points
 - Cluster has 1 point
- For each data point \(x \), find the closest cluster
 \[
 \text{cluster}(x) = \min_{\text{cluster}} \left\{ d(x, \text{cluster}) = \min_{\text{cluster}} \| \Phi(x) - m_{\text{cluster}} \|^2 \right\}
 \]
 \[
 d(x, \text{cluster}) = \left\| \phi(x) - \Phi(m_{\text{cluster}}) \right\|^2 = \left\| \phi(x) - \Phi(C) \sum w_i \phi(x_i) \right\|^2
 \]
 \[
 = \phi(x)^T \phi(x) - 2 \Phi(C) \sum w_i \phi(x_i) \phi(x) + \Phi(C) \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 \[
 = K(x, x) - 2 \Phi(C) \sum w_i K(x_i, x) + \Phi(C) \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 \[
 = K(x, x) - 2 \sum \sum w_i w_j K(x_i, x_j) + \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 \[
 = K(x, x) - 2 \sum \sum w_i w_j K(x_i, x_j) + \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 Computed entirely using only the kernel function!

Kernel K–means
- Perform the K-mean in the Kernel space
 - The space of \(z = \phi(x) \)
 - The algorithm..

The Mercer Condition
- If \(\Phi(x) \) is a high-dimensional vector derived from \(x \) then for all real \{\(a_1, a_2, \ldots \)\} and any set \(\{x_1, x_2, \ldots \} = \{\phi(x_1), \phi(x_2), \ldots \} \)
 - \(\sum a_i a_j \phi(x_i) \phi(x_j) \geq 0 \)
 - \(\sum a_i a_j K(x_i, x_j) \geq 0 \)
- If \(K(x_1, x_2) = \phi(x_1), \phi(x_2) \)
 - \(\sum a_i a_j K(x_i, x_j) \geq 0 \)
- Any function \(K() \) that satisfies the above condition is a valid kernel function

A corollary: If any kernel \(K() \) satisfies the Mercer condition
\(d(x_1, x_2) = K(x_1, x_2) + K(x_2, x_2) - 2K(x_1, x_2) \)
satisfies the following requirements for a “distance”
- \(d(x, x) = 0 \)
- \(d(x, y) = 0 \)
- \(d(x, y) = d(x, y) \)

K–means
- Initialize a set of centroids

1. Initialize a set of centroids randomly

- Cluster has 1 point
- For each data point \(x \), find the closest cluster
 \[
 \text{cluster}(x) = \min_{\text{cluster}} \left\{ d(x, \text{cluster}) = \min_{\text{cluster}} \| \phi(x) - m_{\text{cluster}} \|^2 \right\}
 \]
 \[
 d(x, \text{cluster}) = \left\| \phi(x) - \Phi(m_{\text{cluster}}) \right\|^2 = \left\| \phi(x) - \Phi(C) \sum w_i \phi(x_i) \right\|^2
 \]
 \[
 = \phi(x)^T \phi(x) - 2 \Phi(C) \sum w_i \phi(x_i) \phi(x) + \Phi(C) \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 \[
 = K(x, x) - 2 \Phi(C) \sum w_i K(x_i, x) + \Phi(C) \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 \[
 = K(x, x) - 2 \sum \sum w_i w_j K(x_i, x_j) + \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 \[
 = K(x, x) - 2 \sum \sum w_i w_j K(x_i, x_j) + \sum w_i \Phi(x_i)^T \Phi(x_i) \Phi(C)
 \]
 Computed entirely using only the kernel function!
K–means

1. Initialize a set of centroids randomly

2. For each data point \(x \), find the distance from the centroid for each cluster
 - \(d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}}) \)

3. Put data point in the cluster of the closest centroid
 - Cluster for which \(d_{\text{cluster}} \) is minimum

4. When all data points clustered, recompute cluster centroid

5. If not converged, go back to 2

\[\sum \in \text{cluster} \]
K–means
1. Initialize a set of centroids randomly
2. For each data point x, find the distance from the centroid for each cluster
 • $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$
3. Put data point in the cluster of the closest centroid
 • Cluster for which d_{cluster} is minimum
4. When all data points are clustered, recompute centroids
 $$m_{\text{new}} = \frac{1}{n_{\text{cluster}}} \sum_{x \in \text{cluster}} x$$
5. If not converged, go back to 2

Kernel K–means
1. Initialize a set of centroids randomly
2. For each data point x, find the distance from the centroid for each cluster
 • $d_{\text{cluster}} = \text{distance}(x, m_{\text{cluster}})$
3. Put data point in the cluster of the closest centroid
 • Cluster for which d_{cluster} is minimum
4. When all data points clustered, recompute cluster centroid
$$m_{\text{new}} = \frac{1}{\sum_{i} n_{i}} \sum_{i} m_{i} n_{i}$$
5. If not converged, go back to 2

How many clusters?
- Assumptions:
 - Dimensionality of kernel space $>$ no. of clusters
 - Clusters represent separate directions in Kernel spaces
- Kernel correlation matrix K
 - $K_{ij} = K(x_i, x_j)$
- Find Eigen values Λ and Eigen vectors e of matrix K
 - No. of clusters = no. of dominant $\lambda_i(1e_i)$ terms

Spectral Methods
- “Spectral” methods attempt to find “principal” subspaces of the high-dimensional kernel space
- Clustering is performed in the principal subspaces
 - Normalized cuts
 - Spectral clustering
- Involves finding Eigenvectors and Eigen values of Kernel matrix
- Fortunately, provably analogous to Kernel K–means
Other clustering methods

- Regression based clustering
- Find a regression representing each cluster
- Associate each point to the cluster with the best regression
 - Related to kernel methods

Clustering..

- Many many other variants
- Many applications...

Important: Appropriate choice of feature
 - Appropriate choice of feature may eliminate need for kernel trick...
 - Google is your friend.