Fundamentals of Linear Algebra, Part II

Class 2. 31 August 2009

Instructor: Bhiksha Raj
Administrivia

- Registration: Anyone on waitlist still?

- We have a second TA
 - Sohail Bahmani
 - sbahmani@andrew.cmu.edu

- Homework: Slightly delayed
 - Linear algebra
 - Adding some fun new problems.
 - Use the discussion lists on blackboard.andrew.cmu.edu

- Blackboard – if you are not registered on blackboard please register
Overview

- Vectors and matrices
- Basic vector/matrix operations
- Vector products
- Matrix products
- Various matrix types
- Matrix inversion
- Matrix interpretation
- Eigenanalysis
- Singular value decomposition
The Identity Matrix

\[Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

- An identity matrix is a square matrix where
 - All diagonal elements are 1.0
 - All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors
Diagonal Matrix

\[Y = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \]

- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
 - May flip axes
Diagonal matrix to transform images

How?
Stretching

Location-based representation

Scaling matrix – only scales the X axis
- The Y axis and pixel value are scaled by identity

Not a good way of scaling.

\[
\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & . & 2 & . & 2 & . & 2 & . & 10 \\
1 & 2 & . & 1 & . & 5 & 6 & . & 10 & . & 10 \\
1 & 1 & . & 1 & . & 0 & 0 & . & 1 & . & 1
\end{bmatrix}
\]
Stretching

\[D = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix} \]

\[A = \begin{bmatrix}
1 & .5 & 0 & 0 \\
0 & .5 & 1 & .5 \\
0 & 0 & 0 & .5 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \quad (N \times 2N) \]

\[\text{Newpic} = DA \]

- Better way
Modifying color

\[P = \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[Newpic = P \]

- Scale only Green
A permutation matrix simply rearranges the axes
- The row entries are axis vectors in a different order
- The result is a combination of rotations and reflections

The permutation matrix effectively permutes the arrangement of the elements in a vector
Permutation Matrix

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{bmatrix}
\]

- Reflections and 90 degree rotations of images and objects
Permutation Matrix

\[P = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \]

- Reflections and 90 degree rotations of images and objects
 - Object represented as a matrix of 3-Dimensional “position” vectors
 - Positions identify each point on the surface
Rotation Matrix

\[x' = x \cos \theta - y \sin \theta \]
\[y' = x \sin \theta + y \cos \theta \]

\[
R_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

\[
X = \begin{bmatrix} x \\ y \end{bmatrix}
\]

\[
X_{new} = \begin{bmatrix} x' \\ y' \end{bmatrix}
\]

\[
R_\theta X = X_{new}
\]

- A rotation matrix rotates the vector by some angle \(\theta \)
- Alternately viewed, it rotates the axes
 - The new axes are at an angle \(\theta \) to the old one
Note the representation: 3-row matrix

- Rotation only applies on the “coordinate” rows
- The value does not change
- Why is pacman grainy?

\[R = \begin{bmatrix}
\cos 45 & -\sin 45 & 0 \\
\sin 45 & \cos 45 & 0 \\
0 & 0 & 1
\end{bmatrix} \]

\[
\begin{bmatrix}
1 & 1 & 2 & 2 & 2 & 2 & \ldots \\
1 & 2 & 1 & 5 & 6 & 10 & \ldots \\
1 & 1 & 1 & 0 & 0 & 1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & -\sqrt{2} & \sqrt{2} & -3\sqrt{2} & -4\sqrt{2} & -8\sqrt{2} & \ldots \\
\sqrt{2} & 3\sqrt{2} & 3\sqrt{2} & 7\sqrt{2} & 8\sqrt{2} & 12\sqrt{2} & \ldots \\
1 & 1 & 1 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
3-D Rotation

- 2 degrees of freedom
 - 2 separate angles
- What will the rotation matrix be?
Projections

- What would we see if the cone to the left were transparent if we looked at it along the normal to the plane
 - The plane goes through the origin
 - Answer: the figure to the right

- How do we get this? Projection
Projections

- Each pixel in the cone to the left is mapped onto its “shadow” on the plane in the figure to the right.
- The location of the pixel’s “shadow” is obtained by multiplying the vector V representing the pixel’s location in the first figure by a matrix A.
 - $\text{Shadow}(V) = AV$
- The matrix A is a projection matrix.
Consider any plane specified by a set of vectors W_1, W_2.
- Or matrix $[W_1, W_2, ..]$.

Any vector can be projected onto this plane by multiplying it with the projection matrix for the plane.
- The projection is the shadow.
Given a set of vectors W_1, W_2, which form a matrix $W = [W_1 \ W_2 \ldots]$.

The projection matrix that transforms any vector X to its projection on the plane is

$$P = W \ (W^T W)^{-1} \ W^T$$

- We will visit matrix inversion shortly.

Magic – any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix.

$$P = V \ (V^T V)^{-1} \ V^T$$
Projections

- HOW?
Draw any two vectors W_1 and W_2 that lie on the plane

- ANY two so long as they have different angles

Compose a matrix $W = [W_1 \ W_2]$

Compose the projection matrix $P = W (W^T W)^{-1} W^T$

Multiply every point on the cone by P to get its projection

View it 😊

I’m missing a step here – what is it?
The projection actually projects it onto the plane, but you’re still seeing the plane in 3D

- The result of the projection is a 3-D vector
- \(P = W (W^T W)^{-1} W^T = 3 \times 3, \ P \text{Vector} = 3 \times 1 \)
- The image must be rotated till the plane is in the plane of the paper
 - The Z axis in this case will always be zero and can be ignored
 - How will you rotate it? (remember you know W1 and W2)
Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
 - $P_x = x$ if x is on the plane
 - If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
 - $P(P_x) = P_x$
 - That is because P_x is already on the plane
- Projection matrices are *idempotent*
 - $P^2 = P$
 - Follows from the above
Projections: A more physical meaning

- Let $W_1, W_2 \ldots W_k$ be “bases”
- We want to explain our data in terms of these “bases”
 - We often cannot do so
 - But we can explain a significant portion of it

- The portion of the data that can be expressed in terms of our vectors $W_1, W_2, \ldots W_k$, is the projection of the data on the $W_1 \ldots W_k$ (hyper) plane
 - In our previous example, the “data” were all the points on a cone
 - The interpretation for volumetric data is obvious
Projection: an example with sounds

- The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
 - I.e. how much can it be explained by the notes
Projection: one note

- The spectrogram (matrix) of a piece of music

- M = spectrogram; W = note
- P = W (W^T W)^{-1} W^T
- Projected Spectrogram = P * M
Projection: one note – cleaned up

M =

- The spectrogram (matrix) of a piece of music

W =

- Floored all matrix values below a threshold to zero
Projection: multiple notes

\[M = \]

- The spectrogram (matrix) of a piece of music

\[W = \]

- \[P = W (W^{T}W)^{-1} W^{T} \]
- Projected Spectrogram = \[P \ast M \]
Projection: multiple notes, cleaned up

- The spectrogram (matrix) of a piece of music

\[M = \]

\[W = \]

- \(P = W (W^T W)^{-1} W^T \)
- Projected Spectrogram = \(P \ast M \)
Projection and Least Squares

- Projection actually computes a least squared error estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{\text{approx}} = a*\text{note1} + b*\text{note2} + c*\text{note3}..$

 $$
 V_{\text{approx}} = \begin{bmatrix}
 \text{note1} \\
 \text{note2} \\
 \text{note3}
 \end{bmatrix} \begin{bmatrix}
 a \\
 b \\
 c
 \end{bmatrix}
 $$

 - Error vector $E = V - V_{\text{approx}}$
 - Squared error energy for V $e(V) = \text{norm}(E)^2$
 - Total error $= \sum_{\text{all } V} e(V)$

- Projection computes V_{approx} for all vectors such that Total error is minimized
 - It does not give you “a”, “b”, “c”.. Though
 - That needs a different operation – the inverse / pseudo inverse
Orthogonal and Orthonormal matrices

- **Orthogonal Matrix**: $AA^T = \text{diagonal}$
 - Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix

- **Orthonormal Matrix**: $AA^T = A^TA = I$
 - In addition to being orthogonal, each vector has length exactly = 1.0
 - Interesting observation: In a square matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0
Orthogonal and Orthonormal Matrices

- Orthonormal matrices will retain the relative angles between transformed vectors
 - Essentially, they are combinations of rotations, reflections and permutations
 - Rotation matrices and permutation matrices are all orthonormal matrices
 - The vectors in an orthonormal matrix are at 90 degrees to one another.

- Orthogonal matrices are like Orthonormal matrices with stretching
 - The product of a diagonal matrix and an orthonormal matrix
Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object
Some matrices will eliminate one or more dimensions during transformation

- These are rank deficient matrices
- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object
Projections are often examples of rank-deficient transforms

\[M = \text{Pro}\text{jection}\text{Specrogram} = P \ast M \]

- \[P = W (W^T W)^{-1} W^T \]; Projected Spectrogram = P * M
- The original spectrogram can never be recovered
 - P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only 4 \textit{independent} bases
 - Rank of P is 4
Non-square Matrices

Non-square matrices add or subtract axes

- More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data

$X = 2D$ data

$$
\begin{bmatrix}
 x_1 & x_2 & \cdots & x_N \\
 y_1 & y_2 & \cdots & y_N
\end{bmatrix}
$$

$P = \text{transform}$

$$
\begin{bmatrix}
 .8 & .9 \\
 .1 & .9 \\
 .6 & 0
\end{bmatrix}
$$

$PX = 3D, \text{rank } 2$

$$
\begin{bmatrix}
 x_1 & x_2 & \cdots & x_N \\
 y_1 & y_2 & \cdots & y_N \\
 z_1 & z_2 & \cdots & z_N
\end{bmatrix}
$$
Non-square Matrices

- Non-square matrices add or subtract axes
 - More rows than columns → add axes
 - But does not increase the dimensionality of the data
 - Fewer rows than columns → reduce axes
 - May reduce dimensionality of the data

\[
X = \begin{bmatrix}
 x_1 & x_2 & \cdots & x_N \\
y_1 & y_2 & \cdots & y_N \\
z_1 & z_2 & \cdots & z_N \\
\end{bmatrix}
\]

\[
P = \begin{bmatrix}
0.3 & 1 & 0.2 \\
0.5 & 1 & 1 \\
\end{bmatrix}
\]

\[
PX = \begin{bmatrix}
x_1 & x_2 & \cdots & x_N \\
y_1 & y_2 & \cdots & y_N \\
\end{bmatrix}
\]

X = 3D data, rank 3

P = transform

PX = 2D, rank 2
The Rank of a Matrix

The matrix rank is the dimensionality of the transformation of a full-dimensioned object in the original space.

The matrix can never increase dimensions.
- Cannot convert a circle to a sphere or a line to a circle.

The rank of a matrix can never be greater than the lower of its two dimensions.
The Rank of Matrix

Let $M =$

- Projected Spectrogram $= P \times M$
 - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the *smallest* no. of bases required to describe the output
 - E.g. if note no. 4 in P could be expressed as a combination of notes 1, 2 and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - The rank of P would be 3!
Matrix rank is unchanged by transposition

If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix.
Matrix Determinant

- The determinant is the “volume” of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
 - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book
The determinant is the ratio of N-volumes

- If \(V_1 \) is the volume of an N-dimensional object “O” in N-dimensional space
 - O is the complete set of points or vertices that specify the object
- If \(V_2 \) is the volume of the N-dimensional object specified by \(A*O \), where \(A \) is a matrix that transforms the space
- \(|A| = V_2 / V_1\)
Matrix Determinants

- Matrix determinants are *only defined for square matrices*
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors

- Rank deficient matrices have determinant 0
 - Since they compress full-volumed N-D objects into zero-volume N-D objects
 - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)

- Conversely, all matrices of determinant 0 are rank deficient
 - Since they compress full-volumed N-D objects into zero-volume objects
Multiplication properties

- Properties of vector/matrix products
 - Associative
 \[A \cdot (B \cdot C) = (A \cdot B) \cdot C \]
 - Distributive
 \[A \cdot (B + C) = A \cdot B + A \cdot C \]
 - NOT commutative!!!
 \[A \cdot B \neq B \cdot A \]
 - *left multiplications ≠ right multiplications*
 - Transposition
 \[(A \cdot B)^T = B^T \cdot A^T \]
Determinant properties

- Associative for square matrices
 \[A \cdot B \cdot C = A \cdot (B \cdot C) \]
 Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices

- Volume of sum \(!=\) sum of Volumes
 \[(B + C) \neq B + C \]
 The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices

- Commutative for square matrices!!
 \[A \cdot B = B \cdot A = A \cdot B \]
 The order in which you scale the volume of an object is irrelevant

31 Aug 2010
Matrix Inversion

- A matrix transforms an N-D object to a different N-D object
- What transforms the new object back to the original?
 - The inverse transformation
- The inverse transformation is called the matrix inverse
Matrix Inversion

- The product of a matrix and its inverse is the identity matrix.
 - Transforming an object, and then inverse transforming it gives us back the original object.
Inverting rank-deficient matrices

- Rank deficient matrices “flatten” objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go “back” from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse
Revisiting Projections and Least Squares

- Projection computes a least squared error estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{\text{approx}} = a \cdot \text{note1} + b \cdot \text{note2} + c \cdot \text{note3}..$

$$W = \begin{bmatrix}
 \text{note1} \\
 \text{note2} \\
 \text{note3}
\end{bmatrix}, \quad V_{\text{approx}} = \begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix}$$

- Error vector $E = V - V_{\text{approx}}$
- Squared error energy for V $e(V) = \|E\|^2$
- Total error $=$ Total error $+$ $e(V)$

- Projection computes V_{approx} for all vectors such that Total error is minimized
- **But WHAT ARE “a” “b” and “c”?**
The Pseudo Inverse (PINV)

\[V_{\text{approx}} = W \begin{bmatrix} a \\ b \\ c \end{bmatrix} \rightarrow V \approx W \begin{bmatrix} a \\ b \\ c \end{bmatrix} = PINV(W)^* V \]

- We are approximating spectral vectors V as the transformation of the vector \([a \ b \ c]^T\)
 - Note – we’re viewing the collection of bases in W as a transformation

- The solution is obtained using the pseudo inverse
 - This give us a LEAST SQUARES solution
 - If \(W\) were square and invertible \(Pinv(W) = W^{-1}\), and \(V = V_{\text{approx}}\)
Explaining music with one note

Recap: \(P = W (W^TW)^{-1} W^T \), Projected Spectrogram = \(P^*M \)

Approximation: \(M \approx W^*X \)

The amount of \(W \) in each vector = \(X = \text{PINV}(W)^*M \)

\(W^*\text{Pinv}(W)^*M = \text{Projected Spectrogram} = P^*M \)

- \(W^*\text{Pinv}(W) = \text{Projection matrix} = W (W^TW)^{-1} W \)
- \(\text{PINV}(W) = (W^TW)^{-1}W^T \)

31 Aug 2010
Explanation with multiple notes

\[\mathbf{M} = \]

\[\mathbf{W} = \]

\[X = \text{Pinv}(W) \cdot \mathbf{M}; \quad \text{Projected matrix} = \mathbf{W} \cdot X = \mathbf{W} \cdot \text{Pinv}(W) \cdot \mathbf{M} \]
How about the other way?

\[M = \]

\[V = \]

\[W = \]

\[U = \]

\[WV \approx M \]

\[W = M \times P_{inv}(V) \]

\[U = WV \]
Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv(Pinv(A))) = A
- A*Pinv(A) = projection matrix!
 - Projection onto the columns of A

- If A = K x N matrix and K > N, A projects N-D vectors into a higher-dimensional K-D space
- Pinv(A)*A = I in this case
Matrix inversion (division)

- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to “undo” a linear transformation
 - Inverse of the unit matrix is itself
 - Inverse of a diagonal is diagonal
 - Inverse of a rotation is a (counter)rotation (its transpose!)
 - Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- Pay attention to multiplication side!
 \[A \cdot B = C, \quad A = C \cdot B^{-1}, \quad B = A^{-1} \cdot C \]
- Matrix inverses defined for square matrices only
 - If matrix not square use a matrix pseudoinverse:
 \[A \cdot B = C, \quad A = C \cdot B^+, \quad B = A^+ \cdot C \]
- MATLAB syntax: \texttt{inv(a)}, \texttt{pinv(a)}
What is the Matrix?

- Duality in terms of the matrix identity
 - Can be a container of data
 - An image, a set of vectors, a table, etc …
 - Can be a **linear** transformation
 - A process by which to transform data in another matrix

- We’ll usually start with the first definition and then apply the second one on it
 - Very frequent operation
 - Room reverberations, mirror reflections, etc …

- Most of signal processing and machine learning are **matrix operations**!
Eigenanalysis

- If something can go through a process mostly unscathed in character it is an *eigen*-something
 - Sound example: 🎵🎵🎵🎵🎵
- A vector that can undergo a matrix multiplication and keep pointing the same way is an *eigenvector*
 - Its length can change though
- How much its length changes is expressed by its corresponding *eigenvalue*
 - Each eigenvector of a matrix has its eigenvalue
- Finding these “eigenthings” is called eigenanalysis
EigenVectors and EigenValues

Black vectors are eigen vectors

1. Vectors that do not change angle upon transformation
 - They may change length

\[MV = \lambda V \]

- \(V \) = eigen vector
- \(\lambda \) = eigen value

Matlab: \([V, L] = \text{eig}(M)\)
- \(L \) is a diagonal matrix whose entries are the eigen values
- \(V \) is a matrix whose columns are the eigen vectors
Eigen vector example
Matrix multiplication revisited

Matrix transformation “transforms” the space
- Warps the paper so that the normals to the two vectors now lie along the axes

\[M = \begin{bmatrix} 1.0 & -0.07 \\ -1.1 & 1.2 \end{bmatrix} \]
A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative – implies flipping the paper
- The result is a transformation of the space
A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative – implies flipping the paper
- The result is a transformation of the space
Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix
Physical interpretation of eigen vector

\[V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \]
\[L = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]
\[M = VLV^{-1} \]

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix
Eigen Analysis

- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix

\[R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

\[X = \begin{bmatrix} x \\ y \end{bmatrix} \]

\[X_{new} = \begin{bmatrix} x' \\ y' \end{bmatrix} \]

- This rotates every vector in the plane
 - No vector that remains unchanged

- In these cases the Eigen vectors and values are complex

- Some matrices are special however..
Symmetric Matrices

\[
\begin{bmatrix}
1.5 & -0.7 \\
-0.7 & 1
\end{bmatrix}
\]

- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - At 90 degrees to one another
Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid

- The eigen values are the lengths of the axes
Symmetric matrices

- Eigen vectors V_i are orthonormal
 - $V_i^T V_i = 1$
 - $V_i^T V_j = 0$, $i \neq j$

- Listing all eigen vectors in matrix form V
 - $V^T = V^{-1}$
 - $V^T V = I$
 - $V V^T = I$

- $M V_i = \lambda V_i$

- In matrix form : $M V = V L$
 - L is a diagonal matrix with all eigen values

- $M = V L V^T$