Administrivia

- Registration: Anyone on waitlist still?
- We have a second TA
 - Sohail Bahmani
 - sbahmani@andrew.cmu.edu
- Homework: Slightly delayed
 - Linear algebra
 - Adding some fun new problems.
 - Use the discussion lists on blackboard.andrew.cmu.edu
- Blackboard – if you are not registered on blackboard please register

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Vector products
- Matrix products
- Various matrix types
- Matrix inversion
- Matrix interpretation
- Eigenanalysis
- Singular value decomposition

The Identity Matrix

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

- An identity matrix is a square matrix where
 - All diagonal elements are 1.0
 - All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

Diagonal Matrix

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
 - May flip axes

Diagonal matrix to transform images

- How?
Stretching

- Location-based representation
- Scaling matrix – only scales the X axis
 - The Y axis and pixel value are scaled by identity
 - Not a good way of scaling.

\[
D = \begin{bmatrix}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

A permutation matrix simply rearranges the axes
- The row entries are axis vectors in a different order
- The result is a combination of rotations and reflections
- The permutation matrix effectively permutes the arrangement of the elements in a vector

Permutation Matrix

反射和 90 度旋转的图像和对象
- 对象表示为 3-Dimensional “位置” 向量
- 位置识别每个表面的点
Rotation Matrix

\[
x' = x \cos \theta - y \sin \theta \\
y' = x \sin \theta + y \cos \theta
\]

\[
R_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

\[
R_\theta X = X_{\text{new}}
\]

- A rotation matrix rotates the vector by some angle \(\theta \)
- Alternately viewed, it rotates the axes
- The new axes are at an angle \(\theta \) to the old one

Rotating a picture

- Note the representation: 3-row matrix
 - Rotation only applies on the "coordinate" rows
 - The value does not change
 - Why is Pacman grainy?

3-D Rotation

- 2 degrees of freedom
 - 2 separate angles
 - What will the rotation matrix be?

Projections

- Each pixel in the cone to the left is mapped onto its "shadow" on the plane in the figure to the right
- The location of the pixel's "shadow" is obtained by multiplying the vector \(V \) representing the pixel's location in the first figure by a matrix \(A \)
- The matrix \(A \) is a projection matrix

- Consider any plane specified by a set of vectors \(W_1, W_2, \ldots \)
 - Or matrix \([W_1 \ W_2 \ldots]\)
 - Any vector can be projected onto this plane by multiplying it with the projection matrix for the plane
 - The projection is the shadow
Given a set of vectors \(W_1, W_2 \), which form a matrix \(W = \begin{bmatrix} W_1 & W_2 \end{bmatrix} \)

- The projection matrix that transforms any vector \(X \) to its projection on the plane is \(P = W (W^T W)^{-1} W^T \)
- Magic – any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix
 \[P = V (V^TV)^{-1} V^T \]

HOW?

- Draw any two vectors \(W_1 \) and \(W_2 \) that lie on the plane
- ANY two as long as they have different angles
- Compose a matrix \(W = \begin{bmatrix} W_1 & W_2 \end{bmatrix} \)
- Compose the projection matrix \(P = W (W^T W)^{-1} W^T \)
- Multiply every point on the cone by \(P \) to get its projection
- View it

I'm missing a step here – what is it?

The projection actually projects it onto the plane, but you're still seeing the plane in 3D
- The result of the projection is a 3-D vector
- \(P = W (W^T W)^{-1} W^T \) is 3x3, \(P^T \) vector = 3x1
- The image must be rotated till the plane is in the plane of the paper
- The z-axis in this case will always be zero and can be ignored
- How will you rotate it? (remember you know \(W_1 \) and \(W_2 \))

Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
 \(P x = x \) if \(x \) is on the plane
- If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
 \(P (P x) = P x \)
- That is because \(P x \) is already on the plane
- Projection matrices are idempotent
 \(P^2 = P \)

Let \(W_1, W_2, \ldots, W_k \) be “bases”

- We want to explain our data in terms of these “bases”
 - We often cannot do so
 - But we can explain a significant portion of it

The portion of the data that can be expressed in terms of our vectors \(W_1, W_2, \ldots, W_k \) is the projection of the data on the \(W_1, W_2, \ldots, W_k \) (hyper) plane

In our previous example, the “data” were all the points on a cone
- The interpretation for volumetric data is obvious
Projection: an example with sounds

- The spectrogram (matrix) of a piece of music
- How much of the above music was composed of the above notes
 - i.e. how much can it be explained by the notes

Projection: one note

- The spectrogram (matrix) of a piece of music
- $W =$ note
- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = $P \times M$

Projection: one note – cleaned up

- Floored all matrix values below a threshold to zero

Projection: multiple notes

- The spectrogram (matrix) of a piece of music
- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = $P \times M$

Projection: multiple notes, cleaned up

- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = $P \times M$

Projection and Least Squares

- Projection actually computes a least squared error estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{\text{approx}} = a \cdot \text{note1} + b \cdot \text{note2} + c \cdot \text{note3}$.
 - Error vector $E = V - V_{\text{approx}}$
 - Squared error energy for V: $\|E\|^2 = \text{norm}(E)^2$
 - Total error = sum over all V $(\|E\|^2) = \sum E_k \cdot k(V)$
 - Projection computes V_{approx} for all vectors such that Total error is minimized
 - It does not give you "a", "b", "c,". Though
 - That needs a different operation – the inverse / pseudo inverse
Orthogonal and Orthonormal matrices

- **Orthogonal Matrix**: $AA^T = I$
 - Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix

- **Orthonormal Matrix**: $AA^T = A^TA = I$
 - Each row vector has length exactly = 1.0
 - Interesting observation: In a square matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0

Orthogonal matrices will retain the relative angles between transformed vectors
- Essentially, they are combinations of rotations, reflections and permutations
- Rotation matrices and permutation matrices are all orthonormal matrices
- The vectors in an orthonormal matrix are at 90 degrees to one another.

Orthogonal matrices are like Orthonormal matrices with stretching
- The product of a diagonal matrix and an orthonormal matrix

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are rank deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Non-square Matrices

- Non-square matrices add or subtract axes
 - More rows than columns → add axes
 - But does not increase the dimensionality of the data

Projections are often examples of rank-deficient transforms

- $P = W(W^TW)^{-1}W^T$; Projected Spectrogram = $P * M$
 - The original spectrogram can never be recovered
 - P is rank deficient
 - P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only 4 independent bases
 - Rank of P is 4

Rank = 2

- Some matrices will eliminate one or more dimensions during transformation
 - These are rank deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Rank = 1

- Some matrices will eliminate one or more dimensions during transformation
 - These are rank deficient matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Non-square matrices add or subtract axes
- More rows than columns → add axes

Non-square Matrices

\[\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \\ z_1 & z_2 & \cdots & z_n \end{bmatrix} \]

\(X = 3D \) data, rank 3
\(P = \text{transform} \)
\(PX = 2D, \ \text{rank 2} \)

- Non-square matrices add or subtract axes
- Fewer rows than columns \(\rightarrow \) reduce axes
- May reduce dimensionality of the data

The Rank of a Matrix

\[\begin{bmatrix} 3 & 1 & 2 \\ 1 & 9 & 1 \\ 5 & 1 & 1 \end{bmatrix} \]

- The matrix rank is the dimensionality of the transformation of a full-dimensioned object in the original space
- The matrix can never increase dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

Matrix rank is unchanged by transposition

\[\begin{bmatrix} 0.9 & 0.1 & 0.42 \\ 0.1 & 0.4 & 0.9 \\ 0.5 & 0.4 & 0.46 \\ 0.3 & 0.9 & 0.06 \end{bmatrix} \]

- If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix

Matrix Determinant

The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
- Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in textbook

\[\text{Volume} = V_1 \]

\[\text{Volume} = V_2 \]

- The determinant is the ratio of N-volumes
 - If \(V_1 \) is the volume of an N-dimensional object "O" in N-dimensional space
 - \(O \) is the complete set of points or vertices that specify the object
 - If \(V_2 \) is the volume of the N-dimensional object specified by \(A'O \), where \(A' \) is a matrix that transforms the space
 - \(|A'| = V_2 / V_1 \)
Matrix Determinants
- Matrix determinants are only defined for square matrices.
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors.
- Rank deficient matrices have determinant 0.
 - Since they compress full-volume N-D objects into zero-volume N-D objects.
 - E.g., a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area).
- Conversely, all matrices of determinant 0 are rank deficient.
 - Since they compress full-volume N-D objects into zero-volume objects.

Multiplication properties
- Properties of vector/matrix products
 - Associative: \(A \cdot (B \cdot C) = (A \cdot B) \cdot C \)
 - Distributive: \(A \cdot (B + C) = A \cdot B + A \cdot C \)
 - NOT commutative!!!
 - Transposition: \((A \cdot B)^T = B^T \cdot A^T \)

Determinant properties
- Associative for square matrices: \(|A \cdot B \cdot C| = |A| \cdot |B| \cdot |C| \)
- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices.
- Volume of sum \(\not= \) sum of Volumes: \(|B + C| \not= |B| + |C| \)
- The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices.
- Commutative for square matrices!!!
 - \(|A \cdot B| = |B \cdot A| = |A| \cdot |B| \)
- The order in which you scale the volume of an object is irrelevant.

Matrix Inversion
- A matrix transforms an N-D object to a different N-D object.
- What transforms the new object back to the original?
 - The inverse transformation.
- The inverse transformation is called the matrix inverse.

Matrix Inversion
- The product of a matrix and its inverse is the identity matrix.
 - Transforming an object, and then inverse transforming it gives us back the original object.

Inverting rank-deficient matrices
- Rank deficient matrices "flatten" objects.
 - In the process, multiple points in the original object get mapped to the same point in the transformed object.
 - It is not possible to go "back" from the flattened object to the original object.
 - Because of the many-to-one forward mapping.
- Rank deficient matrices have no inverse.
Revisiting Projections and Least Squares

- Projection computes a least squared error estimate.
- For each vector V in the music spectrogram matrix.
 - **Approximation:** $V_{approx} = a*note1 + b*note2 + c*note3..$

- Error vector $E = V - V_{approx}$
- Squared error energy for V: $e(V) = \| E \|^2$
- Total error: $\sum e(V)$
- Projection computes V_{approx} for all vectors such that Total error is minimized.
- But WHAT ARE "a" "b" and "c"?

The Pseudo Inverse (PINV)

- We are approximating spectral vectors V as the transformation of the vector $[a \ b \ c]^T$.
 - Note – we're viewing the collection of bases in W as a transformation.
- The solution is obtained using the **pseudo inverse**.
 - This give us a LEAST SQUARES solution.
 - If W were square and invertible $\text{Pinv}(W) = W^{-1}$, and $V = V_{approx}$.

Explaining music with one note

- $M = \text{PINV}(W) * M$
- $W = \text{PINV}(W) * M$
- **Approximation:** $M = W*X$
- The amount of W in each vector $= X = \text{PINV}(W)*M$
- $W*\text{PINV}(W) = \text{Proj. mat} = W*W = W*\text{PINV}(W)*W$

Explanation with multiple notes

- $X = \text{Pinv}(W) * M$; Projected matrix $= W*X = W*\text{PINV}(W)*M$
- $W = \text{PINV}(W) = (W^TW)^{-1}W$

How about the other way?

- $M = \text{PINV}(V) * M$
- $W = \text{PINV}(V) * M$
- **Approximation:** $M = W*U$
- $W = M * \text{PINV}(V)$
- $U = \text{PINV}(V)$

Pseudo-inverse (PINV)

- $\text{Pinv}(\cdot)$ applies to non-square matrices
- $\text{Pinv} (\text{Pinv}(A)) = A$
- $A*\text{Pinv}(A) = \text{projection matrix}$.
 - Projection onto the columns of A
- If $A = K \times N$ matrix and $K > N$, A projects N-D vectors into a higher-dimensional K-D space.
- $\text{Pinv}(A)*A = I$ in this case.
Matrix inversion (division)
- The inverse of matrix multiplication
 - Not element-wise division!!
 - Provides a way to “undo” a linear transformation
- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter)rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- Pay attention to multiplication side!
- Matrix inverses defined for square matrices only
 - If matrix not square use a matrix pseudoinverse:
 - MATLAB syntax: \texttt{inv(a)}, \texttt{pinv(a)}

What is the Matrix?
- Duality in terms of the matrix identity
 - Can be a container of data
 - An image, a set of vectors, a table, etc …
 - Can be a linear transformation
 - A process by which to transform data in another matrix
 - We’ll usually start with the first definition and then apply the second one on it
 - Very frequent operation
 - Room reverberations, mirror reflections, etc …
 - Most of signal processing and machine learning are matrix operations!

Eigenanalysis
- If something can go through a process mostly unscathed in character it is an eigen-something
 - Sound example:
 - A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
 - Its length can change though
 - How much its length changes is expressed by its corresponding eigenvalue
 - Each eigenvector of a matrix has its eigenvalue
 - Finding these “eigenthings” is called eigenanalysis

EigenVectors and EigenValues
- Vectors that do not change angle upon transformation
 - They may change length
 - $MV = \lambda V$
 - V = eigen vector
 - λ = eigen value
 - Matlab ab: \texttt{[V, L] = eig(M)}
 - L is a diagonal matrix whose entries are the eigen values
 - V is a matrix whose columns are the eigen vectors

Eigen vector example

Matrix multiplication revisited
- Matrix transformation “transforms” the space
 - Warps the paper so that the normals to the two vectors now lie along the axes
A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative – implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix
 - This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Some matrices are special however..

Physical interpretation of eigen vector

\[V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \]
\[L = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]
\[M = VLV^{-1} \]

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Symmetric Matrices

\[\begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1 \end{bmatrix} \]

- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - At 90 degrees to one another
Symmetric Matrices

- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
- The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors V_i are orthonormal
 - $V_i^T V_i = I$
 - $V_i^T V_j = 0$, $i \neq j$
- Listing all eigen vectors in matrix form V
 - $V^T = V^{-1}$
 - $V^T V = I$
 - $V V^T = I$
- $M V_i = \lambda_i V_i$
- In matrix form: $M V = V L$
 - L is a diagonal matrix with all eigen values
- $M = V L V^T$