Prediction and Estimation, Part II

Class 27. 23 Nov 2010
Recap: An automotive example

- Determine automatically, by only *listening* to a running automobile, if it is:
 - Idling; or
 - Travelling at constant velocity; or
 - Accelerating; or
 - Decelerating

- Assume (for illustration) that we only record energy level (SPL) in the sound
 - The SPL is measured once per second
The Model!

The state-space model

- Assuming all transitions from a state are equally probable
Overall procedure

At $T=0$ the predicted state distribution is the initial state probability

At each time T, the current estimate of the distribution over states considers all observations $x_0 \ldots x_T$

- A natural outcome of the Markov nature of the model

The prediction+update is identical to the forward computation for HMMs to within a normalizing constant
Estimating the *state*

The state is estimated from the updated distribution

- The updated distribution is propagated into time, not the state
Predicting the *next observation*

![Diagram](image)

- The probability distribution for the observations at the next time is a mixture:
 - \[P(x_T|x_{0:T-1}) = \sum_{S_T} P(x_T|S_T) P(S_T|x_{0:T-1}) \]

- The actual observation can be predicted from \[P(x_T|x_{0:T-1}) \]
Continuous state system

- The state is a continuous valued parameter that is not directly seen
 - The state is the position of navlab or the star

- The observations are dependent on the state and are the only way of knowing about the state
 - Sensor readings (for navlab) or recorded image (for the telescope)

\[s_t = f(s_{t-1}, \epsilon_t) \]
\[o_t = g(s_t, \gamma_t) \]
Discrete vs. Continuous State Systems

\[s_t = f(s_{t-1}, e_t) \]
\[o_t = g(s_t, \gamma_t) \]

Prediction at time \(t \):
\[
P(s_t \mid O_{0:t-1}) = \sum_{s_{t-1}} P(s_{t-1} \mid O_{0:t-1}) P(s_t \mid s_{t-1})
\]

Update after \(O_t \):
\[
P(s_t \mid O_{0:t}) = CP(s_t \mid O_{0:t-1}) P(O_t \mid s_t)
\]
\[
P(s_t \mid O_{0:t}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid O_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}
\]
\[
P(s_t \mid O_{0:t}) = CP(s_t \mid O_{0:t-1}) P(O_t \mid s_t)
\]
Special case: Linear Gaussian model

\[s_t = A_t s_{t-1} + \varepsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

\[P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^d |\Theta_\varepsilon|}} \exp\left(-\frac{1}{2}(\varepsilon - \mu_\varepsilon)^T \Theta_\varepsilon^{-1}(\varepsilon - \mu_\varepsilon)\right) \]

\[P(\gamma) = \frac{1}{\sqrt{(2\pi)^d |\Theta_\gamma|}} \exp\left(-\frac{1}{2}(\gamma - \mu_\gamma)^T \Theta_\gamma^{-1}(\gamma - \mu_\gamma)\right) \]

- **A linear state dynamics equation**
 - Probability of state driving term \(\varepsilon \) is Gaussian
 - Sometimes viewed as a driving term \(\mu_\varepsilon \) and additive zero-mean noise

- **A linear observation equation**
 - Probability of observation noise \(\gamma \) is Gaussian

- \(A_t, B_t \) and Gaussian parameters assumed known
 - May vary with time
The Linear Gaussian model (KF)

$$P_0(s) = \text{Gaussian}(s; \bar{s}, R)$$

$$P(s_t \mid s_{t-1}) = \text{Gaussian}(s_t; \mu_\epsilon + A_t s_{t-1}, \Theta_\epsilon)$$

$$P(o_t \mid s_t) = \text{Gaussian}(o_t; B_t s_t, \Theta_\gamma)$$

$$P(s_t \mid o_{0:t-1}) = \text{Gaussian}(s; \bar{s}_t, R_t)$$

$$\bar{s}_t = \mu_\epsilon + A_t \hat{s}_{t-1}$$

$$R_t = \Theta_\epsilon + A_t \hat{R}_{t-1} A_t^T$$

$$P(s_t \mid o_{0:t}) = \text{Gaussian}(s; \hat{s}_t, \hat{R}_t)$$

$$\hat{s}_t = \bar{s}_t + R_t B_t^T (B_t R_t B_t^T + \Theta_\gamma)^{-1} (o_t - B_t \bar{s}_t)$$

$$\hat{R}_t = (I - R_t B_t^T (B_t R_t B_t^T + \Theta_\gamma)^{-1} B_t) R_t$$

Iterative prediction and update
The Kalman filter

- **Prediction**

\[
\overline{s}_t = A_{t-1} \hat{s}_t + \mu_\varepsilon
\]

\[
R_t = \Theta_\varepsilon + A_{t-1} \hat{R}_{t-1} A_{t-1}^T
\]

- **Update**

\[
K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_\gamma \right)^{-1}
\]

\[
\hat{s}_t = \overline{s}_t + K_t (o_t - B_t \overline{s}_t)
\]

\[
\hat{R}_t = (I - K_t B_t) R_t
\]
Linear Gaussian Model

\[s_t = A_t s_{t-1} + \epsilon_t \]

\[o_t = B_t s_t + \gamma_t \]

\[P(s) = \text{a priori} \]

\[P(s_t | s_{t-1}) = \text{Transition prob.} \]

\[P(O_t | s_t) = \text{State output prob} \]

\[P(s_0) = P(s) \]

\[P(s_0 | O_0) = C \ P(s_0) \ P(O_0 | s_0) \]

\[P(s_1 | O_0) = \int_{-\infty}^{\infty} P(s_0 | O_0) P(s_1 | s_0) ds_0 \]

\[P(s_1 | O_{0:1}) = C \ P(s_1 | O_0) \ P(O_1 | s_0) \]

\[P(s_2 | O_{0:1}) = \int_{-\infty}^{\infty} P(s_1 | O_{0:1}) P(s_2 | s_1) ds_1 \]

\[P(s_2 | O_{0:2}) = C \ P(s_2 | O_{0:1}) \ P(O_2 | s_2) \]

All distributions remain Gaussian
Problems

\[
\begin{align*}
 s_t &= f(s_{t-1}, \varepsilon_t) \\
 o_t &= g(s_t, \gamma_t)
\end{align*}
\]

- \(f() \) and/or \(g() \) may not be nice linear functions
 - Conventional Kalman update rules are no longer valid

- \(\varepsilon \) and/or \(\gamma \) may not be Gaussian
 - Gaussian based update rules no longer valid
Problems

\[s_t = f(s_{t-1}, \epsilon_t) \]
\[o_t = g(s_t, \gamma_t) \]

- \(f() \) and/or \(g() \) may not be nice linear functions
 - Conventional Kalman update rules are no longer valid
- \(\epsilon \) and/or \(\gamma \) may not be Gaussian
 - Gaussian based update rules no longer valid
The problem with non-linear functions

\[s_t = f(s_{t-1}, e_t) \]

\[o_t = g(s_t, \gamma_t) \]

\[P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1} \]

\[P(s_t \mid o_{0:t}) = CP(s_t \mid o_{0:t-1}) P(o_t \mid s_t) \]

- Estimation requires knowledge of \(P(o \mid s) \)
 - Difficult to estimate for nonlinear \(g() \)
 - Even if it can be estimated, may not be tractable with update loop

- Estimation also requires knowledge of \(P(s_t \mid s_{t-1}) \)
 - Difficult for nonlinear \(f() \)
 - May not be amenable to closed form integration
The problem with nonlinearity

\[o_t = g(s_t, \gamma_t) \]

- The PDF may not have a closed form

\[
P(o_t \mid s_t) = \sum_{\gamma : g(s_t, \gamma) = o_t} \frac{P(\gamma)}{|J_{g(s_t, \gamma)}(o_t)|}
\]

\[
|J_{g(s_t, \gamma)}(o_t)| = \begin{vmatrix}
\frac{\partial o_t(1)}{\partial \gamma(1)} & \ldots & \frac{\partial o_t(1)}{\partial \gamma(n)} \\
\frac{\partial o_t(1)}{\partial \gamma(1)} & \ldots & \frac{\partial o_t(n)}{\partial \gamma(n)} \\
\vdots & \ddots & \vdots \\
\frac{\partial o_t(n)}{\partial \gamma(1)} & \ldots & \frac{\partial o_t(n)}{\partial \gamma(n)}
\end{vmatrix}
\]

- Even if a closed form exists initially, it will typically become intractable very quickly
Example: a simple nonlinearity

\[o = \gamma + \log(1 + \exp(s)) \]

- \(P(o|s) = ? \)
 - Assume \(\gamma \) is Gaussian
 - \(P(\gamma) = Gaussian(\gamma; \mu_\gamma, \Theta_\gamma) \)
Example: a simple nonlinearity

\[o = \gamma + \log(1 + \exp(s)) \]

- \(P(o|s) = ? \)

\[P(\gamma) = \text{Gaussian}(\gamma; \mu_\gamma, \Theta_\gamma) \]

\[P(o \mid s) = \text{Gaussian}(o; \mu_\gamma + \log(1 + \exp(s)), \Theta_\gamma) \]
Example: At $T=0$.

\[o = \gamma + \log(1 + \exp(s)) \]

- Assume initial probability $P(s)$ is Gaussian

\[P(s_0) = P_0(s) = \text{Gaussian}(s; \bar{s}, R) \]

- Update

\[P(s_0 | o_0) = CP(o_0 | s_0)P(s_0) \]

\[P(s_0 | o_0) = CGaussian(o; \mu_\gamma + \log(1 + \exp(s_0)), \Theta_\gamma) \text{Gaussian}(s_0; \bar{s}, R) \]
UPDATE: At $T=0$.

$$o = \gamma + \log(1 + \exp(s))$$

$$P(s_0 \mid o_0) = C \text{Gaussian}\left(o; \mu_\gamma + \log(1 + \exp(s_0)), \Theta_\gamma\right) \text{Gaussian}(s_0; \bar{s}, R)$$

$$P(s_0 \mid o_0) = C \exp\left(-0.5(\mu_\gamma + \log(1 + \exp(s_0)) - o)^T \Theta_\gamma^{-1}(\mu_\gamma + \log(1 + \exp(s_0)) - o) - 0.5(s_0 - \bar{s})^T R^{-1}(s_0 - \bar{s})\right)$$

- = Not Gaussian

23 Nov 2010

11-755/18797 20
Prediction for $T = 1$

\[S_t = S_{t-1} + \varepsilon \]

\[P(\varepsilon) = \text{Gaussian}(\varepsilon; 0, \Theta_\varepsilon) \]

- Trivial, linear state transition equation

\[P(s_t | s_{t-1}) = \text{Gaussian}(s_t; s_{t-1}, \Theta_\varepsilon) \]

- Prediction

\[P(s_1 | o_0) = \int_{-\infty}^{\infty} P(s_0 | o_0)P(s_1 | s_0)ds_0 \]

\[P(s_1 | o_0) = \int_{-\infty}^{\infty} C \exp\left(-0.5(\mu_\gamma + \log(1 + \exp(s_0)) - o)^T \Theta_\gamma^{-1}(\mu_\gamma + \log(1 + \exp(s_0)) - o) \right. \]
\[\left. - 0.5(s_0 - \bar{s})^T R^{-1}(s_0 - \bar{s}) \right) \exp\left((s_1 - s_0)^T \Theta_\varepsilon^{-1}(s_1 - s_0) \right)ds_0 \]

- = intractable
Update at $T=1$ and later

- **Update at $T=1$**

\[P(s_t \mid o_{0:t}) = CP(s_t \mid o_{0:t-1})P(o_t \mid s_t) \]

- Intractable

- **Prediction for $T=2$**

\[P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1})P(s_t \mid s_{t-1})ds_{t-1} \]

- Intractable
The State prediction Equation

\[s_t = f(s_{t-1}, \varepsilon_t) \]

- Similar problems arise for the state prediction equation
- \(P(s_t|s_{t-1}) \) may not have a closed form
- Even if it does, it may become intractable within the prediction and update equations
 - Particularly the prediction equation, which includes an integration operation
Simplifying the problem: Linearize

The \textit{tangent} at any point is a good \textit{local} approximation if the function is sufficiently smooth.

\[o = \gamma + \log(1 + \exp(s)) \]
Simplifying the problem: Linearize

\[o = \gamma + \log(1 + \exp(s)) \]

- The \emph{tangent} at any point is a good \emph{local} approximation if the function is sufficiently smooth.
Simplifying the problem: Linearize

\[o = \gamma + \log(1 + \exp(s)) \]

- The \textit{tangent} at any point is a good \textit{local} approximation if the function is sufficiently smooth
Simplifying the problem: Linearize

- The tangent at any point is a good local approximation if the function is sufficiently smooth.
Linearizing the observation function

\[P(s) = \text{Gaussian}(\bar{s}, R) \]

\[o = \gamma + g(s) \approx \gamma + g(\bar{s}) + J_g(\bar{s})(s - \bar{s}) \]

- Simple first-order Taylor series expansion
 - \(J() \) is the Jacobian matrix
 - Simply a determinant for scalar state

- Expansion around a priori (or predicted) mean of the state
Most probability is in the low-error region

\[P(s) = \text{Gaussian}(\bar{s}, R) \]

- P(s) is small approximation error is large
 - Most of the probability mass of s is in low-error regions
Linearizing the observation function

\(P(s) = \text{Gaussian}(\bar{s}, R) \)

\[o = \gamma + g(s) \quad \Rightarrow \quad o \approx \gamma + g(\bar{s}) + J_g(\bar{s})(s - \bar{s}) \]

- Observation PDF is Gaussian

\[P(\gamma) = \text{Gaussian}(\gamma; 0, \Theta_\gamma) \]

\[P(o \mid s) = \text{Gaussian}(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_\gamma) \]
\[o \approx \gamma + g(\bar{s}) + J_g(\bar{s})(s - \bar{s}) \]

\[P(o \mid s) = \text{Gaussian}(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_\gamma) \]

\[P(s) = \text{Gaussian}(s; \bar{s}, R) \quad P(s \mid o) = CP(o \mid s)P(s) \]

\[P(s \mid o) = C\text{Gaussian}(o; g(\bar{s}) + J_g(\bar{s})(s - \bar{s}), \Theta_\gamma)\text{Gaussian}(s; \bar{s}, R) \]

\[P(s \mid o) = \text{Gaussian}\left(s; \bar{s} + RJ_g(\bar{s})^T (J_g(\bar{s})RJ_g(\bar{s})^T + \Theta_\gamma)^{-1}(o - g(\bar{s})), (I - RJ_g(\bar{s})^T (J_g(\bar{s})RJ_g(\bar{s})^T + \Theta_\gamma)^{-1}J_g(\bar{s}))R \right) \]

- Gaussian!!

- Note: This is actually only an approximation
Prediction?

\[s_t = f(s_{t-1}) + \epsilon \]

\[P(\epsilon) = \text{Gaussian}(\epsilon; 0, \Theta_\epsilon) \]

- Again, direct use of \(f() \) can be disastrous

- Solution: Linearize

\[P(s_{t-1} \mid o_{0:t-1}) = \text{Gaussian}(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1}) \]

\[s_t = f(s_{t-1}) + \epsilon \quad \Rightarrow \quad s_t \approx \epsilon + f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}) \]

- Linearize around the mean of the updated distribution of \(s \) at \(t-1 \)

- Which should be Gaussian
Prediction

\[s_t = f(s_{t-1}) + \varepsilon \]

\[s_t \approx \varepsilon + f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}) \]

\[P(s_{t-1} \mid o_{0:t-1}) = \text{Gaussian}(s_{t-1}; \hat{s}_{t-1}, \hat{R}_{t-1}) \quad P(\varepsilon) = \text{Gaussian}(\varepsilon; 0, \Theta_\varepsilon) \]

- The state transition probability is now:

\[P(s_t \mid s_{t-1}) = \text{Gaussian}(s_t; f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}), \Theta_\varepsilon) \]

- The predicted state probability is:

\[P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1} \]
Prediction

\[P(s_{t-1} \mid o_{0:t-1}) = \text{Gaussian}(s_{t-1} ; \hat{s}_{t-1}, \hat{R}_{t-1}) \]

\[P(s_t \mid s_{t-1}) = \text{Gaussian}(s_t ; f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}), \Theta_\varepsilon) \]

\[
P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid o_{0:t-1})P(s_t \mid s_{t-1})ds_{t-1}
\]

\[
P(s_t \mid o_{0:t-1}) = \int_{-\infty}^{\infty} \text{Gaussian}(s_{t-1} ; \hat{s}_{t-1}, \hat{R}_{t-1})\text{Gaussian}(s_t ; f(\hat{s}_{t-1}) + J_f(\hat{s}_{t-1})(s_{t-1} - \hat{s}_{t-1}), \Theta_\varepsilon)ds_{t-1}
\]

- The predicted state probability is:

\[P(s_t \mid o_{0:t-1}) = \text{Gaussian}\left(s_t ; f(s_{t-1}), J_f(\hat{s}_{t-1})\hat{R}_{t-1}J_f(\hat{s}_{t-1})^T + \Theta_\varepsilon\right) \]

- Gaussian!!

 This is actually only an approximation
The linearized prediction/update

\[o_t = g(s_t) + \gamma \]

\[s_t = f(s_{t-1}) + \epsilon \]

- Given: two non-linear functions for state update and observation generation

- Note: the equations are \textit{deterministic} non-linear functions of the state variable
 - They are \textit{linear} functions of the noise!
 - Non-linear functions of stochastic noise are slightly more complicated to handle
Linearized Prediction and Update

- **Prediction for time t**

\[
P(s_t \mid o_{0:t-1}) = \text{Gaussian}(s_t; \bar{s}_t, R_t)
\]

\[
\bar{s}_t = f(\hat{s}_{t-1}) \quad R_t = J_f(\hat{s}_{t-1}) \hat{R}_{t-1} J_f(\hat{s}_{t-1})^T + \Theta \varepsilon
\]

- **Update at time t**

\[
P(s_t \mid o_{0:t}) = \text{Gaussian}(s_t; \hat{s}_t, \hat{R}_t)
\]

\[
\hat{s}_t = \bar{s}_t + R_t J_g(\bar{s}_t)^T (J_g(\bar{s}_t) R_t J_g(\bar{s}_t)^T + \Theta \gamma)^{-1} (o_t - g(\bar{s}_t))
\]

\[
\hat{R}_t = \left(I - R_t J_g(\bar{s}_t)^T (J_g(\bar{s}_t) R_t J_g(\bar{s}_t)^T + \Theta \gamma)^{-1} J_g(\bar{s}_t) \right) R_t
\]
Linearized Prediction and Update

- Prediction for time t
 \[
P(s_t | o_{0:t-1}) = \text{Gaussian}(s_t; \bar{s}_t, R_t)
 \]
 \[
 \bar{s}_t = f(\hat{s}_{t-1}) \quad R_t = A_t \hat{R}_{t-1} A^T_t + \Theta_\epsilon
 \]

- Update at time t
 \[
P(s_t | o_{0:t}) = \text{Gaussian}(s_t; \hat{s}_t, \hat{R}_t)
 \]
 \[
 \hat{s}_t = \bar{s}_t + R_t B^T_t (B_t R_t B^T_t + \Theta_\gamma)^{-1}(o_t - g(\bar{s}_t))
 \]
 \[
 \hat{R}_t = \left(I - R_t B^T_t (B_t R_t B^T_t + \Theta_\gamma)^{-1} B_t \right) R_t
 \]
The Extended Kalman filter

- **Prediction**

\[\bar{s}_t = f(\hat{s}_{t-1}) \]

\[R_t = \Theta_\varepsilon + A_t \hat{R}_{t-1} A_t^T \]

- **Update**

\[K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_\gamma \right)^{-1} \]

\[\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t)) \]

\[\hat{R}_t = (I - K_t B_t) R_t \]

\[A_t = J_f (\hat{s}_{t-1}) \]

\[B_t = J_g (\bar{s}_t) \]
The Kalman filter

- **Prediction**

 \[\bar{s}_t = A_t \hat{s}_{t-1} + \mu_\varepsilon \]

 \[R_t = \Theta_\varepsilon + A_t \hat{R}_{t-1} A_t^T \]

- **Update**

 \[K_t = R_t B_t^T \left(B_t R_t B_t^T + \Theta_\gamma \right)^{-1} \]

 \[\hat{s}_t = \bar{s}_t + K_t (o_t - B_t \bar{s}_t) \]

 \[\hat{R}_t = (I - K_t B_t) R_t \]
EKF

- EKFs are probably the most commonly used algorithm for tracking and prediction
 - Most systems are non-linear
 - Specifically, the relationship between state and observation is usually nonlinear
 - The approach can be extended to include non-linear functions of noise as well

- The term “Kalman filter” often simply refers to an extended Kalman filter in most contexts.

But..
EKF have limitations

- If the non-linearity changes too quickly with s, the linear approximation is invalid
 - Unstable

- The estimate is often biased
 - The true function lies entirely on one side of the approximation

- Various extensions have been proposed:
 - Invariant extended Kalman filters (IEKF)
 - Unscented Kalman filters (UKF)
A different problem: Non-Gaussian PDFs

\[o_t = g(s_t) + \gamma \quad s_t = f(s_{t-1}) + \varepsilon \]

- We have assumed so far that:
 - \(P_0(s) \) is Gaussian or can be approximated as Gaussian
 - \(P(\varepsilon) \) is Gaussian
 - \(P(\gamma) \) is Gaussian

- This has a happy consequence: All distributions remain Gaussian
Linear Gaussian Model

\[P(s) = \mathcal{N}\left(s; \mu_0, \Sigma_0\right) \]
\[P(s_t | s_{t-1}) = \mathcal{N}(s_t; A s_{t-1} + b, \Sigma_T) \]
\[P(O_t | s_t) = \mathcal{N}(O_t; C s_t + d, \Sigma_O) \]

All distributions remain Gaussian
A different problem: Non-Gaussian PDFs

\[o_t = g(s_t) + \gamma \]
\[s_t = f(s_{t-1}) + \varepsilon \]

- We have assumed so far that:
 - \(P_0(s) \) is Gaussian or can be approximated as Gaussian
 - \(P(\varepsilon) \) is Gaussian
 - \(P(\gamma) \) is Gaussian

- This has a happy consequence: All distributions remain Gaussian

- But when any of these are not Gaussian, the results are not so happy
A simple case

\[o_t = B s_t + \gamma \]

\[P(\gamma) = \sum_{i=0}^{1} w_i \text{Gaussian}(\gamma; \mu_i, \Theta_i) \]

- \(P(\gamma) \) is a mixture of only two Gaussians

- \(o \) is a linear function of \(s \)
 - Non-linear functions would be linearized anyway

- \(P(o|s) \) is also a Gaussian mixture!

\[P(o_t | s_t) = P(\gamma = o_t - B s_t) = \sum_{i=0}^{1} w_i \text{Gaussian}(o; \mu_i + B s_t, \Theta_i) \]
When distributions are not Gaussian

\[P(s) = \]

\[P(s_t|s_{t-1}) = \]

\[P(O_t|s_t) = \]

\[a \text{ priori Transition prob. State output prob} \]

\[P(s_0) = P(s) \]
When distributions are not Gaussian

\[P(s) = \text{a priori} \]

\[P(s_t|s_{t-1}) = \text{Transition prob.} \]

\[P(O_t|s_t) = \text{State output prob} \]

\[P(s_0) = P(s) \]

\[P(s_0|O_0) = C \, P(s_0) \, P(O_0|s_0) \]
When distributions are not Gaussian

\[P(s) = \text{a priori} \]
\[P(s_t | s_{t-1}) = \text{Transition prob.} \]
\[P(O_t | s_t) = \text{State output prob} \]

\[P(s_0) = P(s) \]
\[P(s_0 | O_0) = C \int P(s_0) P(O_0 | s_0) ds_0 \]
\[P(s_1 | O_0) = \int P(s_0 | O_0) P(s_1 | s_0) ds_0 \]
When distributions are not Gaussian

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(s)$</td>
<td>a priori</td>
<td>$P(s) = \ldots$</td>
</tr>
<tr>
<td>$P(s_{t+1}</td>
<td>s_t)$</td>
<td>Transition prob.</td>
</tr>
<tr>
<td>$P(O_t</td>
<td>s_t)$</td>
<td>State output prob</td>
</tr>
</tbody>
</table>

- $P(s_0) = P(s)$
- $P(s_0|O_0) = C \cdot P(s_0) \cdot P(O_0|s_0)$
- $P(s_1|O_0) = \int_{-\infty}^{\infty} P(s_0|O_0) P(s_1|s_0) ds_0$
- $P(s_1|O_{0:1}) = C \cdot P(s_1|O_0) \cdot P(O_1|s_0)$
When distributions are not Gaussian

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Distribution $P(s)$</td>
<td>$P(s) = \int_{-\infty}^{\infty} P(s_0</td>
</tr>
<tr>
<td>Transition Probability $P(s_t</td>
<td>s_{t-1})$</td>
</tr>
<tr>
<td>Output Probability $P(O_t</td>
<td>s_t)$</td>
</tr>
</tbody>
</table>
When distributions are not Gaussian

When $P(O_t|s_t)$ has more than one Gaussian, after only a few time steps…
When distributions are not Gaussian

\[P(s_t \mid O_{0:t}) = \]

We have too many Gaussians for comfort..
Related Topic: How to sample from a Distribution?

- “Sampling from a Distribution $P(x; \Gamma)$ with parameters Γ”
- Generate random numbers such that
 - The distribution of a large number of generated numbers is $P(x; \Gamma)$
 - The parameters of the distribution are Γ

- Many algorithms to generate RVs from a variety of distributions
 - Generation from a uniform distribution is well studied
 - Uniform RVs used to sample from multinomial distributions
 - Other distributions: Most commonly, transform a uniform RV to the desired distribution
Sampling from a multinomial

- Given a multinomial over \(N \) symbols, with probability of \(i^{th} \) symbol = \(P(i) \)
- Randomly generate symbols from this distribution
- Can be done by sampling from a uniform distribution
Sampling a multinomial

- Segment a range (0,1) according to the probabilities P(i)
 - The P(i) terms will sum to 1.0
Sampling a multinomial

- Segment a range (0,1) according to the probabilities P(i)
 - The P(i) terms will sum to 1.0

- Randomly generate a number from a uniform distribution
 - Matlab: “rand”.
 - Generates a number between 0 and 1 with uniform probability

- If the number falls in the ith segment, select the ith symbol
Related Topic: Sampling from a Gaussian

- Many algorithms
 - Simplest: add many samples from a uniform RV
 - The sum of 12 uniform RVs (uniform in (0,1)) is approximately Gaussian with mean 6 and variance 1
 - For scalar Gaussian, mean μ, std dev σ:
 $$x = \sum_{i=1}^{12} r_i - 6$$

- Matlab: $x = \mu + \text{randn}^* \times \sigma$
 - “randn” draws from a Gaussian of mean=0, variance=1
Multivariate (d-dimensional) Gaussian with mean μ and covariance Θ

- Compute eigen value matrix Λ and eigenvector matrix E for Θ
 \[\Theta = E \Lambda E^T \]
- Generate d 0-mean unit-variance numbers $x_1..x_d$
- Arrange them in a vector:
 \[X = [x_1 .. x_d]^T \]
- Multiply X by the square root of Λ and E, add μ
 \[Y = \mu + E \sqrt[2]{\Lambda} \cdot X \]
Sampling from a Gaussian Mixture

\[\sum_i w_i \text{Gaussian}(X; \mu_i, \Theta_i) \]

- Select a Gaussian by sampling the multinomial distribution of weights:

 \[j \sim \text{multinomial}(w_1, w_2, \ldots) \]

- Sample from the selected Gaussian

 \[\text{Gaussian}(X; \mu_j, \Theta_j) \]
Returning to our problem:

\[
\begin{align*}
P(s) &= \text{a priori} \\
P(s_t|s_{t-1}) &= \text{Transition prob.} \\
P(O_t|s_t) &= \text{State output prob}
\end{align*}
\]

\(P(s_0) = P(s)\)	\(P(s_0	O_0) = C \, P(s_0) \, P(O_0	s_0)\)				
\(P(s_1	O_0) = \int_{-\infty}^{\infty} P(s_0	O_0) P(s_1	s_0) ds_0\)	\(P(s_1	O_{0:1}) = C \, P(s_1	O_0) \, P(O_1	s_0)\)
\(P(s_2	O_{0:1}) = \int_{-\infty}^{\infty} P(s_1	O_{0:1}) P(s_2	s_1) ds_1\)	\(P(s_2	O_{0:2}) = C \, P(s_2	O_{0:1}) \, P(O_2	s_2)\)

When \(P(O_t|s_t)\) has more than one Gaussian, after only a few time steps…
The problem of the exploding distribution

- The complexity of the distribution increases exponentially with time
- This is a consequence of having a continuous state space
 - Only Gaussian PDFs propagate without increase of complexity

Discrete-state systems do not have this problem
- The number of states in an HMM stays fixed
- However, discrete state spaces are too coarse

Solution: Combine the two concepts
- Discretize the state space dynamically
Discrete approximation to a distribution

- A large-enough collection of randomly-drawn samples from a distribution will approximately quantize the space of the random variable into equiprobable regions
 - We have more random samples from high-probability regions and fewer samples from low-probability regions
A PDF can be approximated as a uniform probability distribution over randomly drawn samples.

Since each sample represents approximately the same probability mass (1/M if there are M samples)

\[P(x) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(x - x_i) \]
Note: Properties of a discrete distribution

\[P(x) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(x - x_i) \]

\[P(x)P(y | x) \propto \sum_{i=0}^{M-1} P(y | x_i)\delta(x - x_i) \]

- The product of a discrete distribution with another distribution is simply a weighted discrete probability

\[P(x) \approx \sum_{i=0}^{M-1} w_i \delta(x - x_i) \]

\[\int_{-\infty}^{\infty} P(x)P(y | x)dx = \sum_{i=0}^{M-1} w_i P(y | x_i) \]

- The integral of the product is a mixture distribution
Discretizing the state space

- At each time, discretize the predicted state space

\[P(s_t \mid o_{0:t}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - s_i) \]

- \(s_i \) are randomly drawn samples from \(P(s_t \mid o_{0:t}) \)

- Propagate the discretized distribution
Particle Filtering

\[P(s) = \text{a priori} \]

\[P(s_t|s_{t-1}) = \text{Transition prob.} \]

\[P(O_t|s_t) = \text{State output prob} \]

Assuming that we only generate **FOUR** samples from the predicted distributions
Particle Filtering

\[P(s) = P(s_0) = P(s) \]

Assuming that we only generate **FOUR** samples from the predicted distributions.
Particle Filtering

\[P(s) = \text{a priori} \]
\[P(s_t|s_{t-1}) = \text{Transition prob.} \]
\[P(O_t|s_t) = \text{State output prob} \]

Assuming that we only generate \textit{FOUR} samples from the predicted distributions
Particle Filtering

\[P(s) = \quad P(s_{t|s_{t-1}}) = \quad P(O_t|s_t) = \]

\[\text{a priori} \quad \text{Transition prob.} \quad \text{State output prob} \]

\[P(s_0) = P(s) \]

\[P(s_0|O_0) = C \ P(s_0) \ P(O_0|s_0) \]

\[P(s_1|O_0) = \int_{-\infty}^{\infty} P(s_0|O_0)P(s_1|s_0)ds_0 \]

Assuming that we only generate \textbf{FOUR} samples from the predicted distributions
Particle Filtering

\[P(s) = \text{a priori} \]
\[P(s_t | s_{t-1}) = \text{Transition prob.} \]
\[P(O_t | s_t) = \text{State output prob} \]

\[P(s_0) = P(s) \]
\[P(s_0 | O_0) = C \ P(s_0) \ P(O_0 | s_0) \]
\[P(s_1 | O_0) = \int_{-\infty}^{\infty} P(s_0 | O_0) P(s_1 | s_0) ds_0 \]

Assuming that we only generate \textbf{FOUR} samples from the predicted distributions
Particle Filtering

\[P(s) = \text{a priori} \]
\[P(s_t|s_{t-1}) = \text{Transition prob.} \]
\[P(O_t|s_t) = \text{State output prob} \]

\[P(s_0) = P(s) \]
\[P(s_0|O_0) = C P(s_0) P(O_0|s_0) \]
\[P(s_1|O_0) = \int_{-\infty}^{\infty} P(s_1|O_0)P(s_1|s_0)ds_0 \]
\[P(s_1|O_{0:1}) = C P(s_1|O_0) P(O_1|s_0) \]

Assuming that we only generate **FOUR** samples from the predicted distributions
Particle Filtering

\[P(s) = \text{a priori} \]

\[P(s_{t}|s_{t-1}) = \text{Transition prob.} \]

\[P(O_t|s_t) = \text{State output prob} \]

\[P(s_0) = P(s) \]

\[P(s_0|O_0) = C \cdot P(s_0) \cdot P(O_0|s_0) \]

\[P(s_1|O_0) = \int_{-\infty}^{\infty} P(s_0|O_0)P(s_1|s_0)ds_0 \]

\[P(s_1|O_{0:1}) = C \cdot P(s_1|O_0) \cdot P(O_1|s_0) \]

\[P(s_2|O_{0:1}) = \int_{-\infty}^{\infty} P(s_1|O_{0:1})P(s_2|s_1)ds_1 \]

Assuming that we only generate **FOUR** samples from the predicted distributions
Particle Filtering

\[P(s) = P(s_0) = P(s) \]

\[P(s_t|s_{t-1}) = P(s_1|s_0) = \int_{-\infty}^{\infty} P(s_0|O_0)P(s_1|s_0) ds_0 \]

\[P(O_t|s_t) = P(s_1|O_0:1) = C \int_{-\infty}^{\infty} P(s_1|O_0)P(s_1|s_0) ds_0 \]

Assuming that we only generate **FOUR** samples from the predicted distributions
Particle Filtering

\[P(s) = \frac{1}{\text{a priori}} \quad P(s_t|s_{t-1}) = \frac{1}{\text{Transition prob.}} \quad P(O_t|s_t) = \frac{1}{\text{State output prob}} \]

\[
P(s_0) = P(s)
\]

\[
P(s_0|O_0) = C \ P(s_0) \ P(O_0|s_0)
\]

\[
P(s_1|O_0) = \int_{-\infty}^{\infty} P(s_0|O_0)P(s_1|s_0)ds_0
\]

\[
P(s_1|O_{0:1}) = C \ P(s_1|O_0) \ P(O_1|s_0)
\]

\[
P(s_2|O_{0:1}) = \int_{-\infty}^{\infty} P(s_1|O_{0:1})P(s_2|s_1)ds_1
\]

\[
P(s_2|O_{0:2}) = C \ P(s_2|O_{0:1}) \ P(O_2|s_2)
\]

Assuming that we only generate **FOUR** samples from the predicted distributions.
Particle Filtering

- Discretize state space at the prediction step
 - By sampling the continuous predicted distribution
 - If appropriately sampled, all generated samples may be considered to be equally probable
 - Sampling results in a \textit{discrete uniform} distribution

- Update step updates the distribution of the quantized state space
 - Results in a \textit{discrete non-uniform} distribution

- Predicted state distribution for the next time instant will again be continuous
 - Must be \textit{discretized} again by sampling

- At any step, the current state distribution will not have more components than the number of samples generated at the previous sampling step
 - The complexity of distributions remains constant
Particle Filtering

\[P(s) = P(s_t | s_{t-1}) = P(O_t | s_t) = \int P(s, O_t, O_{0:t-1}) ds \]

Prediction at time \(t \):
\[P(s_t | O_{0:t-1}) = \int P(s_{t-1} | O_{0:t-1}) P(s_t | s_{t-1}) ds_{t-1} \]

Update at time \(t \):
\[P(s_t | O_{0:t}) = C P(s_t | O_{0:t-1}) P(O_t | s_t) \]

Number of mixture components in predicted distribution governed by number of samples in discrete distribution

By deriving a small (100–1000) number of samples at each time instant, all distributions are kept manageable.
Particle Filtering

\[o_t = g(s_t) + \gamma \]

\[s_t = f(s_{t-1}) + \varepsilon \]

\[P_\gamma(\gamma) \]

\[P_\varepsilon(\varepsilon) \]

- At \(t = 0 \), sample the initial state distribution

\[P(s_0 | o_{-1}) = P(s_0) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_0 - \bar{s}_i^0) \text{ where } \bar{s}_i^0 \leftarrow P_0(s) \]

- Update the state distribution with the observation

\[P(s_t | o_{0:t}) = C \sum_{i=0}^{M-1} P_\gamma(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t) \]

\[C = \frac{1}{\sum_{i=0}^{M-1} P_\gamma(o_t - g(\bar{s}_i^t))} \]
Particle Filtering

\[o_t = g(s_t) + \gamma \]

\[s_t = f(s_{t-1}) + \varepsilon \]

- Predict the state distribution at the next time

\[P(s_t \mid o_{0:t-1}) = C \sum_{i=0}^{M-1} P_\gamma(o_{t-1} - g(\bar{s}_i^{t-1}))P_\varepsilon(s_t - f(\bar{s}_i^{t-1})) \]

- Sample the predicted state distribution

\[P(s_t \mid o_{0:t-1}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - \bar{s}_i^t) \text{ where } \bar{s}_i^t \leftarrow P(s_t \mid o_{0:t-1}) \]
Particle Filtering

\[o_t = g(s_t) + \gamma \quad P_\gamma(\gamma) \quad s_t = f(s_{t-1}) + \varepsilon \quad P_\varepsilon(\varepsilon) \]

- Predict the state distribution at \(t \)

\[P(s_t \mid o_{0:t-1}) = C \sum_{i=0}^{M-1} P_\gamma(o_{t-1} - g(s_i^{t-1})) P_\varepsilon(s_t - f(s_i^{t-1})) \]

- Sample the predicted state distribution at \(t \)

\[P(s_t \mid o_{0:t-1}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - s_i^t) \text{ where } s_i^t \leftarrow P(s_t \mid o_{0:t-1}) \]

- Update the state distribution at \(t \)

\[P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_\gamma(o_t - g(s_i^t)) \delta(s_t - s_i^t) \]

\[C = \frac{1}{\sum_{i=0}^{M-1} P_\gamma(o_t - g(s_i^t))} \]
Estimating a state

- The algorithm gives us a discrete updated distribution over states:

\[P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_\gamma(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t) \]

- The actual state can be estimated as the mean of this distribution

\[\hat{s}_t = C \sum_{i=0}^{M-1} \bar{s}_i^t P_\gamma(o_t - g(\bar{s}_i^t)) \]

- Alternately, it can be the most likely sample

\[\hat{s}_t = \bar{s}_j^t : \quad j = \arg \max_i P_\gamma(o_t - g(\bar{s}_i^t)) \]
Simulations with a Linear Model

\[S_t = S_{t-1} + \varepsilon_t \quad O_t = S_t + x_t \]

- \(\varepsilon_t \) has a Gaussian distribution with 0 mean, known variance
- \(x_t \) has a mixture Gaussian distribution with known parameters
- Simulation:
 - Generate state sequence \(S_t \) from model
 - Generate sequence of \(X_t \) from model with one \(X_t \) term for every \(S_t \) term
 - Generate observation sequence \(O_t \) from \(S_t \) and \(X_t \)
 - Attempt to estimate \(S_t \) from \(O_t \)
Simulation: Synthesizing data

Generate state sequence according to:
\(\varepsilon_t \) is Gaussian with mean 0 and variance 10

\[s_t = s_{t-1} + \varepsilon_t \]
Simulation: Synthesizing data

Generate state sequence according to:
ε_t is Gaussian with mean 0 and variance 10

$S_t = S_{t-1} + \varepsilon_t$

Generate observation sequence from state sequence according to:
x_t is mixture Gaussian with parameters:
Means = [-4, 0, 4, 8, 12, 16, 18, 20]
Variances = [10, 10, 10, 10, 10, 10, 10, 10]
Mixture weights = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]
Simulation: Synthesizing data

Combined figure for more compact representation
SIMULATION: TIME = 1

PREDICTED STATE DISTRIBUTION
AT TIME = 1
SIMULATION: TIME = 1

SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1
SIMULATION: TIME = 1

SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1

23 Nov 2010
SIMULATION: TIME = 1

UPDATED VERSION OF SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1 AFTER SEEING FIRST OBSERVATION
SIMULATION: TIME = 1

update

update, t <= 1

23 Nov 2010

11-755/18797

89
SIMULATION: TIME = 2

update

predict

update, t <= 1
SIMULATION: TIME = 2

predict

update, t <= 1
SIMULATION: TIME = 2

predict

update, $t \leq 1$
SIMULATION: TIME = 2

update, t <= 1
SIMULATION: TIME = 2

update

update, t <= 1
SIMULATION: TIME = 2

update

update, t <= 2
SIMULATION: TIME = 3

predict

update, t <= 2
SIMULATION: TIME = 3

predict

update, t <= 2
SIMULATION: TIME = 3

update, $t \leq 2$
SIMULATION: TIME = 3

update

update, t <= 2
The figure below shows the contour of the updated state probabilities for all time instants until the current instant $t \leq 3$.

SIMULATION: TIME = 3
Simulation: Updated Probs Until T=3

update, t <= 3
Simulation: Updated Probs Until $T=100$

update, $t \leq 100$
Simulation: Updated Probs Until $T=200$

update, $t \leq 200$
Simulation: Updated Probs Until T=300

update, t <= 300
Simulation: Updated Probs Until T=500

update, t <= 500
Simulation: Updated Probs Until $T=1000$

update, $t \leq 1000$
Updated Probs Until $T = 1000$

update, $t \leq 1000$
Updated Probs Until $T = 1000$
Updated Probs: Top View

update, t <= 1000
ESTIMATED STATE
Observation, True States, Estimate
Particle Filtering

- Generally quite effective in scenarios where EKF/UKF may not be applicable
 - Potential applications include tracking and edge detection in images!
 - Not very commonly used however

- Highly dependent on sampling
 - A large number of samples required for accurate representation
 - Samples may not represent mode of distribution
 - Some distributions are not amenable to sampling
 - Use importance sampling instead: Sample a Gaussian and assign non-uniform weights to samples
Additional Topics

- NMF / ICA.
- Class on 30 Nov?