Hidden Markov Models
Administrivia

- HW2 – due Tuesday

- Is everyone on the “projects” page?
 - Where are your project proposals?
Recap: What is an HMM

- “Probabilistic function of a Markov chain”
- Models a dynamical system
- System goes through a number of states
 - Following a Markov chain model
- On arriving at any state it generates observations according to a state-specific probability distribution
A Thought Experiment

I just called out the 6 from the blue guy.. gotta switch to pattern 2.

Two “shooters” roll dice

A caller calls out the number rolled. We only get to hear what he calls out

The caller behaves randomly

- If he has just called a number rolled by the blue shooter, his next call is that of the red shooter 70% of the time
- But if he has just called the red shooter, he has only a 40% probability of calling the red shooter again in the next call

How do we characterize this?

6 4 1 5 3 2 2 2 ...

6 3 1 5 4 1 2 4 ...

4 4 1 6 3 2 1 2 ...

12 Oct 2010 411755/18797
A Thought Experiment

The dots and arrows represent the “states” of the caller
- When he’s on the blue circle he calls out the blue dice
- When he’s on the red circle he calls out the red dice
- The histograms represent the probability distribution of the numbers for the blue and red dice
A Thought Experiment

- When the caller is in any state, he calls a number based on the probability distribution of that state
 - We call these state output distributions
- At each step, he moves from his current state to another state following a probability distribution
 - We call these transition probabilities
- The caller is an HMM!!!
What is an HMM

- HMMs are statistical models for (causal) processes
- The model assumes that the process can be in one of a number of states at any time instant
- The state of the process at any time instant depends only on the state at the previous instant (causality, Markovian)
- At each instant the process generates an observation from a probability distribution that is specific to the current state
- The generated observations are all that we get to see
 - the actual state of the process is not directly observable
 - Hence the qualifier hidden
A Hidden Markov Model consists of two components

- A state/transition backbone that specifies how many states there are, and how they can follow one another
- A set of probability distributions, one for each state, which specifies the distribution of all vectors in that state

This can be factored into two separate probabilistic entities

- A probabilistic Markov chain with states and transitions
- A set of data probability distributions, associated with the states
How an HMM models a process

HMM assumed to be generating data

state sequence

state distributions

observation sequence
HMM Parameters

- The **topology** of the HMM
 - Number of states and allowed transitions
 - E.g. here we have 3 states and cannot go from the blue state to the red

- The transition probabilities
 - Often represented as a matrix as here
 - T_{ij} is the probability that when in state i, the process will move to j

- The probability π_i of beginning at any state s_i
 - The complete set is represented as π

- The **state output distributions**
HMM state output distributions

- The state output distribution is the distribution of data produced from any state
- Typically modelled as Gaussian

\[P(x \mid s_i) = \text{Gaussian}(x; \mu_i, \Theta_i) = \frac{1}{\sqrt{(2\pi)^d|\Theta_i|}} e^{-0.5(x - \mu_i)^T\Theta_i^{-1}(x - \mu_i)} \]

- The parameters are \(\mu_i \) and \(\Theta_i \)
- More typically, modelled as Gaussian mixtures

\[P(x \mid s_i) = \sum_{j=0}^{K-1} w_{i,j} \text{Gaussian}(x; \mu_{i,j}, \Theta_{i,j}) \]

- Other distributions may also be used
- E.g. histograms in the dice case
The Diagonal Covariance Matrix

Full covariance: all elements are non-zero

\[-0.5(x-\mu)^T\Theta^{-1}(x-\mu)\]

Diagonal covariance: off-diagonal elements are zero

\[-\sum_i (x_i-\mu_i)^2 / 2\sigma_i^2\]

- For GMMs it is frequently assumed that the feature vector dimensions are all *independent* of each other

- **Result:** The covariance matrix is reduced to a diagonal form

 - The determinant of the diagonal \(\Theta \) matrix is easy to compute
Three Basic HMM Problems

- What is the probability that it will generate a specific observation sequence

- Given a observation sequence, how do we determine which observation was generated from which state
 - The state segmentation problem

- How do we *learn* the parameters of the HMM from observation sequences
Computing the Probability of an Observation Sequence

- Two aspects to producing the observation:
 - Progressing through a sequence of states
 - Producing observations from these states
Progressing through states

HMM assumed to be generating data

The process begins at some state (red) here

From that state, it makes an allowed transition
 - To arrive at the same or any other state

From that state it makes another allowed transition
 - And so on
Probability that the HMM will follow a particular state sequence

\[P(s_1, s_2, s_3, \ldots) = P(s_1)P(s_2|s_1)P(s_3|s_2)\ldots \]

- \(P(s_1) \) is the probability that the process will initially be in state \(s_1 \)

- \(P(s_i|s_i) \) is the transition probability of moving to state \(s_i \) at the next time instant when the system is currently in \(s_i \)
 - Also denoted by \(T_{ij} \) earlier
Generating Observations from States

- At each time it generates an observation from the state it is in at that time
Probability that the HMM will generate a particular observation sequence given a state sequence (state sequence known)

\[P(o_1, o_2, o_3, \ldots | s_1, s_2, s_3, \ldots) = P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \ldots \]

Computed from the Gaussian or Gaussian mixture for state \(s_1 \)

- \(P(o_i | s_i) \) is the probability of generating observation \(o_i \) when the system is in state \(s_i \)
 Proceeding through States and Producing Observations

HMM assumed to be generating data

State sequence

State distributions

Observation sequence

- At each time it produces an observation and makes a transition
Probability that the HMM will generate a particular state sequence and from it, a particular observation sequence

\[
P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) =
\]

\[
P(o_1, o_2, o_3, ..., | s_1, s_2, s_3, ...) P(s_1, s_2, s_3, ...)=
\]

\[
P(o_1|s_1) P(o_2|s_2) P(o_3|s_3) ... P(s_1) P(s_2|s_1) P(s_3|s_2) ...\]
Probability of Generating an Observation Sequence

- The precise state sequence is not known
- All possible state sequences must be considered

\[
P(o_1, o_2, o_3, \ldots) = \sum_{\text{all possible state sequences}} P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \sum_{\text{all possible state sequences}} P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) \ldots P(s_1) P(s_2 | s_1) P(s_3 | s_2) \ldots
\]
Computing it Efficiently

- Explicit summing over all state sequences is not tractable
 - A very large number of possible state sequences

- Instead we use the forward algorithm

- A dynamic programming technique.
Illustrative Example

- Example: a generic HMM with 5 states and a “terminating state”.
 - Left to right topology
 - $P(s_i) = 1$ for state 1 and 0 for others
 - The arrows represent transition for which the probability is not 0

- Notation:
 - $P(s_i \mid s_i) = T_{ij}$
 - We represent $P(o_t \mid s_i) = b_i(t)$ for brevity
The trellis is a graphical representation of all possible paths through the HMM to produce a given observation.

- The Y-axis represents HMM states, X axis represents observations.
- Every edge in the graph represents a valid transition in the HMM over a single time step.
- Every node represents the event of a particular observation being generated from a particular state.
The Forward Algorithm

\[\alpha(s,t) = P(x_1, x_2, \ldots, x_t, \text{state}(t) = s) \]

\[\alpha(s,t) \] is the total probability of ALL state sequences that end at state \(s \) at time \(t \), and all observations until \(x_t \)
The Forward Algorithm

\[\alpha(s, t) = P(x_1, x_2, ..., x_t, \text{state}(t) = s) \]

- \(\alpha(s,t) \) can be recursively computed in terms of \(\alpha(s',t') \), the forward probabilities at time \(t-1 \)

Can be recursively estimated starting from the first time instant (forward recursion)
The Forward Algorithm

\[\text{Totalprob} = \sum_s \alpha(s, T) \]

- In the final observation the alpha at each state gives the probability of all state sequences ending at that state.
- General model: The total probability of the observation is the sum of the alpha values at all states.
The absorbing state

- Observation sequences are assumed to end only when the process arrives at an absorbing state
 - No observations are produced from the absorbing state
Absorbing state model: The total probability is the alpha computed at the absorbing state after the final observation.

\[\alpha(s_{\text{absorbing}}, T + 1) = \sum_{s'} \alpha(s', T)P(s_{\text{absorbing}} | s') \]
Problem 2: State segmentation

- Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?
The HMM as a generator

- The process goes through a series of states and produces observations from them
States are hidden

The observations do not reveal the underlying state
The state segmentation problem

HMM assumed to be generating data

State segmentation: Estimate state sequence given observations
Estimating the State Sequence

- Many different state sequences are capable of producing the observation

- Solution: Identify the most probable state sequence
 - The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
 - i.e. \(P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) \) is maximum
Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

\[P(o_1, o_2, o_3, ... , s_1, s_2, s_3, ...) = \]

\[P(o_1 | s_1) P(o_2 | s_2) P(o_3 | s_3) ... P(s_1 | s_1) P(s_2 | s_1) P(s_3 | s_2) ... \]

- Needed:

\[\arg \max_{s_1, s_2, s_3, ...} P(o_1 | s_1) P(s_1) P(o_2 | s_2) P(s_2 | s_1) P(o_3 | s_3) P(s_3 | s_2) \]
Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

\[P(o_1, o_2, o_3, \ldots, s_1, s_2, s_3, \ldots) = \]
\[P(o_1 | s_1)P(o_2 | s_2)P(o_3 | s_3) \ldots P(s_1 | s_1)P(s_2 | s_1)P(s_3 | s_2) \ldots \]

- Needed:

\[\arg\max_{s_1, s_2, s_3, \ldots} P(o_1 | s_1)P(s_1)P(o_2 | s_2)P(s_2 | s_1)P(o_3 | s_3)P(s_3 | s_2) \]
The HMM as a generator

HMM assumed to be generating data

- Each enclosed term represents one forward transition and a subsequent emission

12 Oct 2010 3711755/18797
The state sequence

- The probability of a state sequence \ldots, s_x, s_y ending at time t, and producing all observations until o_t
 \[P(o_{1..t-1}, \ldots, s_x, o_t, s_y) = P(o_{1..t-1}, \ldots, s_x, s_y) \cdot P(o_t | s_y) \cdot P(s_y | s_x) \]

- The best state sequence that ends with s_x, s_y at t will have a probability equal to the probability of the best state sequence ending at $t-1$ at s_x times $P(o_t | s_y) \cdot P(s_y | s_x)$
The probability of a state sequence $?,?,?,?,s_x,s_y$ ending at time t and producing observations until o_t is given by:

$$P(o_1..t-1,o_t,?,?,?,s_x,s_y) = P(o_1..t-1,?,?,?,s_x)P(o_t|s_y)P(s_y|s_x)$$
Trellis

- The graph below shows the set of all possible state sequences through this HMM in five time instants.
The cost of extending a state sequence

The cost of extending a state sequence ending at s_x is only dependent on the transition from s_x to s_y, and the observation probability at s_y.

$P(o_t|s_y)P(s_y|s_x)$
The cost of extending a state sequence

- The best path to s_y through s_x is simply an extension of the best path to s_x

$$\text{BestP}(o_{1..t-1}, ?, ?, ?, ?, s_x)$$
$$P(o_t|s_y)P(s_y|s_x)$$
The Recursion

- The overall best path to s_y is an extension of the best path to one of the states at the previous time.
The Recursion

- Prob. of best path to $s_y = \max_{s_x} \text{BestP}(o_{1..t-1}, ?, ?, ?, ?, s_x) \cdot P(o_t|s_y)P(s_y|s_x)$
Finding the best state sequence

The simple algorithm just presented is called the VITERBI algorithm in the literature

- After A.J. Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!
Viterbi Search (contd.)

Initial state initialized with path-score $P(s_1)b_1(1)$.

All other states have score 0 since $P(s_i) = 0$ for them.
Viterbi Search (contd.)

\[P_j(t) = \max_i [P_i(t-1) \cdot t \cdot b_j(t)] \]

- State transition probability, \(i \) to \(j \)
- Score for state \(j \), given the input at time \(t \)
- Total path-score ending up at state \(j \) at time \(t \)
Viterbi Search (contd.)

\[P_j(t) = \max_i \left[P_i(t-1) \cdot t_{ij} \cdot b_j(t) \right] \]

- State transition probability, \(i \) to \(j \)
- Score for state \(j \), given the input at time \(t \)
- Total path-score ending up at state \(j \) at time \(t \)
Viterbi Search (contd.)

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION
Problem3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM’s parameters.

- But where do the HMM parameters come from?

- They must be learned from a collection of observation sequences.
Learning HMM parameters: Simple procedure – counting

- Given a set of training instances
- Iteratively:
 1. Initialize HMM parameters
 2. Segment all training instances
 3. Estimate transition probabilities and state output probability parameters by counting
Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
 - How to count after state sequences are obtained
Example: Learning HMM Parameters

- We have an HMM with two states s1 and s2.
- Observations are vectors x_{ij}
 - i-th sequence, j-th vector
- We are given the following three observation sequences
 - And have already estimated state sequences

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>x_{a1}</td>
<td>x_{a2}</td>
<td>x_{a3}</td>
<td>x_{a4}</td>
<td>x_{a5}</td>
<td>x_{a6}</td>
<td>x_{a7}</td>
<td>x_{a8}</td>
<td>x_{a9}</td>
<td>x_{a10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>x_{b1}</td>
<td>x_{b2}</td>
<td>x_{b3}</td>
<td>x_{b4}</td>
<td>x_{b5}</td>
<td>x_{b6}</td>
<td>x_{b7}</td>
<td>x_{b8}</td>
<td>x_{b9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>x_{c1}</td>
<td>x_{c2}</td>
<td>x_{c3}</td>
<td>x_{c4}</td>
<td>x_{c5}</td>
<td>x_{c6}</td>
<td>x_{c7}</td>
<td>x_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Initial state probabilities (usually denoted as \(\pi \)):**
 - We have 3 observations
 - 2 of these begin with S1, and one with S2
 - \(\pi(S1) = \frac{2}{3}, \pi(S2) = \frac{1}{3} \)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td></td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

Transition probabilities:
- State S1 occurs 11 times in non-terminal locations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>x_{a1}</td>
<td>x_{a2}</td>
<td>x_{a3}</td>
<td>x_{a4}</td>
<td>x_{a5}</td>
<td>x_{a6}</td>
<td>x_{a7}</td>
<td>x_{a8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>x_{b1}</td>
<td>x_{b2}</td>
<td>x_{b3}</td>
<td>x_{b4}</td>
<td>x_{b5}</td>
<td>x_{b6}</td>
<td>x_{b7}</td>
<td>x_{b9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>x_{c1}</td>
<td>x_{c2}</td>
<td>x_{c3}</td>
<td>x_{c4}</td>
<td>x_{c5}</td>
<td>x_{c6}</td>
<td>x_{c7}</td>
<td>x_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_a_1</td>
<td>X_a_2</td>
<td>X_a_3</td>
<td>X_a_4</td>
<td>X_a_5</td>
<td>X_a_6</td>
<td>X_a_7</td>
<td>X_a_8</td>
<td>X_a_9</td>
<td>X_a_10</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_b_1</td>
<td>X_b_2</td>
<td>X_b_3</td>
<td>X_b_4</td>
<td>X_b_5</td>
<td>X_b_6</td>
<td>X_b_7</td>
<td>X_b_8</td>
<td>X_b_9</td>
<td></td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_c_1</td>
<td>X_c_2</td>
<td>X_c_3</td>
<td>X_c_4</td>
<td>X_c_5</td>
<td>X_c_6</td>
<td>X_c_7</td>
<td>X_c_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
 - It is followed immediately by S2 5 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

- Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{h1}</td>
<td>X_{h2}</td>
<td>X_{h3}</td>
<td>X_{h4}</td>
<td>X_{h5}</td>
<td>X_{h6}</td>
<td>X_{h7}</td>
<td>X_{h8}</td>
<td>X_{h9}</td>
</tr>
</tbody>
</table>

- Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{e1}</td>
<td>X_{e2}</td>
<td>X_{e3}</td>
<td>X_{e4}</td>
<td>X_{e5}</td>
<td>X_{e6}</td>
<td>X_{e7}</td>
<td>X_{e8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S1 occurs 11 times in non-terminal locations
 - Of these, it is followed immediately by S1 6 times
 - It is followed immediately by S2 5 times
 - $P(S1 \mid S1) = 6/11$; $P(S2 \mid S1) = 5/11$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
</tr>
</tbody>
</table>

Observation 3
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b3}</td>
<td>X_{b4}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
<td>X_{b9}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs.</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
<td>X_{c9}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_a1</td>
<td>X_a2</td>
<td>X_a3</td>
<td>X_a4</td>
<td>X_a5</td>
<td>X_a6</td>
<td>X_a7</td>
<td>X_a8</td>
<td>X_a9</td>
<td>X_a10</td>
</tr>
</tbody>
</table>

Observation 1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_b1</td>
<td>X_b2</td>
<td>X_b3</td>
<td>X_b4</td>
<td>X_b5</td>
<td>X_b6</td>
<td>X_b7</td>
<td>X_b8</td>
<td>X_b9</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_c1</td>
<td>X_c2</td>
<td>X_c3</td>
<td>X_c4</td>
<td>X_c5</td>
<td>X_c6</td>
<td>X_c7</td>
<td>X_c8</td>
<td></td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State S2 occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by S1 5 times
 - It is followed immediately by S2 8 times

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X₀₁</td>
<td>X₀₂</td>
<td>X₀₃</td>
<td>X₀₄</td>
<td>X₀₅</td>
<td>X₀₆</td>
<td>X₀₇</td>
<td>X₀₈</td>
<td>X₀₉</td>
<td>X₀₁₀</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X₁₀₁</td>
<td>X₁₀₂</td>
<td>X₁₀₃</td>
<td>X₁₀₄</td>
<td>X₁₀₅</td>
<td>X₁₀₆</td>
<td>X₁₀₇</td>
<td>X₁₀₈</td>
<td>X₁₀₉</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X₂₀₁</td>
<td>X₂₀₂</td>
<td>X₂₀₃</td>
<td>X₂₀₄</td>
<td>X₂₀₅</td>
<td>X₂₀₆</td>
<td>X₂₀₇</td>
<td>X₂₀₈</td>
<td>X₂₀₉</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- **Transition probabilities:**
 - State \(S_2 \) occurs 13 times in non-terminal locations
 - Of these, it is followed immediately by \(S_1 \) 5 times
 - It is followed immediately by \(S_2 \) 8 times
 - \(P(S_1 \mid S_2) = 5/13; \quad P(S_2 \mid S_2) = 8/13 \)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>(X_{a1})</td>
<td>(X_{a2})</td>
<td>(X_{a3})</td>
<td>(X_{a4})</td>
<td>(X_{a5})</td>
<td>(X_{a6})</td>
<td>(X_{a7})</td>
<td>(X_{a8})</td>
<td>(X_{a9})</td>
<td>(X_{a10})</td>
</tr>
</tbody>
</table>

- **Observation 1**
- **Observation 2**
- **Observation 3**
Parameters learnt so far

- **State initial probabilities**, often denoted as π
 - $\pi(S1) = 2/3 = 0.66$
 - $\pi(S2) = 1/3 = 0.33$

- **State transition probabilities**
 - $P(S1 \mid S1) = 6/11 = 0.545$; $P(S2 \mid S1) = 5/11 = 0.455$
 - $P(S1 \mid S2) = 5/13 = 0.385$; $P(S2 \mid S2) = 8/13 = 0.615$
 - Represented as a transition matrix

\[
A = \begin{pmatrix}
P(S1 \mid S1) & P(S2 \mid S1) \\
P(S1 \mid S2) & P(S2 \mid S2)
\end{pmatrix} = \begin{pmatrix}
0.545 & 0.455 \\
0.385 & 0.615
\end{pmatrix}
\]

Each row of this matrix must sum to 1.0
Example: Learning HMM Parameters

- State output probability for S1
 - There are 13 observations in S1

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{h1}</td>
<td>X_{h2}</td>
<td>X_{h3}</td>
<td>X_{h4}</td>
<td>X_{h5}</td>
<td>X_{h6}</td>
<td>X_{h7}</td>
<td>X_{h8}</td>
<td>X_{h9}</td>
</tr>
</tbody>
</table>

Observation 3

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- State output probability for S1
 - There are 13 observations in S1
 - Segregate them out and count

- Compute parameters (mean and variance) of Gaussian output density for state S1

\[
P(X | S_i) = \frac{1}{\sqrt{(2\pi)^d |\Theta_1|}} \exp(-0.5(X - \mu_i)^T \Theta_1^{-1}(X - \mu_i))
\]

\[
\mu_i = \frac{1}{13} \left(X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + X_{b4} + X_{b9} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \right)
\]

\[
\Theta_1 = \frac{1}{13} \left((X_{a1} - \mu_1)(X_{a1} - \mu_1)^T + (X_{a2} - \mu_1)(X_{a2} - \mu_1)^T + \ldots (X_{b3} - \mu_1)(X_{b3} - \mu_1)^T + (X_{b4} - \mu_1)(X_{b4} - \mu_1)^T + \ldots (X_{c1} - \mu_1)(X_{c1} - \mu_1)^T + (X_{c2} - \mu_1)(X_{c2} - \mu_1)^T + \ldots \right)
\]
Example: Learning HMM Parameters

- State output probability for S2
 - There are 14 observations in S2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>state</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a1}</td>
<td>X_{a2}</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a6}</td>
<td>X_{a7}</td>
<td>X_{a8}</td>
<td>X_{a9}</td>
<td>X_{a10}</td>
</tr>
</tbody>
</table>

Observation 2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{h1}</td>
<td>X_{h2}</td>
<td>X_{h3}</td>
<td>X_{h4}</td>
<td>X_{h5}</td>
<td>X_{h6}</td>
<td>X_{h7}</td>
<td>X_{h8}</td>
<td>X_{h9}</td>
</tr>
</tbody>
</table>

Observation 3

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>state</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c1}</td>
<td>X_{c2}</td>
<td>X_{c3}</td>
<td>X_{c4}</td>
<td>X_{c5}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
Example: Learning HMM Parameters

- State output probability for S2
 - There are 14 observations in S2
 - Segregate them out and count
 - Compute parameters (mean and variance) of Gaussian output density for state S2

\[
P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d | \Theta_2 |}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2)\right)
\]

\[
\mu_2 = \frac{1}{14} \left(X_{a3} + X_{a4} + X_{a5} + X_{a8} + X_{b1} + X_{b2} + X_{b5} + X_{b6} + X_{b7} + X_{b8} + X_{c2} + X_{c6} + X_{c7} + X_{c8} \right)
\]

\[
\Theta_1 = \frac{1}{14} \left((X_{a3} - \mu_2)(X_{a3} - \mu_2)^T + \ldots \right)
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{a3}</td>
<td>X_{a4}</td>
<td>X_{a5}</td>
<td>X_{a8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{b1}</td>
<td>X_{b2}</td>
<td>X_{b5}</td>
<td>X_{b6}</td>
<td>X_{b7}</td>
<td>X_{b8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
<tr>
<td>Obs</td>
<td>X_{c2}</td>
<td>X_{c6}</td>
<td>X_{c7}</td>
<td>X_{c8}</td>
</tr>
</tbody>
</table>
We have learnt all the HMM parameters

- **State initial probabilities**, often denoted as π
 - $\pi(S1) = 0.66$ \quad $\pi(S2) = 1/3 = 0.33$

- **State transition probabilities**
 \[A = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix} \]

- **State output probabilities**

<table>
<thead>
<tr>
<th>State output probability for S1</th>
<th>State output probability for S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right)$</td>
<td>$P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right)$</td>
</tr>
</tbody>
</table>
Update rules at each iteration

\[\pi(s_i) = \frac{\text{No. of observation sequences that start at state } s_i}{\text{Total no. of observation sequences}} \]

\[P(s_j | s_i) = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i, \text{& state}(t+1)=s_j} 1}{\sum_{\text{obs } t: \text{state}(t)=s_i} 1} \]

\[\mu_i = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i} \sum X_{obs,t}}{\sum_{\text{obs } t: \text{state}(t)=s_i} 1} \]

\[\Theta_i = \frac{\sum_{\text{obs } t: \text{state}(t)=s_i} \sum (X_{obs,t} - \mu_i)(X_{obs,t} - \mu_i)^T}{\sum_{\text{obs } t: \text{state}(t)=s_i} 1} \]

- Assumes state output PDF = Gaussian
 - For GMMs, estimate GMM parameters from collection of observations at any state
Training by segmentation: Viterbi training

- Initialize all HMM parameters
- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a “segmental k-means” learning procedure
Alternative to counting: SOFT counting

- Expectation maximization
- *Every* observation contributes to every state
Update rules at each iteration

\[
\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}}
\]

\[
P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t+1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})}
\]

\[
\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})}
\]

\[
\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})(X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})}
\]

- Every observation contributes to every state
Update rules at each iteration

\[
\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i | \text{Obs})}{\text{Total no. of observation sequences}}
\]

\[
P(s_j | s_i) = \frac{\sum_{\text{Obs}} \sum_t P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j | \text{Obs})}{\sum_{\text{Obs}} \sum_t P(\text{state}(t) = s_i | \text{Obs})}
\]

\[
\mu_i = \frac{\sum_{\text{Obs}} \sum_t P(\text{state}(t) = s_i | \text{Obs}) X_{\text{obs}, t}}{\sum_{\text{Obs}} \sum_t P(\text{state}(t) = s_i | \text{Obs})}
\]

\[
\Theta_i = \frac{\sum_{\text{Obs}} \sum_t P(\text{state}(t) = s_i | \text{Obs}) (X_{\text{obs}, t} - \mu_i)^T (X_{\text{obs}, t} - \mu_i)}{\sum_{\text{Obs}} \sum_t P(\text{state}(t) = s_i | \text{Obs})}
\]

Where did these terms come from?
$P(\text{state}(t) = s \mid \text{Obs})$

- The probability that the process was at s when it generated X_t given the entire observation
- Dropping the “Obs” subscript for brevity

$P(\text{state}(t) = s \mid X_1, X_2, \ldots, X_T) \propto P(\text{state}(t) = s, X_1, X_2, \ldots, X_T)$

- We will compute $P(\text{state}(t) = s_i, x_1, x_2, \ldots, x_T)$ first
 - This is the probability that the process visited s at time t while producing the entire observation
The probability that the HMM was in a particular state s when generating the observation sequence is the probability that it followed a state sequence that passed through s at time t.

$$P(state(t) = s, x_1, x_2, \ldots, x_T)$$
This can be decomposed into two multiplicative sections

- The section of the lattice leading into state s at time t and the section leading out of it

$$P(state(t) = s, x_1, x_2, ..., x_T)$$
The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state \(s \) at time \(t \)
 - This is simply \(\alpha(s,t) \)
 - Can be computed using the forward algorithm
The Backward Paths

- The blue portion represents the probability of all state sequences that began at state s at time t
 - Like the red portion it can be computed using a *backward recursion*
The Backward Recursion

\[\beta(s, t) = P(x_{t+1}, x_{t+2}, \ldots, x_T \mid \text{state}(t) = s) \]

- \(\beta(s, t) \) is the total probability of ALL state sequences that depart from \(s \) at time \(t \), and all observations after \(x_t \)
 - \(\beta(s, T) = 1 \) at the final time instant for all valid final states

Can be recursively estimated starting from the final time instant (backward recursion)
The complete probability

$$\alpha(s, t) \beta(s, t) = P(x_{t+1}, x_{t+2}, ..., x_T, \text{state}(t) = s)$$
Posterior probability of a state

- The probability that the process was in state s at time t, given that we have observed the data is obtained by simple normalization:

$$P(\text{state}(t) = s \mid \text{Obs}) = \frac{P(\text{state}(t) = s, x_1, x_2, \ldots, x_T)}{\sum_{s'} P(\text{state}(t) = s, x_1, x_2, \ldots, x_T)} = \frac{\alpha(s, t)\beta(s, t)}{\sum_{s'} \alpha(s', t)\beta(s', t)}$$

- This term is often referred to as the gamma term and denoted by $\gamma_{s,t}$.
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{obs} P(state(t = 1) = s_i \mid Obs)}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{obs} \sum_{t} P(state(t) = s_i, state(t + 1) = s_j \mid Obs)}{\sum_{obs} \sum_{t} P(state(t) = s_i \mid Obs)} \]

\[\mu_i = \frac{\sum_{obs} \sum_{t} P(state(t) = s_i \mid Obs) X_{obs,t}}{\sum_{obs} \sum_{t} P(state(t) = s_i \mid Obs)} \]

\[\Theta_i = \frac{\sum_{obs} \sum_{t} P(state(t) = s_i \mid Obs) (X_{obs,t} - \mu_i)(X_{obs,t} - \mu_i)^T}{\sum_{obs} \sum_{t} P(state(t) = s_i \mid Obs)} \]

These have been found
Update rules at each iteration

\[\pi(s_i) = \frac{\sum_{\text{Obs}} P(\text{state}(t = 1) = s_i \mid \text{Obs})}{\text{Total no. of observation sequences}} \]

\[P(s_j \mid s_i) = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i, \text{state}(t + 1) = s_j \mid \text{Obs})}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\mu_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})X_{\text{Obs},t}}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

\[\Theta_i = \frac{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})(X_{\text{Obs},t} - \mu_i)(X_{\text{Obs},t} - \mu_i)^T}{\sum_{\text{Obs}} \sum_{t} P(\text{state}(t) = s_i \mid \text{Obs})} \]

- Where did these terms come from?
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) \]
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) P(s' \mid s) P(x_{t+1} \mid s') \]
\[P(\text{state}(t) = s, \text{state}(t + 1) = s', x_1, x_2, \ldots, x_T) \]

\[\alpha(s, t) P(s' | s) P(x_{t+1} | s') \beta(s', t + 1) \]
The a posteriori probability of transition

\[P(\text{state}(t) = s, \text{state}(t+1) = s' \mid \text{Obs}) = \frac{\alpha(s, t)P(s' \mid s)P(x_{t+1} \mid s')\beta(s', t+1)}{\sum_{s_1} \sum_{s_2} \alpha(s_1, t)P(s_2 \mid s_1)P(x_{t+1} \mid s_2)\beta(s_2, t+1)} \]

- The a posteriori probability of a transition given an observation
Update rules at each iteration

\[
\pi(s_i) = \frac{\sum_{Obs} P(state(t = 1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}
\]

\[
P(s_j \mid s_i) = \frac{\sum_{t} \sum_{Obs} P(state(t) = s_i, state(t + 1) = s_j \mid Obs)}{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)}
\]

\[
\mu_i = \frac{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs) X_{Obs,t}}{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)}
\]

\[
\Theta_i = \frac{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs) (X_{Obs,t} - \mu_i)(X_{Obs,t} - \mu_i)^T}{\sum_{t} \sum_{Obs} P(state(t) = s_i \mid Obs)}
\]

These have been found
Training without explicit segmentation: Baum-Welch training

- Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data
HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered
Magic numbers

- How many states:
 - No nice automatic technique to learn this
 - You choose
 - For speech, HMM topology is usually left to right (no backward transitions)
 - For other cyclic processes, topology must reflect nature of process
 - No. of states – 3 per phoneme in speech
 - For other processes, depends on estimated no. of distinct states in process
Applications of HMMs

Classification:

- Learn HMMs for the various classes of time series from training data
- Compute probability of test time series using the HMMs for each class
- Use in a Bayesian classifier

- Speech recognition, vision, gene sequencing, character recognition, text mining, topic detection…
Applications of HMMs

- **Segmentation:**
 - Given HMMs for various events, find event boundaries
 - Simply find the best state sequence and the locations where state identities change

- Automatic speech segmentation, text segmentation by topic, genome segmentation, …
Implementation Issues

- For long data sequences arithmetic underflow is a problem
 - Scores are products of numbers that are all less than 1

- The Viterbi algorithm provides a workaround – work only with \(\log \) probabilities
 - Multiplication changes to addition – computationally faster too
 - Underflow almost completely eliminated

- For the forward algorithm complex normalization schemes must be implemented to prevent underflow
 - At some computational expense
 - Often not worth it – go with Viterbi
Classification with HMMs

HMM for Yes

- P(Yes) P(X|Yes)

HMM for No

- P(No) P(X|No)

- Speech recognition of isolated words:
- Training:
 - Collect training instances for each word
 - Learn an HMM for each word

- Recognition of an observation X
 - For each word compute P(X|word)
 - Using forward algorithm
 - Alternately, compute P(X,best.state.sequence |word)
 - Computed using the Viterbi segmentation algorithm
 - Compute P(word) P(X|word)
 - P(word) = a priori probability of word
 - Select the word for which P(word) P(X|word) is highest
Creating composite models

HMMs with absorbing states can be combined into composites

- E.g. train models for open, close and file
- Concatenate them to create models for “open file” and “file close”

Can recognize “open file” and “file close”
Model graphs

- Models can also be composed into graphs
 - Not just linearly
- Viterbi state alignment will tell us which portions of the graphs were visited for an observation X
Recognizing from graph

- Trellis for “Open File” vs. “Close File”
- The VITERBI best path tells you what was spoken
Recognizing from graph

Trellis for “Open File” vs. “Close File”

The VITERBI best path tells you what was spoken
“Language” probabilities can be incorporated

- Transitions between HMMs can be assigned a probability
 - Drawn from properties of the language
 - Here we have shown “Bigram” probabilities
This is used in speech recognition

- Recognizing one of four lines from “charge of the light brigade”

 Cannon to right of them
 Cannon to left of them
 Cannon in front of them
 Cannon behind them

- Each “word” is an HMM
Graphs can be reduced sometimes

- Recognizing one of four lines from “charge of the light brigade”
 - Graph reduction does not impede recognition of what was spoken
Speech recognition: An aside

- In speech recognition systems models are trained for *phonemes*
 - Actually “triphones” – phonemes in context
- Word HMMs are composed from phoneme HMMs
- Language HMMs are composed from word HMMs
- The graph is “reduced” using automated techniques
 - John McDonough talks about WFSTs on Thursday