Recaps, boosting, face detection

Class 10. 24 Sep 2009

Instructor: Bhiksha Raj
Administrivia: Projects

- Only 3 groups so far
 - Plus two individuals
 - Total of 15 people

- Notify us about your teams by tomorrow
 - Or at least that you are *trying* to form a team
 - Otherwise, on 1st we will assign teams by lots

- Inform us about the project you will be working on
 - Only 4 projects so far
Administrivia: Homeworks

First homework will be returned to you on 6th
- Still waiting for the elusive late submissions
- Scoring will be completed before that

Second homework:
- If you are getting bad results, do not be surprised
- This is not a great technique
- A somewhat better technique will be tried for part 2 of the homework
 - Will be put up by Thursday
Lecture by Paris Smaragdis

Thursday.

Independent Component Analysis and applications to audio

Seminar by Paris on Friday

3.30 PM, GHC 4303

Title “Making Machines Listen”

Do not miss!

Posters can be found in Porter, Wean, Hammerschlag and Roberts
RECAP
Principal Component Analysis

- Computing the “Principal” directions of a data
 - What do they mean
 - Why do we care
Principal Components == Eigen Vectors

- Principal Component Analysis is the same as Eigen analysis
- The “Principal Components” are the Eigen Vectors
- Again, what are Eigen Vectors?
Which line through the mean leads to the smallest reconstruction error (sum of squared lengths of the blue lines)?
The first principal component is the *first Eigen* ("typical") vector

\[\mathbf{X} = a_1(\mathbf{X})\mathbf{E}_1 \]

The first Eigen face

For non-zero-mean data sets, the average of the data

The second principal component is the second "typical" (or correction) vector

\[\mathbf{X} = a_1(\mathbf{X})\mathbf{E}_1 + a_2(\mathbf{X})\mathbf{E}_2 \]
Example of Principal Components

Faces
- Principal components: Eigen faces are like faces

Music
- Principal components are Eigen vectors
- Eigen vectors are NOT like the notes
Properties of Principal Components

- The first principal component tells us nothing about the *average* value of the second component.
- In general, the k-th principal component tells us nothing about the i-th principal component for i not equal to k.
- The principal components are *uncorrelated*.

 - The *average* contribution of the second Eigen face to the collection of faces is the same, regardless of the contribution of the first Eigen face.
A Quick Intro to Boosting
Introduction to Boosting

- An *ensemble* method that sequentially combines many simple *BINARY* classifiers to construct a final complex classifier
 - Simple classifiers are often called “weak” learners
 - The complex classifiers are called “strong” learners

- Each weak learner focuses on instances where the previous classifier failed
 - Give greater weight to instances that have been incorrectly classified by previous learners

- Restrictions for weak learners
 - Better than 50% correct

- Final classifier is *weighted* sum of weak classifiers
The total confidence in all classifiers that classify the entity as a chimpanzee is

\[\text{Score}_{\text{chimp}} = \sum \bar{a}_{\text{classifier}} \]
\[\text{classifier favors chimpanzee} \]

The total confidence in all classifiers that classify it as a human is

\[\text{Score}_{\text{human}} = \sum \bar{a}_{\text{classifier}} \]
\[\text{classifier favors human} \]

If \(\text{Score}_{\text{chimp}} > \text{Score}_{\text{human}} \) then the our belief that we have a chimpanzee is greater than the belief that we have a human.
Boosting: A very simple idea

One can come up with many rules to classify

E.g. Chimpanzee vs. Human classifier:
- If arms == long, entity is chimpanzee
- If height > 5’6” entity is human
- If lives in house == entity is human
- If lives in zoo == entity is chimpanzee

Each of them is a reasonable rule, but makes many mistakes

Each rule has an intrinsic error rate

Combine the predictions of these rules

But not equally

Rules that are less accurate should be given lesser weight
Formalizing the Boosting Concept

Given a set of instances \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)
- \(x_i\) is the set of attributes of the \(i^{th}\) instance
- \(y_i\) is the class for the \(i^{th}\) instance
 - \(y_i\) can be +1 or -1 (binary classification only)

Given a set of classifiers \(h_1, h_2, \ldots, h_T\)
- \(h_i\) classifies an instance with attributes \(x\) as \(h_i(x)\)
- \(h_i(x)\) is either -1 or +1 (for a binary classifier)
 - \(y^* h(x)\) is 1 for all correctly classified points and -1 for incorrectly classified points

Devise a function \(f(h_1(x), h_2(x), \ldots, h_T(x))\) such that classification based on \(f()\) is superior to classification by any \(h_i(x)\)
- The function is succinctly represented as \(f(x)\)
The Boosting Concept

A simple combiner function: Voting

\[f(x) = \sum_i h_i(x) \]

Classifier \(H(x) = \text{sign}(f(x)) = \text{sign}(\sum_i h_i(x)) \)

Simple majority classifier

A simple voting scheme

A better combiner function: Boosting

\[f(x) = \sum_i a_i h_i(x) \]

Can be any real number

Classifier \(H(x) = \text{sign}(f(x)) = \text{sign}(\sum_i a_i h_i(x)) \)

A weighted majority classifier

The weight \(a_i \) for any \(h_i(x) \) is a measure of our trust in \(h_i(x) \)
The ADABOost Algorithm

- Adaboost is ADAPTIVE boosting

- The combined classifier is a sequence of weighted classifiers

- We learn classifier weights in an adaptive manner

- Each classifier’s weight optimizes performance on data whose weights are in turn adapted to the accuracy with which they have been classified
The ADABoost Algorithm

1. Initialize $D_1(x_i) = 1/N$
2. For $t = 1, \ldots, T$
 1. Train a weak classifier h_t using distribution D_t
 2. Compute total error on training data
 $e_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$
 3. Set $a_t = \frac{1}{2} \ln \left(\frac{1 - e_t}{e_t} \right)$
 4. For $i = 1 \ldots N$
 1. Set $D_{t+1}(x_i) = D_t(x_i) \exp(- a_t y_i h_t(x_i))$
 5. Normalize D_{t+1} to make it a distribution
3. The final classifier is
 $H(x) = \text{sign}(\sum_t a_t h_t(x))$
First, some example data

\[= 0.3 \text{E}_1 - 0.6 \text{E}_2 \]
\[= 0.5 \text{E}_1 - 0.5 \text{E}_2 \]
\[= 0.7 \text{E}_1 - 0.1 \text{E}_2 \]
\[= 0.6 \text{E}_1 - 0.4 \text{E}_2 \]
\[= 0.2 \text{E}_1 + 0.4 \text{E}_2 \]
\[= -0.8 \text{E}_1 + 0.1 \text{E}_2 \]
\[= 0.4 \text{E}_1 - 0.9 \text{E}_2 \]
\[= 0.2 \text{E}_1 + 0.5 \text{E}_2 \]

Image = a*\text{E}_1 + b*\text{E}_2 \quad a = \text{Image} \cdot \text{E}_1/||\text{Image}||

- Face detection with multiple Eigen faces
- Step 0: Derived top 2 Eigen faces from eigen face training data
- Step 1: On a (different) set of examples, express each image as a linear combination of Eigen faces
 - Examples include both faces and non faces
 - Even the non-face images will are explained in terms of the eigen faces

11-755 MLSP; Bhiksha Raj
Training Data

= 0.3 E1 - 0.6 E2
= 0.5 E1 - 0.5 E2
= 0.7 E1 - 0.1 E2
= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2
= -0.8 E1 - 0.1 E2
= 0.4 E1 - 0.9 E2
= 0.2 E1 + 0.5 E2

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
</tr>
</tbody>
</table>

Face = +1
Non-face = -1
The ADABOost Algorithm

Initialize \(D_1(x_i) = 1/N \)

For \(t = 1, \ldots, T \)

- Train a weak classifier \(h_t \) using distribution \(D_t \)
- Compute total error on training data
 \[e_t = \text{Sum} \{ D_t(x_i) \cdot \frac{1}{2} (1 - y_i \cdot h_t(x_i)) \} \]
- Set \(a_t = \frac{1}{2} \ln \left(\frac{1 - e_t}{e_t} \right) \)
- For \(i = 1 \ldots N \)
 - set \(D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i)) \)
- Normalize \(D_{t+1} \) to make it a distribution

The final classifier is

\[H(x) = \text{sign}(\sum_t a_t h_t(x)) \]
Training Data

\[
\begin{align*}
\text{A} & : 0.3 \ E1 - 0.6 \ E2 & 0.2 \ E1 + 0.4 \ E2 \\
\text{B} & : 0.5 \ E1 - 0.5 \ E2 & -0.8 \ E1 - 0.1 \ E2 \\
\text{C} & : 0.7 \ E1 - 0.1 \ E2 & 0.4 \ E1 - 0.9 \ E2 \\
\text{D} & : 0.6 \ E1 - 0.4 \ E2 & 0.2 \ E1 + 0.5 \ E2
\end{align*}
\]

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The ADABOOST Algorithm

n Initialize $D_1(x_i) = 1/N$

n For $t = 1, \ldots, T$
 q Train a weak classifier h_t using distribution D_t
 q Compute total error on training data
 n $e_t = \text{Sum} \{ D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i)) \}$
 q Set $a_t = \frac{1}{2} \ln \left(\frac{e_t}{1 - e_t} \right)$
 q For $i = 1 \ldots N$
 n set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$
 q Normalize D_{t+1} to make it a distribution

n The final classifier is
 q $H(x) = \text{sign}(\sum_t a_t h_t(x))$
The E1 "Stump"

Classifier based on E1: if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 “Stump”

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

threshold

Sign = +1, error = 2/8
Sign = -1, error = 6/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 "Stump"

 Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 "Stump"

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 “Stump”

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E1 “Stump”

Classifier based on E1: if \((\text{sign} \times \text{wt}(E1) > \text{thresh}) > 0)\) then \(\text{face} = \text{true}\)

\(\text{sign} = +1 \text{ or } -1\)

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>

11-755 MLSP; Bhiksha Raj
The Best E1 "Stump"

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
 face = true

Sign = +1
Threshold = 0.45

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The E2 “Stump”

Note order: G A B D C F E H

Weight:

\[
\begin{array}{cccccccc}
-0.9 & -0.6 & -0.5 & 0.4 & -0.1 & -0.1 & 0.4 & 0.5 \\
1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 \\
\end{array}
\]

Classifier based on E2:
if \(\text{sign} \times \text{wt}(E2) > \text{thresh} \) > 0

face = true

\text{sign} = +1 \text{ or } -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The Best E2 “Stump”

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
 face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The Best “Stump”

The Best overall classifier based on a single feature is based on E1

If \(\text{wt}(E1) > 0.45 \) Face

Sign = +1, error = 1/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>
The ADABoost Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 \[e_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\} \]
 - Set $a_t = \frac{1}{2} \ln \left(\frac{e_t}{1 - e_t} \right)$
 - For $i = 1 \ldots N$
 - Set $D_{t+1}(x_i) = D_t(x_i) \exp(- a_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 \[H(x) = \text{sign}(\sum_t a_t h_t(x)) \]
The Best Error

The Error of the classifier is the sum of the weights of the misclassified instances

Sign = +1, error = 1/8

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8</td>
</tr>
</tbody>
</table>

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED INSTANCES
The ADABoost Algorithm

Initialize $D_1(x_i) = 1/N$

For $t = 1, \ldots, T$

- Train a weak classifier h_t using distribution D_t
- Compute total error on training data
 $$e_t = \text{Sum} \{D_t(x_i) \frac{1}{2}(1 - y_i h_t(x_i))\}$$
 Set $a_t = \frac{1}{2} \ln \left(\frac{1 - e_t}{e_t} \right)$

- For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(- a_t y_i h_t(x_i))$
- Normalize D_{t+1} to make it a distribution

The final classifier is

$$H(x) = \text{sign}(\sum_{t} a_t h_t(x))$$
Computing Alpha

\[
\begin{array}{cccccccc}
F & E & H & A & G & B & C & D \\
-0.8 & 0.2 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 \\
1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 \\
\end{array}
\]

\[
\text{Alpha} = 0.5 \ln \left(\frac{1 - 1/8}{1/8} \right) = 0.5 \ln(7) = 0.97
\]

Sign = +1, error = 1/8
The Boosted Classifier Thus Far

F E H A G B C D
-0.8 0.2 0.2 0.3 0.4 0.5 0.6 0.7
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Threshold
Sign = +1, error = 1/8

\[\text{Alpha} = 0.5 \ln \left(\frac{1 - 1/8}{1/8} \right) = 0.5 \ln(7) = 0.97 \]

\[h_1(X) = \text{wt}(E_1) > 0.45 ? +1 : -1 \]

\[H(X) = \text{sign}(0.97 \times h_1(X)) \]

It's the same as \(h_1(x) \)
The ADABoost Algorithm

1. Initialize $D_1(x_i) = 1/N$

2. For $t = 1, \ldots, T$
 a. Train a weak classifier h_t using distribution D_t
 b. Compute total error on training data
 \[e_t = \text{Average} \{\frac{1}{2} (1 - y_i h_t(x_i))\} \]
 c. Set $a_t = \frac{1}{2} \ln \left(\frac{(1 - e_t)}{e_t}\right)$
 d. For $i = 1 \ldots N$
 \[\text{set } D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i)) \]
 e. Normalize D_{t+1} to make it a distribution

3. The final classifier is
 \[H(x) = \text{sign}\left(S_t \ a_t \ h_t(x)\right) \]
The Best Error

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
The ADABoost Algorithm

1. Initialize $D_1(x_i) = 1/N$
2. For $t = 1, \ldots, T$
 a. Train a weak classifier h_t using distribution D_t
 b. Compute total error on training data
 $e_t = \text{Average} \left\{ \frac{1}{2} \left(1 - y_i h_t(x_i) \right) \right\}$
 c. Set $a_t = \frac{1}{2} \ln \left(\frac{1 - e_t}{e_t} \right)$
 d. For $i = 1 \ldots N$
 a. Set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$
 e. Normalize D_{t+1} to make it a distribution
3. The final classifier is
 $H(x) = \text{sign} \left(\sum_t a_t h_t(x) \right)$
The Best Error

\[D' = \frac{D}{\text{sum}(D)} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>1/8 * 2.63</td>
<td>0.33</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>1/8 * 0.38</td>
<td>0.05</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0
The Best Error

\[D' = D / \text{sum}(D) \]

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2.</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0
The ADABOOST Algorithm

- Initialize $D_1(x_i) = 1/N$
- For $t = 1, \ldots, T$
 - Train a weak classifier h_t using distribution D_t
 - Compute total error on training data
 - $e_t = \text{Average} \{1/2 (1 - y_i h_t(x_i))\}$
 - Set $a_t = 1/2 \ln(e_t/(1 - e_t))$
 - For $i = 1 \ldots N$
 - set $D_{t+1}(x_i) = D_t(x_i) \exp(-a_t y_i h_t(x_i))$
 - Normalize D_{t+1} to make it a distribution
- The final classifier is
 - $H(x) = \text{sign}(\sum_t a_t h_t(x))$
E1 classifier

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
E1 classifier

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>

11-755 MLSP; Bhiksha Raj
The Best E1 classifier

Classifier based on E1: if (sign*wt(E1) > thresh) > 0)
 face = true
sign = +1 or -1

Sign = +1, error = 0.074

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
The Best E2 classifier

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)
 face = true

sign = +1 or -1

Sign = -1, error = 0.148

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
The Best Classifier

Classifier based on E1: if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

\[
\text{Weight} = 0.5\ln(1-0.074) / 0.074 = 1.26
\]

ID E1 E2 Class Weight

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074</td>
</tr>
</tbody>
</table>
The Boosted Classifier Thus Far

\[h_1(X) = \text{wt}(E_1) > 0.45 \ ? \ +1 \ : \ -1 \]

\[h_2(X) = \text{wt}(E_1) > 0.25 \ ? \ +1 \ : \ -1 \]

\[H(X) = \text{sign}(0.97 \ * \ h_1(X) + 1.26 \ * \ h_2(X)) \]
Reweighting the Data

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48*0.1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074*10</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074*0.1</td>
</tr>
</tbody>
</table>

Exp(\(\alpha\)) = \(\exp(2.36) = 10\)
Exp(-\(\alpha\)) = \(\exp(-2.36) = 0.1\)

Sign = +1, error = 0.074

11-755 MLSP; Bhiksha Raj
Reweighting the Data

NOTE: THE WEIGHT OF “G” WHICH WAS MISCLASSIFIED BY THE SECOND CLASSIFIER IS NOW SUDDENLY HIGH

Sign = +1, error = 0.074

<table>
<thead>
<tr>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>Class</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3</td>
<td>-0.6</td>
<td>+1</td>
<td>0.48*0.1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>-0.5</td>
<td>+1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>-0.1</td>
<td>+1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>-0.4</td>
<td>+1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.4</td>
<td>-1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>F</td>
<td>-0.8</td>
<td>0.1</td>
<td>-1</td>
<td>0.074*0.1</td>
</tr>
<tr>
<td>G</td>
<td>0.4</td>
<td>-0.9</td>
<td>-1</td>
<td>0.074*10</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0.074*0.1</td>
</tr>
</tbody>
</table>
AdaBoost

- In this example both of our first two classifiers were based on E1
 - Additional classifiers may switch to E2
- In general, the reweighting of the data will result in a different feature being picked for each classifier
 - This also automatically gives us a feature selection strategy
 - In this data the wt(E1) is the most important feature
AdaBoost

- NOT required to go with the best classifier so far
- For instance, for our second classifier, we might use the best E2 classifier, even though its worse than the E1 classifier
 - So long as its right more than 50% of the time

- We can *continue* to add classifiers even after we get 100% classification of the training data
 - Because the weights of the data keep changing
 - Adding new classifiers beyond this point is often a good thing to do
ADA Boost

The final classifier is

\[H(x) = \text{sign}(S_t \sum_t h_t(x)) \]

The output is 1 if the total weight of all weak learners that classify \(x \) as 1 is greater than the total weight of all weak learners that classify it as -1.
Boosting forms the basis of the most common technique for face detection today: The Viola-Jones algorithm.
The problem of face detection

Defining Features
- Should we be searching for noses, eyes, eyebrows etc.?
 - Nice, but expensive
 - Or something simpler

Selecting Features
- Of all the possible features we can think of, which ones make sense

Classification: Combining evidence
- How does one combine the evidence from the different features?
Features: The Viola Jones Method

Integral Features!!

- Like the Checkerboard

The same principle as we used to decompose images in terms of checkerboards:

- The image of any object has changes at various scales
- These can be represented coarsely by a checkerboard pattern

The checkerboard patterns must however now be *localized*
- Stay within the region of the face

Image \(\sum w_i B_i \)
Features

- Checkerboard Patterns to represent facial features
 - The white areas are subtracted from the black ones.
 - Each checkerboard explains a localized portion of the image
- Four types of checkerboard patterns (only)

![Checkerboard Patterns Diagram](image)
“Integral” features

Each checkerboard has the following characteristics:
- Length
- Width
- Type
 - Specifies the number and arrangement of bands

The four checkerboards above are the four used by Viola and Jones
Explaining a portion of the face with a checker..

How much is the difference in average intensity of the image in the black and white regions

\[\text{Sum(pixel values in white region)} - \text{Sum(pixel values in black region)} \]

This is actually the dot product of the region of the face covered by the rectangle and the checkered pattern itself

White = 1, Black = -1
Integral images

- Summed area tables

For each pixel store the sum of ALL pixels to the left of and above it.
Fast Computation of Pixel Sums

Figure 3: The sum of the pixels within rectangle D can be computed with four array references. The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is $A + B$, at location 3 is $A + C$, and at location 4 is $A + B + C + D$. The sum within D can be computed as $4 + 1 - (2 + 3)$.

11-755 MLSP; Bhiksha Raj
A Fast Way to Compute the Feature

- Store pixel table for every pixel in the image
 - The sum of all pixel values to the left of and above the pixel
- Let A, B, C, D, E, F be the pixel table values at the locations shown
 - Total pixel value of black area = D + A − B − C
 - Total pixel value of white area = F + C − D − E
 - Feature value = (F + C − D − E) − (D + A − B − C)
How many features?

Each checker board of width P and height H can start at

$(0,0), (0,1),(0,2), \ldots \ (0, \ N-P)$

$(1,0), \ (1,1),(1,2), \ldots \ (1, N-P)$

\ldots

$(M-H,0), (M-H,1), (M-H,2), \ldots \ (M-H, N-P)$

$(M-H)*(N-P)$ possible starting locations

Each is a unique checker feature

E.g. at one location it may measure the forehead, at another the chin
How many features

Each feature can have many sizes
- Width from (min) to (max) pixels
- Height from (min ht) to (max ht) pixels

At each size, there can be many starting locations
- Total number of possible checkerboards of one type:
 No. of possible sizes x No. of possible locations

There are four types of checkerboards
- Total no. of possible checkerboards: VERY VERY LARGE!
Learning: No. of features

- Analysis performed on images of 24x24 pixels only
 - Reduces the no. of possible features to about 180000

- Restrict checkerboard size
 - Minimum of 8 pixels wide
 - Minimum of 8 pixels high
 - Other limits, e.g. 4 pixels may be used too
 - Reduces no. of checkerboards to about 50000
Each possible checkerboard gives us one feature

A total of up to 180000 features derived from a 24x24 image!

Every 24x24 image is now represented by a set of 180000 numbers

This is the set of features we will use for classifying if it is a face or not!
The Viola-Jones algorithm uses a simple Boosting based classifier.

Each “weak learner” is a simple threshold.

At each stage find the best feature to classify the data with:

1. The feature that gives us the best classification of all the training data.
 - Training data includes many examples of faces and non-face images.

2. The classification rule is of the kind:
 - If feature > threshold, face (or if feature < threshold, face).
 - The optimal value of “threshold” must also be determined.
The Weak Learner

Training (for each weak learner):

- For each feature \(f \) (of all 180000 features)
 - Find a threshold \(q(f) \) and polarity \(p(f) \) (\(p(f) = -1 \) or \(p(f) = 1 \)) such that \((f > p(f) \cdot q(f)) \) performs the best classification of faces
 - Lowest overall error in classifying all training data
 - Error counted over weighted samples
 - Let the optimal overall error for \(f \) be \(\text{error}(f) \)

- Find the feature \(f' \) such that \(\text{error}(f') \) is lowest
- The weak learner is the test \((f' > p(f') \cdot q(f')) \Rightarrow \text{face} \)

Note that the procedure for learning weak learners also identifies the most useful features for face recognition.
The Viola Jones Classifier

- A boosted threshold-based classifier

- First weak learner: Find the best feature, and its optimal threshold

- Second weak learner: Find the best feature, for the weighted training data, and its threshold (weighting from one weak learner)

- Third weak learner: Find the best feature for the reweighted data and its optimal threshold (weighting from two weak learners)

- Fourth weak learner: Find the best feature for the reweighted data and its optimal threshold (weighting from three weak learners)
To Train

- Collect a large number of histogram equalized facial images
 - Resize all of them to 24x24
 - These are our “face” training set

- Collect a much much much much larger set of 24x24 non-face images of all kinds
 - Each of them is histogram equalized
 - These are our “non-face” training set

- Train a boosted classifier
The Viola Jones Classifier

During tests:

- Given any new 24x24 image

 \[H(f) = \text{Sign}(S_{f} a_{f} (f > p_{f} q(f))) \]

- Only a small number of features (f < 100) typically used

Problems:

- Only classifies 24 x 24 images entirely as faces or non-faces

 - Typical pictures are much larger

 - They may contain many faces

 - Faces in pictures can be much larger or smaller

- Not accurate enough
Multiple faces in the picture

Scan the image
- Classify each 24x24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face

For an NxM picture, we will perform (N-24)*(M-24) classifications

If overlapping 24x24 rectangles are found to have faces, merge them
Multiple faces in the picture

- Scan the image
 - Classify each 24x24 rectangle from the photo
 - All rectangles that get classified as having a face indicate the location of a face
- For an NxM picture, we will perform (N-24)*(M-24) classifications
- If overlapping 24x24 rectangles are found to have faces, merge them
Multiple faces in the picture

Scan the image
- Classify each 24x24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face

For an N\times M picture, we will perform \((N-24)\times(M-24)\) classifications

If overlapping 24x24 rectangles are found to have faces, merge them
Multiple faces in the picture

Scan the image
- Classify each 24x24 rectangle from the photo
- All rectangles that get classified as having a face indicate the location of a face

For an NxM picture, we will perform \((N-24)\times(M-24)\) classifications

If overlapping 24x24 rectangles are found to have faces, merge them
Face size solution

- We already have a classifier
 - That uses weak learners
- **Scale each classifier**
 - Every weak learner
 - Scale its size up by factor a. Scale the threshold up to a^2q.
 - Do this for many scaling factors
Overall solution

- Scan the picture with classifiers of size 24x24
- Scale the classifier to 26x26 and scan
- Scale to 28x28 and scan etc.

- Faces of different sizes will be found at different scales
False Rejection vs. False detection

- False Rejection: There’s a face in the image, but the classifier misses it
 - Rejects the hypothesis that there’s a face
- False detection: Recognizes a face when there is none.

Classifier:
- Standard boosted classifier: $H(x) = \text{sign}(s_t \alpha_t h_t(x))$
- Modified classifier $H(x) = \text{sign}(s_t \alpha_t h_t(x) + Y)$
 - Y is a bias that we apply to the classifier.
 - If Y is large, then we assume the presence of a face even when we are not sure
- By increasing Y, we can reduce false rejection, while increasing false detection
 - Many instances for which $s_t \alpha_t h_t(x)$ is negative get classified as faces
Ideally false rejection will be 0%, false detection will also be 0%

As Y increases, we reject faces less and less

But accept increasing amounts of garbage as faces

Can set Y so that we rarely miss a face
Problem: Not accurate enough, too slow

If we set Y high enough, we will never miss a face

But will classify a lot of junk as faces

Solution: Classify the output of the first classifier with a second classifier

And so on.
Cascaded Classifiers

- Build the first classifier to have near-zero false rejection rate
 - But will reject a large number of non-face images
Cascaded Classifiers

- Build the first classifier to have near-zero false rejection rate
 - But will reject a large number of non-face images
- Filter all training data with this classifier
- Build a second classifier on the data that have been passed by the first classifier, to have near-zero false rejection rate
 - This classifier will be different from the first one
 - Different data set
Cascaded Classifiers

- Build the first classifier to have near-zero false rejection rate
 - But will reject a large number of non-face images
- Filter all training data with this classifier
- Build a second classifier on the data that have been passed by the first classifier, to have near-zero false rejection rate
 - This classifier will be different from the first one
 - Different data set
- Filter all training data with the cascade of the first two classifiers
- Build a third classifier on data passed by the cascade...
 - And so on..
Final Cascade of Classifiers
Useful Features Learned by Boosting
Detection in Real Images

- Basic classifier operates on 24 x 24 subwindows

- Scaling:
 - Scale the detector (rather than the images)
 - Features can easily be evaluated at any scale
 - Scale by factors of 1.25

- Location:
 - Move detector around the image (e.g., 1 pixel increments)

- Final Detections
 - A real face may result in multiple nearby detections
 - Postprocess detected subwindows to combine overlapping detections into a single detection
Training

- In paper, 24x24 images of faces and non-faces (positive and negative examples).
Sample results using the Viola-Jones Detector

- Notice detection at multiple scales
More Detection Examples
Practical implementation

- Details discussed in Viola-Jones paper

- Training time = weeks (with 5k faces and 9.5k non-faces)

- Final detector has 38 layers in the cascade, 6060 features

- 700 Mhz processor:
 - Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)
Uncorrelated vs. Independence

Left panel: What does the value of X tell you about the average value of Y?

But what does X tell you about the distribution of Y?

Right panel: What does the value of X tell you about the average value of Y?

What about the distribution?

X and Y are independent!
Independent component analysis

Pick “basis” vectors such that projections along one tell you *nothing* about projections along another

- Not merely such that they do not tell you anything about the average value

These represent “independent” factors that compose the data

- E.g. knowing where one note occurs in music tells you nothing about where another note occurs

- These are independent factors
Non-negative Matrix Factorization

Some times components only add
- Notes in a piece of music are purely additive
- Playing one note will not cancel out another that is simultaneously played

PCA / Eigen analysis result in bases that combine both additively and subtractively
- E.g. for the piece of music above, the first eigen vector includes frequencies that are not in the first note. They must be subtracted out by subsequent eigen vectors
Non-negative Matrix Factorization

- NMF will give you *purely additive* bases
 - Bases will be non-negative
 - They will only add and never subtract
- For the music above this *automatically* discovers the notes
Multi-Dimensional Scaling

Given only the distances between data, how do you find their locations in some N-dimensional space?

The distances may be from anything:
- KL distances, counts, etc.
MDS for dimensionality reduction

- Given vectors with very large dimensionality
 - E.g. spectral vectors: 1025 components (frequencies)
 - Images: 10000 components (pixels)
- Compute for each vector Y a new low-dimensional vector Y' such that the distances between vectors is preserved
 - Compute distances between all vector pairs
 - Employ MDS to get new low-dimensional vectors
- E.g. 100 dimensions instead of 10000
Additional Topics

- Covered later as required