Introduction

Signal representation

Class 1. 25 August 2009

Instructor: Bhiksha Raj
What is a signal

- A mechanism for conveying information
 - Semaphores, gestures, traffic lights...

- Electrical engineering: currents, voltages

- Digital signals: Ordered collections of numbers that convey information
 - from a source to a destination
 - about a real world phenomenon
 - Sounds, images
Signal Examples: Audio

- A sequence of numbers
 - \([n_1 \ n_2 \ n_3 \ n_4 \ldots]\)
 - The order in which the numbers occur is important
 - Ordered
 - Represent a perceivable sound
Example: Images

- A rectangular arrangement (matrix) of numbers
 - Or sets of numbers (for color images)
- Each pixel represents a visual representation of one of these numbers
 - 0 is minimum / black, 1 is maximum / white
 - Position / order is important

Pixel = 0.5
What is Signal Processing

- Analysis, Interpretation, and Manipulation of signals.
 - Decomposition: Fourier transforms, wavelet transforms
 - Denoising signals
 - Coding: GSM, LPC, Mpeg, Ogg Vorbis
 - Detection: Radars, Sonars
 - Pattern matching: Biometrics, Iris recognition, finger print recognition
 - Etc.
What is Machine Learning

- The science that deals with the development of algorithms that can learn from data
 - Learning patterns in data
 - Automatic categorization of text into categories; Market basket analysis
 - Learning to classify between different kinds of data
 - Spam filtering: Valid email or junk?
 - Learning to predict data
 - Weather prediction, movie recommendation
- Statistical analysis and pattern recognition when performed by a computer scientist..
MLSP

- The application of Machine Learning techniques to the analysis of signals such as audio, images and video
- Learning to characterize signals in a data driven manner
 - What are they composed of?
 - Can we automatically deduce that the fifth symphony is composed of notes?
 - Can we segment out components of images?
 - Can we learn the \textit{sparsest} way to represent any signal
- Learning to \textit{detect} signals
 - Radars. Face detection. Speaker verification
- Learning to \textit{recognize} themes in signals
 - Face recognition. Speech recognition.
- Learning to: interpret; optimally represent \textit{etc}

- In some sense, a combination of signal processing and machine learning
 - But also includes \textit{learning based} methods (as opposed to deterministic methods) for data analysis
IEEE Signal Processing Society has an MLSP committee:

- The Machine Learning for Signal Processing Technical Committee (MLSP TC) is at the interface between theory and application, developing novel theoretically-inspired methodologies targeting both longstanding and emergent signal processing applications. Central to MLSP is online/adaptive nonlinear signal processing and data-driven learning methodologies. Since application domains provide unique problem constraints/assumptions and thus motivate and drive signal processing advances, it is only natural that MLSP research has a broad application base. MLSP thus encompasses new theoretical frameworks for statistical signal processing (e.g. machine learning-based and information-theoretic signal processing), new and emerging paradigms in statistical signal processing (e.g. independent component analysis (ICA), kernel-based methods, cognitive signal processing) and novel developments in these areas specialized to the processing of a variety of signals, including audio, speech, image, multispectral, industrial, biomedical, and genomic signals.
MLSP: Fast growing field

- IEEE Workshop on Machine Learning for Signal Processing
 - Held this year in Grenoble, Fr. Sep 2-4, http/mlsp2009.conwiz.dk/
 - MLSP 2010 is to be held in Lapland

- Used everywhere
 - Biometrics: Face recognition, speaker identification
 - User interfaces: Gesture based UIs, voice-based retrieval voice UIs, music retrieval
 - Data capture: Optical character recognition. Compressive sensing
 - Network traffic analysis: Routing algorithms for bits and vehicular traffic

- Synergy with other topics (text / genome)
In this Course

- Jetting through fundamentals:
 - Signal Processing, Linear Algebra, Probability

- Sounds:
 - Characterizing sounds
 - Denoising speech
 - Synthesizing speech
 - Separating sounds in mixtures
 - Processing music.

- Images:
 - Characterization
 - Denoising
 - Object detection and recognition
 - Face recognition
 - Biometrics

- Representation:
 - Transform methods
 - Compressive sensing.

- Topics covered are representative
 - Actual list to be covered may change, depending on how the course progresses
Required Background

- DSP
 - Fourier transforms, linear systems, basic statistical signal processing

- Linear Algebra
 - Definitions, vectors, matrices, operations, properties

- Probability
 - Basics: what is a random variable, probability distributions, functions of a random variable

- Machine learning
 - Learning, modelling and classification techniques
Several guest lectures by experts in the topics

- Alan Black (CMU)
 - Statistical speech synthesis
 - Voice morphing
- Tuomas Virtanen (Tampere)
 - Non-negative matrix factorization
 - Signal separation
- Paris Smaragdis (Adobe)
 - Independent Component Analysis
- Mosur Ravishankar (CMU)
 - Speech Recognition
- Petros Boufounos (Mitsubishi)
 - Compressive Sensing
Guest Lectures

- Several guest lectures by experts in the topics
 - Fernando de la Torre (CMU)
 - Data representations
 - Rahul Sukhtankar (Intel)
 - Music similarity
 - Iain Matthews (Disney)
 - Active Appearance Models
 - Prof. Vijaya Kumar (CMU)
 - IRIS recognition

- Subject to change
 - Guest lecturers are notorious for having schedule changes 😊
 - If the guest lecturer is unavailable, the topic will be covered by me
Schedule of Other Lectures

- Aug 27: Linear algebra refresher
- Sep 1: Representing sounds and images (DSP)
- Sep 3: Clustering, GMM, HMM, CART
- **WEEK OF SEPTEMBER 5th – NO CLASS**
- Sep 15: Denoising speech signals. Signal separation
- Sep 22: Speaker Identification
- Sep 29: Project ideas. If time allows, TBD
- Oct 8: Shift and transform invariant decomposition.
- Oct 20: Face/object detection.
- Nov 17: Array processing basics.
- Nov 19: Array processing, ML approaches.
Grading

- Homework assignments: 50%
 - Mini projects
 - Will be assigned during course
 - 3 in all
- Final project: 50%
 - Will be assigned early in course
 - Final project presentation (20 minutes, with possible demo)
Projects

- Change-point detection
- Speech synthesis
 - Multiple problems
- Speech dereverberation
- Audio/Video diarization
- Music/Song similarity
- Building 3-D faces from varied pose data
- Detecting correspondence across view points
- Speaker tracking..
Instructor and TA

- Instructor: Prof. Bhiksha Raj
 - Room 6705 Hillman Building
 - bhiksha@cs.cmu.edu
 - 412 268 9826

- TA: TBD

- Office Hours:
 - Bhiksha Raj: Friday 2:00-3:00
 - TA: TBD
 - Available by email: bhiksha@cs.cmu.edu
Additional Administrivia

- **Website:**
 - http://mlsp.cs.cmu.edu
 - Lecture material will be posted on the day of each class on the website
 - Reading material – will be specified in the lecture
 - Will be put up on website
 - Pointers to additional info

- **Discussion board**
 - blackboard.andrew.cmu.edu/
Representing Data

- Audio

- Images
 - Video

- Other types of signals
 - In a manner similar to one of the above
What is an audio signal

- A typical audio signal
 - It’s a sequence of points
Where do these numbers come from?

- Any sound is a pressure wave: alternating highs and lows of air pressure moving through the air.
- When we speak, we produce these pressure waves:
 - Essentially by producing puff after puff of air.
 - Any sound producing mechanism actually produces pressure waves.
- These pressure waves move the eardrum:
 - Highs push it in, lows suck it out.
 - We sense these motions of our eardrum as “sound”.
SOUND PERCEPTION

[Diagram of the ear with labeled parts: Pinna, Malleus, Incus, Stapes, Semicircular canals, Auditory nerve, Cochlea, Eardrum (tympanic membrane), Oval window, Round window, Eustachian tube, External auditory canal.]
Storing pressure waves on a computer

- The pressure wave moves a diaphragm
 - On the microphone
- The motion of the diaphragm is converted to continuous variations of an electrical signal
 - Many ways to do this
- A “sampler” samples the continuous signal at regular intervals of time and stores the numbers
Are these numbers sound?

- How do we even know that the numbers we store on the computer have anything to do with speech really?
 - Recreate the sense of sound
- The numbers are used to control the levels of an electrical signal
Are these numbers sound?

- How do we even know that the numbers we store on the computer have anything to do with speech really?
 - Recreate the sense of sound
- The numbers are used to control the levels of an electrical signal
- The electrical signal moves a diaphragm back and forth to produce a pressure wave
 - That we sense as sound
How many samples a second

- Convenient to think of sound in terms of sinusoids with frequency

- Sounds may be modelled as the sum of many sinusoids of different frequencies
 - Frequency is a physically motivated unit
 - Each hair cell in our inner ear is tuned to specific frequency

- Any sound has many frequency components
 - We can hear frequencies up to 16000Hz
 - Frequency components above 16000Hz can be heard by children and some young adults
 - Nearly nobody can hear over 20000Hz.
Signal representation - Sampling

- **Sampling frequency** (or *sampling rate*) refers to the number of samples taken a second.

- Sampling is measured in Hz:
 - We need a sample rate **twice as high** as the highest frequency we want to represent (Nyquist freq).
 - For our ears this means a sample rate of at least 40kHz.
 - Cause we hear up to 20kHz.

- Common sample rates:
 - For speech 8kHz to 16kHz
 - For music 32kHz to 44.1kHz
 - Pro-equipment 96kHz
 - When in doubt use 44.1kHz
Aliasing

- Low sample rates result in aliasing
 - High frequencies are misrepresented
 - Frequency f_1 will become (sample rate – f_1)
 - In video also when you see wheels go backwards
Aliasing examples

Sinusoid sweeping from 0Hz to 20kHz

44kHz SR, is ok

22kHz SR, aliasing!

11kHz SR, double aliasing!

On real sounds
at 44kHz
at 22kHz
at 4kHz
at 11kHz
at 5kHz
at 3kHz

On images

On video

11-755 MLSP: Bhiksha Raj
Avoiding Aliasing

- Sound naturally has all perceivable frequencies
 - And then some
 - Cannot control the rate of variation of pressure waves in nature
- Sampling at *any* rate *will* result in aliasing
- Solution: *Filter the electrical signal* before sampling it
 - Cut off all frequencies above sampling frequency/2
 - E.g., to sample at 44.1Khz, filter the signal to eliminate all frequencies above 22050 Hz
Storing numbers on the Computer

- Sound is the outcome of a continuous range of variations
 - The pressure wave can take any value (within limit)
 - The diaphragm can also move continuously
 - The electrical signal from the diaphragm has continuous variations

- A computer has finite resolution
 - Numbers can only be stored to finite resolution
 - E.g. a 16-bit number can store only 65536 values, while a 4-bit number can store only 16 values
 - To store the sound wave on the computer, the continuous variation must be “mapped” on to the discrete set of numbers we can store
Mapping signals into bits

- **Example of 1-bit sampling table**

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bit sequence</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S > 2.5v$</td>
<td>1</td>
<td>$1 \times \text{const}$</td>
</tr>
<tr>
<td>$S \leq 2.5v$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Original Signal](image1.png)

![Quantized approximation](image2.png)

11-755 MLSP: Bhiksha Raj
Mapping signals into bits

Example of 2-bit sampling table

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bit sequence</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \geq 3.75v$</td>
<td>11</td>
<td>3 * const</td>
</tr>
<tr>
<td>$3.75v > S \geq 2.5v$</td>
<td>10</td>
<td>2 * const</td>
</tr>
<tr>
<td>$2.5v > S \geq 1.25v$</td>
<td>01</td>
<td>1 * const</td>
</tr>
<tr>
<td>$1.25v > S \geq 0v$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Original Signal

Quantized approximation
Storing the signal on a computer

- The original signal
- 8 bit quantization
- 3 bit quantization
- 2 bit quantization
- 1 bit quantization
Tom Sullivan Says his Name

- 16 bit sampling
- 5 bit sampling
- 4 bit sampling
- 3 bit sampling
- 1 bit sampling
A Schubert Piece

- 16 bit sampling
- 5 bit sampling
- 4 bit sampling
- 3 bit sampling
- 1 bit sampling
Sampling Formats

- Sampling can be uniform
 - Sample values equally spaced out

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \geq 3.75v$</td>
<td>11</td>
<td>3 * const</td>
</tr>
<tr>
<td>$3.75v > S \geq 2.5v$</td>
<td>10</td>
<td>2 * const</td>
</tr>
<tr>
<td>$2.5v > S \geq 1.25v$</td>
<td>01</td>
<td>1 * const</td>
</tr>
<tr>
<td>$1.25v > S \geq 0v$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Or nonuniform

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \geq 4v$</td>
<td>11</td>
<td>4.5 * const</td>
</tr>
<tr>
<td>$4v > S \geq 2.5v$</td>
<td>10</td>
<td>3.25 * const</td>
</tr>
<tr>
<td>$2.5v > S \geq 1v$</td>
<td>01</td>
<td>1.25 * const</td>
</tr>
<tr>
<td>$1.0v > S \geq 0v$</td>
<td>0</td>
<td>0.5 * const</td>
</tr>
</tbody>
</table>
Uniform Sampling

UPON BEING SAMPLED AT ONLY 3 BITS (8 LEVELS)
Uniform Sampling

- At the sampling instant, the actual value of the waveform is rounded off to the nearest level permitted by the quantization.
- Values entirely outside the range are quantized to either the highest or lowest values.
Uniform Sampling

- There is a lot more action in the central region than outside.
- Assigning only four levels to the busy central region and four entire levels to the sparse outer region is inefficient.
- Assigning more levels to the central region and less to the outer region can give better fidelity.
 - for the same storage.
Assigning more levels to the central region and less to the outer region can give better fidelity for the same storage.
Assigning more levels to the central region and less to the outer region can give better fidelity for the same storage.
Non-uniform Sampling

- At the sampling instant, the actual value of the waveform is rounded off to the nearest level permitted by the quantization.
- Values entirely outside the range are quantized to either the highest or lowest values.
Non-uniform Sampling

- Uniform sampling maps uniform widths of the analog signal to units steps of the quantized signal.
- In non-uniform sampling the step sizes are smaller near 0 and wider farther away.
 - The curve that the steps are drawn on follow a logarithmic law:
 - Mu Law: \(Y = C \frac{\log(1 + \mu X/C)}{1+\mu} \)
 - A Law: \(Y = C \frac{1 + \log(aX)/C}{1+a} \)
- One can get the same perceptual effect with 8bits of non-linear sampling as 12bits of linear sampling.
Storage based on prediction

- “Predict” the next sample and store the difference between the value we predict and what we actually see using a small number of bits.
- To reconstruct, predict the next sample and add the stored difference back in.
- Variety of formats: DPCM, ADPCM.
- Coding schemes: LPC based methods (G728,G729), Mpeg, Ogg Vorbis, …
Dealing with audio

- Capture / read audio in the format provided by the file or hardware
 - Linear PCM, Mu-law, A-law, Coded
- Convert to 16-bit PCM value
 - I.e. map the bits onto the number on the right column
 - This mapping is typically provided by a table computed from the sample compression function
 - No lookup for data stored in PCM
- Conversion from Mu law:
 - http://www.speech.cs.cmu.edu/comp.speech/Section2/Q2.7.html

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S >= 3.75v</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>3.75v > S >= 2.5v</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>2.5v > S >= 1.25v</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>1.25v > S >= 0v</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Value</th>
<th>Bits</th>
<th>Mapped to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S >= 4v</td>
<td>11</td>
<td>4.5</td>
</tr>
<tr>
<td>4v > S >= 2.5v</td>
<td>10</td>
<td>3.25</td>
</tr>
<tr>
<td>2.5v > S >= 1v</td>
<td>01</td>
<td>1.25</td>
</tr>
<tr>
<td>1.0v > S >= 0v</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Common Audio Capture Errors

- **Gain/Clipping**: High gain levels in A/D can result in distortion of the audio.

- **Antialiasing**: If the audio is sampled at N kHz, it *must* first be low-pass filtered at < N/2 kHz.
 - Otherwise, high-frequency components will alias into lower frequencies and distort them.
Images
The Eye

The Retina

http://www.brad.ac.uk/acad/lifesci/optometry/resources/modules/stage1/pvp1/Retina.html
Rods and Cones

- Separate Systems
- Rods
 - Fast
 - Sensitive
 - predominate in the periphery
- Cones
 - Slow
 - Not so sensitive
 - Fovea / Macula
 - COLOR!
The density of cones is highest at the fovea
- The region immediately surrounding the fovea is the macula
 - The most important part of your eye: damage == blindness
- Peripheral vision is almost entirely black and white
Spatial Arrangement of the Retina

3.4 THE SPATIAL MOSAIC OF THE HUMAN CONES. Cross sections of the human retina at the level of the inner segments showing (A) cones in the fovea, and (B) cones in the periphery. Note the size difference (scale bar = 10 μm), and that, as the separation between cones grows, the rod receptors fill in the spaces. (C) Cone density plotted as a function of distance from the center of the fovea for seven human retinas; cone density decreases with distance from the fovea. Source: Curcio et al., 1990.

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
Three Types of Cones (trichromatic vision)

![Graph showing normalized response vs wavelength in nm for three types of cones.](image)
Trichromatic Vision

- So-called “blue” light sensors respond to an entire range of frequencies
 - Including in the so-called “green” and “red” regions
- The difference in response of “green” and “red” sensors is small
 - Varies from person to person
 - Each person really sees the world in a different color
 - If the two curves get too close, we have color blindness
 - Ideally traffic lights should be red and blue
White Light
Response to White Light
Response to White Light
Response to Sparse Light
Response to Sparse Light
The same intensity of monochromatic light will result in different *perceived* brightness at different wavelengths.

Many combinations of wavelengths can produce the same sensation of colour.

Yet humans can distinguish 10 *million* colours.
Utilize trichromatic nature of human vision
- Sufficient to trigger each of the three cone types in a manner that produces the sensation of the desired color
 - A *tetrachromatic* animal would be very confused by our computer images
 - Some new-world monkeys are tetrachromatic
- The three “chosen” colors are red (650nm), green (510nm) and blue (475nm)
 - By appropriate combinations of these colors, the cones can be excited to produce a very large set of colours
 - Which is still a small fraction of what we can actually see
 - How many colours? ...
The “CIE” colour space

- From experiments done in the 1920s by W. David Wright and John Guild
 - Subjects adjusted x, y, and z on the right of a circular screen to match a colour on the left

- X, Y and Z are normalized responses of the three sensors
 - X + Y + Z is 1.0
 - Normalized to have total net intensity

- The image represents all colours a person can see
 - The outer curved locus represents monochromatic light
 - X, Y and Z as a function of λ
 - The lower line is the line of purples
 - End of visual spectrum

- The CIE chart was updated in 1960 and 1976
 - The newer charts are less popular
What is displayed

- The RGB triangle
 - Colours outside this area cannot be matched by combining only 3 colours
 - Any other set of monochromatic colours would have a differently restricted area
 - TV images can never be like the real world

- Each corner represents the (X,Y,Z) coordinate of one of the three “primary” colours used in images

- In reality, this represents a very tiny fraction of our visual acuity
 - Also affected by the quantization of levels of the colours
Representing Images on Computers

- **Greyscale**: a single matrix of numbers
 - Each number represents the intensity of the image at a specific location in the image
 - Implicitly, R = G = B at all locations

- **Color**: 3 matrices of numbers
 - The matrices represent different things in different representations
 - **RGB Colorspace**: Matrices represent intensity of Red, Green and Blue
 - **CMYK Colorspace**: Cyan, Magenta, Yellow
 - **YIQ Colorspace**..
Computer Images: Grey Scale

R = G = B. Only a single number need be stored per pixel

Picture Element (PIXEL)
Position & gray value (scalar)
What we see

What the computer “sees”
Image Histograms

Number of pixels having that brightness

Image brightness
Example histograms

From: Digital Image Processing, by Gonzales and Woods, Addison Wesley, 1992
Pixel operations

- New value is a function of the old value
 - Tonescale to change image brightness
 - Threshold to reduce the information in an image
 - Colorspace operations
J = 1.5*I
\[J = 0.5 \times I \]
$J = \text{uint8}(0.75*I)$
What’s this?
Non-Linear Darken
Non-Linear Lighten
Linear vs. Non-Linear
Color Images

Picture Element (PIXEL)
Position & color value (red, green, blue)

11-755 MLSP: Bhiksha Raj
RGB Representation

original
RGB Manipulation Example: Color Balance
The CMYK color space

- Represent colors in terms of cyan, yellow and magenta
- The “K” stands for “Key”, not “black”
CMYK is a *subtractive* representation

- RGB is based on *composition*, i.e. it is an additive representation
 - Adding equal parts of red, green and blue creates white
- CMYK is based on *masking*, i.e. it is subtractive
 - The base is white
 - Masking it with equal parts of C, M and Y creates Black
 - Masking it with C and Y creates Green
 - Yellow masks blue
 - Masking it with M and Y creates Red
 - Magenta masks green
 - Masking it with M and C creates Blue
 - Cyan masks green
 - Designed specifically for *printing*
 - As opposed to rendering
 - What happens when you mix red, green and blue paint?
 - Clue – paint colouring is subtractive..
An Interesting Aside

- Paints create subtractive coloring
 - Each paint masks out some colours
 - Mixing paint subtracts combinations of colors
 - Paintings represent subtractive colour masks

- In the 1880s Georges-Pierre Seurat pioneered an *additive-colour* technique for painting based on “pointilism”
 - How do you think he did it?
NTSC color components

Y = “luminance”
I = “red-green”
Q = “blue-yellow”

a.k.a. YUV although YUV is actually the color specification for PAL video
YIQ Color Space

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} =
\begin{bmatrix}
.299 & .587 & .114 \\
.596 & -.275 & -.321 \\
.212 & -.523 & .311
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

11-755 MLSP: Bhiksha Raj
Color Representations

- Y value lies in the same range as R,G,B ([0,1])
- I is to [-0.59 0.59]
- Q is limited to [-0.52 0.52]
- Takes advantage of lower human sensitivity to I and Q axes
YIQ

- Top: Original image
- Second: Y
- Third: I (displayed as red-cyan)
- Fourth: Q (displayed as green-magenta)

- Processing (e.g. histogram equalization) only needed on Y
 - In RGB must be done on all three colors. Can distort image colors
 - A black and white TV only needs Y
Bandwidth (transmission resources) for the components of the television signal

Understanding image perception allowed NTSC to add color to the black and white television signal. The eye is more sensitive to I than Q, so lesser bandwidth is needed for Q. Both together used much less than Y, allowing for color to be added for minimal increase in transmission bandwidth.
Hue, Saturation, Value

The HSV Colour Model By Mark Roberts
http://www.cs.bham.ac.uk/~mer/colour/hsv.html

\[V = [0,1], \ S = [0,1] \]
\[H = [0,360] \]
HSV

- **V** = Intensity
 - 0 = Black
 - 1 = Max (white at S = 0)

- **S** = 1:
 - As H goes from 0 (Red) to 360, it represents a different combinations of 2 colors

- As S->0, the color components from the opposite side of the polygon increase

\[
V = [0,1], \quad S = [0,1] \\
H = [0,360]
\]
Hue, Saturation, Value

\[h = \begin{cases}
0, & \text{if } \max = \min \\
(60^\circ \times \frac{g-b}{\max - \min} + 360^\circ) \mod 360^\circ, & \text{if } \max = r \\
60^\circ \times \frac{b-r}{\max - \min} + 120^\circ, & \text{if } \max = g \\
60^\circ \times \frac{r-g}{\max - \min} + 240^\circ, & \text{if } \max = b
\end{cases} \]

\[s = \begin{cases}
0, & \text{if } \max = 0 \\
\frac{\max - \min}{\max} = 1 - \frac{\min}{\max}, & \text{otherwise}
\end{cases} \]

\[v = \max \]

\textit{Max} is the maximum of (R,G,B) \\
\textit{Min} is the minimum of (R,G,B)
HSV

- Top: Original image
- Second H (assuming S = 1, V = 1)
- Third S (H=0, V=1)
- Fourth V (H=0, S=1)
Quantization and Saturation

- Captured images are typically quantized to N-bits
- Standard value: 8 bits
- 8-bits is not very much < 1000:1
- Humans can easily accept 100,000:1
- And most cameras will give you 6-bits anyway…
Saturation
Processing Colour Images

- Typically work only on the Grey Scale image
 - Decode image from whatever representation to RGB
 - \(GS = R + G + B \)
- The Y of YIQ may also be used
 - Y is a linear combination of R, G and B
- For specific algorithms that deal with colour, individual colours may be maintained
 - Or any linear combination that makes sense may be maintained.
Reference Info

- Many books
 - Digital Image Processing, by Gonzales and Woods, Addison Wesley, 1992
 - Spoken Language Processing: A Guide to Theory, Algorithm and System Development, by Xuedong Huang, Alex Acero and Hsiao-Wuen Hon