! MachineLeaming For SignalProcwing_ Group

Training Neural Networks:
Optimization: Part 2

Intro to Deep Learning, Spring 2019

Story so far

SGD: Presenting training instances one-at-a-time can be more effective
than full-batch training

— Provided they are provided in random order

For SGD to converge, the learning rate must shrink sufficiently rapidly with
iterations

— Otherwise the learning will continuously “chase” the latest sample

SGD estimates have higher variance than batch estimates

Minibatch updates operate on batches of instances at a time
— Estimates have lower variance than SGD
— Convergence rate is theoretically worse than SGD
— But we compensate by being able to perform batch processing

Training and minibatches

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error
plateaus, then reduce learning rate by a fixed
factor (e.g. 10)

— Advanced methods: Adaptive updates, where the
learning rate is itself determined as part of the

estimation

130

Moving on: Topics for the day

Incremental updates

Revisiting “trend” algorithms

Generalization
Tricks of the trade

— Divergences..
— Activations
— Normalizations

Recall: Momentum

€=

* The momentum method
AW = pAW =D — i, Err(W (-1)

e Updates using a running average of the gradient

132

Momentum and incremental updates

=

e The momentum method
AW = pAW =D — i, Err(W (-1)

* |Incremental SGD and mini-batch gradients tend
to have high variance

e Momentum smooths out the variations

— Smoother and faster convergence

133

Incremental Update: Mini-batch
update

* Given (Xq,dy), (X,,d5),..., Xp,dr)
* Initialize all weights Wy, W5, ..., Wy, j=0,AW, =0
* Do:
— Randomly permute (X{,d,), (X5,d>5),..., Xp,d7)
— Fort = 1:b:T
c j=j+1
* For every layer k:
~ Vy Err=0
e Fort'=t:t+b-1

— For every layer k:
» Compute Vy, Div(Y;, d¢)

» Uy, Err += =V, Div(Y,, d;)
* Update
— For every layer k:
AW, = BAWy, — n;Vy, ETr
Wk - Wk + AWk

e Until Err has converged
134

Nestorov’s Accelerated Gradient

e At any iteration, to compute the current step:
— First extend the previous step
— Then compute the gradient at the resultant position
— Add the two to obtain the final step
* This also applies directly to incremental update methods

— The accelerated gradient smooths out the variance in the
gradients

135

Nestorov’s Accelerated Gradient

e Nestorov’s method
AW &) = gAW k=D — pp, Err(W =D 4 gAW (k—1)
W& = wk-1 L Ay

136

Incremental Update: Mini-batch
update

i Given (Xl' dl)l (Xz, dz),..., (XT, dT)
e Initialize all weights W, W,, ..., Wy, j=0,AW, =0

* Do:
— Randomly permute (X;,d,), (X3,d5),..., Xr,dr)
— Fort = 1:b:T
- j=j+1

For every layer k:
- Wy, =Wy + AW,
- Wy Err=20
e Fort' =t:t+b-1
— Forevery layer k:
» Compute Vi, Div(Y;, d;)
» Vy Err+= %VWkDiv(Yt, dy)

Update
— For every layer k:
Wy = Wy —n;Vy, Err
AW, = pAW), — n;Vy, ErT

* Until Err has converged

137

More recent methods

* Several newer methods have been proposed that
follow the general pattern of enhancing long-
term trends to smooth out the variations of the
mini-batch gradient

— RMS Prop

— Adagrad

— AdaDelta

— ADAM: very popular in practice

* All roughly equivalent in performance

Smoothing the trajectory
o

1 1 +2.5
2 1 -3

3 3 +2.5
4 1 -2

5 2 1.5

* Simple gradient and acceleration methods still demonstrate oscillatory
behavior in some directions
* QObservation: Steps in “oscillatory” directions show large total movement

— In the example, total motion in the vertical direction is much greater than in
the horizontal direction

* Improvement: Dampen step size in directions with high motion

— Second order term
139

Variance-normalized step

M A

* |n recent past
— Total movement in Y component of updates is high
— Movement in X components is lower
e Current update, modify usual gradient-based update:
— Scale down Y component
— Scale up X component
— According to their variation (and not just their average)
e Avariety of algorithms have been proposed on this premise

— We will see a popular example 140

RMS Prop

* Notation:
— Updates are by parameter

— Sum derivative of divergence w.r.t any individual parameter w is
shown as d,,D

— The squared derivative is 2D = (d,,D)?
* Short-hand notation represents the squared derivative, not the
second derivative

— The mean squared derivative is a running estimate of the
average squared derivative. We will show this as E[92D]

 Modified update rule: We want to
— scale down updates with large mean squared derivatives

— scale up updates with small mean squared derivatives
141

RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale update of the parameter by the inverse of the root mean
squared derivative

E[0yD]y = YE[05;,D]x—1 + (1 — y) (05 D)x

n
Wk 1:Wk_ 0 D
" \/E[O‘%,D]k+6 v

142

RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale update of the parameter by the inverse of the root mean
squared derivative

E[0yD]y = YE[05;,D]x—1 + (1 — y) (05 D)x

n
Wk 1:Wk_ 0 D
" \/E[O‘%,D]k+6 v

Note similarity to RPROP
The magnitude of the derivative is being normalized out

RMS Prop (updates are for each
™ weight of each layer)

— Randomly shuffle inputs to change their order
— Initialize: k = 1; for all weights w in all layers, E[02D], = 0
— Forallt = 1:B:T (incrementing in blocks of B inputs)

* For all weights in all layers initialize (d,,D); = 0

* Forb =0:B—-1

— Compute

» Output Y (X;yp)

dDiv(Y (X¢+p).de+b)
dw
1 dDiv(Y (X¢+p).de+b)

» Compute(d,,D); += B dw

» Compute gradient

e update:
E[02%D] = YE[93D] p T - v)(93D)
n

Wii1 — Wi — ad,,D
" JE[@ZD], +€

ek =k+1
Until E(W, w @) . W% has converged

144

ADAM: RMSprop with momentum

* RMS prop only considers a second-moment normalized version of the
current gradient
 ADAM utilizes a smoothed version of the momentum-augmented gradient

* Procedure:
— Maintain a running estimate of the mean derivative for each parameter
— Maintain a running estimate of the mean squared value of derivatives for each
parameter
— Scale update of the parameter by the inverse of the root mean squared
derivative

my = 6my_q + (1 —6)(0,,D)
Vi = yYVp_1 + (1 —y)(05D)y
my ~ Uk

1— 6k’ Uk Tk

ﬁ\lk:
n _

Wigi1 = Wg — —F/———My
ﬂﬁk + €

145

ADAM: RMSprop with momentum

* RMS prop only considers a second-moment normalized version of the
current gradient
 ADAM utilizes a smoothed version of the momentum-augmented gradient

* Procedure:
— Maintain a running estimate of the mean derivative for each

— Maintain a running estimate of the mean squared val

Ensures that the

parameter 6 and y terms do
— Scale update of the parameter by the inverse of th not dominate in
derivative early
my, = dmy_; + (1 —6)(0,D)y iterations

Vi = yYVp_1 + (1 —y)(05D)y
my ~ Vg
1— 6K’ Uk~

ﬁ\lk:

U .

Wigi1 = Wg — —F/———My
ﬂﬁk + €

146

Other variants of the same theme

* Many:
— Adagrad
— AdaDelta
— ADAM
— AdaMax

* Generally no explicit learning rate to optimize
— But come with other hyper parameters to be optimized

— Typical params:
* RMSProp:n =0.001,y =0.9
« ADAM: n =0.001,6 = 0.9, y = 0.999

Visualizing the optimizers: Beale’s Function

A —
% = 55D ¥
| == Momentum [
m— NAG 5

— Adagrad
Adadelta
Rmsprop

* http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

148

Visualizing the optimizers: Long Valley

- SGD

- Momentum
—— NAG

- Adagrad
Adadelta
Rmsprop

1.0

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

149

Visualizing the optimizers: Saddle Point

— SGD

— Momentum
— NAG

- Adagrad
Adadelta
Rmsprop

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

150

Story so far

* Gradient descent can be sped up by incremental
updates

— Convergence is guaranteed under most conditions

* Learning rate must shrink with time for convergence

— Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

— Mini-batch updates: update after batches. Can be more
efficient than SGD

* Convergence can be improved using smoothed updates

— RMSprop and more advanced techniques

Moving on: Topics for the day

Incremental updates
Revisiting “trend” algorithms

Generalization
Tricks of the trade

— Divergences..
— Activations
— Normalizations

Tricks of the trade..

* To make the network converge better
— The Divergence
— Dropout
— Batch normalization

— Other tricks

* Gradient clipping
* Data augmentation
* Other hacks..

Training Neural Nets by Gradient Descent:
The Divergence

Total training error:

1
Err = Tz Div(yt, dt, Wl,Wz, ...,WK)
t

* The convergence of the gradient descent
depends on the divergence

— Ideally, must have a shape that results in a
significant gradient in the right direction outside
the optimum

e To “guide” the algorithm to the right solution

154

Desiderata for a good divergence

<

&

)

* Must be smooth and not have many poor local optima

* Low slopes far from the optimum == bad

— Initial estimates far from the optimum will take forever to

converge

* High slopes near the optimum == bad

— Steep gradients

155

Desiderata for a good divergence

= &)

Functions that are shallow far from the optimum will result in very small steps during optimization
— Slow convergence of gradient descent
Functions that are steep near the optimum will result in large steps and overshoot during
optimization
— Gradient descent will not converge easily
The best type of divergence is steep far from the optimum, but shallow at the optimum

— But not too shallow: ideally quadratic in nature
156

Choices for divergence

11t

Softmax

Desired output: d Desired output: [0,0,...,1, ..., 0]
L2 Div = l(— d)? Div=12(y-—d-)2
v = 5 y 2 . L L
l
KL Div = ~dlog(y) — (1 —) log(1 — y) Div =) dilog(d) —) dilog(y1)
i i

* Most common choices: The L2 divergence and
the KL divergence

L2 or KL?

 The L2 divergence has long been favored in
most applications

* |tis particularly appropriate when attempting
to perform regression

— Numeric prediction

 The KL divergence is better when the intent is
classification

— The output is a probability vector

L2 or KL

L2 div KL div
100

800 —
80

700

60

600

500

400

300

200

100 —

* Plot of L2 and KL divergences for a single perceptron, as
function of weights
— Setup: 2-dimensional input

— 100 training examples randomly generated
159

L2 or KL

- NOTE: L2 divergence is not convex while KL is convex

80

60

However, L2 also has a unique global minimum

500

400

300

200

100 —

* Plot of L2 and KL divergences for a single perceptron, as
function of weights

— Setup: 2-dimensional input
— 100 training examples randomly generated

160

A note on derivatives

* Note: For L2 divergence the derivative w.r.t.
the pre-activation z of the output layer is:

1
V5 lly = d|l* = (y — d)],(2)

* We literally “propagate” the error (y — d)
backward

— Which is why the method is sometimes called
“error backpropagation”

Story so far

* Gradient descent can be sped up by
incremental updates

* Convergence can be improved using
smoothed updates

* The choice of divergence affects both the
learned network and results

162

The problem of covariate shifts

J

* Training assumes the training data are all similarly distributed

— Minibatches have similar distribution

163

The problem of covariate shifts

* Training assumes the training data are all similarly distributed
— Minibatches have similar distribution

* |n practice, each minibatch may have a different distribution
— A “covariate shift”
— Which may occur in each layer of the network

The problem of covariate shifts

* Training assumes the training data are all similarly distributed
— Minibatches have similar distribution

* In practice, each minibatch may have a different distribution
— A “covariate shift”

e Covariate shifts can be large!

— All covariate shifts can affect training badly .

Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches

166

Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches

167

Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches

168

Solution: Move all subgroups to a “standard”
location

|
9

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches

169

Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches

170

Solution: Move all subgroups to a “standard”
location

* “Move” all batches to have a mean of 0 and unit
standard deviation
— Eliminates covariate shift between batches
— Then move the entire collection to the appropriate location

171

Batch normalization

X, N
O—"
X, > 5
1 1 1

* Batch normalization is a covariate adjustment unit that happens
after the weighted addition of inputs but before the application of

activation
— Is done independently for each unit, to simplify computation

* Training: The adjustment occurs over individual minibatches

Batch normalization
zZ = ijij + b

e
Covariate shift to Shift to right
standard position position
l
! \ Batch mean /
_Zi — HB .
W= Zi=yu+p

Batch standard deviatiation Neuron-specific terms
BN aggregates the statistics over a minibatch and normalizes the
batch by them

 Normalized instances are “shifted” to a unit-specific location
173

Batch normalization: Training
Z=ijij+b
. 7 Fatch normaljzatiorl 2

|' U -1 3’

i
B B Z;— U
1 1 Uu; = L a2 7 . = g
s=) al|oh= 5 Gi—u?| [T Jozge = 1uth
=1 i=1

BN aggregates the statistics over a minibatch and normalizes the
batch by them

 Normalized instances are “shifted” to a unit-specific location
174

- Batch normalization: Training
Z=ijij+b

’ 7 Fatch normaljzatiorl 2
|’.u-1 3’

Minibatch size Minibatch mean

1 B 1 B 0 = Z —'uVB /_ . +IB
Hp = _z Zi O'B; = EE(Zi —‘uB)Z L /O_Bz n E. i = VUi
=1

% / Minibatch standard deviation

i=1

BN aggregates the statistics over a minibatch and normalizes the
batch by them

Normalized instances are “shifted” to a unit-specific location
175

Batch normalization: Training
Z=ijij+b
. 7 Fatch normaljzatiorl 2

|' U -1 3’

iy
Normalize minibatch to Shift to right
Zzero-mean unit variance position
Iy \ /
B B Z; — U
1 1 u: = l £ a— .
s=) allf= =Y - M7 [= vuth
i=1 i=1

BN aggregates the statistics over a minibatch and normalizes the
batch by them

 Normalized instances are “shifted” to a unit-specific location
176

A better picture for batch norm

7 atch normalizatio 2
PR y

177

A note on derivatives

* |n conventional learning, we attempt to compute the
derivative of the divergence for individual training instances

w.r.t. parameters
* This is based on the following relations

1
Div(minibatch) = Ez Div(Y: (X)), di(Xt))

dDiv(minibatch) dDw(Yt(Xt) de(Xt))
G Tz i
Wi

* |If we use Batch Norm, the above relation gets a little
complicated

A note on derivatives

* The outputs are now functions of g and o
which are functions of the entire minibatch

| el
Div(MB) = Ez Div(Y,(X,, ug, 02), de (X,))
t

* The Divergence for each Y; depends on all the X;
within the minibatch

* Specifically, within each layer, we get the
relationship in the following slide

Batchnorm is a vector function over
the minibatch

Batch normalization is really a vector function applied over all the inputs from a

minibatch

Z1

Zy

Zp

— Every z; affects every Z;

— Shown on the next slide

To compute the derivative of the divergence w.r.t any z;, we must consider all Z;s

in the batch

v

v

v

N>
=

N>
N

N>
o

180

Batchnorm

S .
1|

The complete dependency figure for Batchnorm

Note : inputs and outputs are different instances in a minibatch

You can use vector function differentiation rules to compute the derivatives

The diagram represents BN occurring at a single neuron

But the equations in the following slides summarize them for you

The actual derivation uses the simplified diagram shown in the next slide, but you could do it

directly off the figure above and arrive at the same answers

181

Batchnorm

Influence diagram

* Simplified diagram for a single input in a
minibatch

182

Batch normalization:
Backpropagation

Ly dDiv , .. adDiv
—=12)
dz dy
i
o P Fatch normalizatiorl 5 l
. + |' U -_| Y
[J
iN=T
u = Zi — Hp A —

B L= Zi= YU

IN 1 , 1 - , N
Hp = 5 / %i| 9B = EE(ZL' — lp)
=1 i=1 183

Batch normalization:
Backpropagation

dDiv _ dDiv| Parameters to be
dp dz | learned
dDiv B dDiv /
dy " dz
i dDiv , _dDiv
’E =f'(2) &
Iy

D fly

Batch normalization

IN=T
" = Zi — Up - a—y
B A Zi=VU;
iy 1 , 1 B , O'g+(:'
i =2zl log = 13 G- i
B = B ¢ 184
=1 1=1

Batch normalization:
Backpropagation

dDiv _ dDiv Parameters to be

dp dz learned

dDiv B dDiv

dy " dz
| dDiv _ dDiv
iy du 14 a7 dDiv) dDiv

dz dy

I

P —] l" Y

Batch normalization

IN=1
" = Zi — Up R a—y
B A Zi=VU;
iN 1) 1 B 5 O'Bz+(:'
i =2zl log = 13 G- i
B e B ¢ 185
=1 1=1

Batch normalization:
Backpropagation

dDiv
f)Zi

Final step of backprop: compute

i @
Z

+ I’.u:-qléy

Batch normalization

=yu; +

IN=T
" = Zi — Up
B L
i 1 1w \JOE + €
" uB=—Zz- =—22 — up)*
B_ l B l B
=1 i=1

186

Batch normalization:
Backpropagation

dDiv _ dDiv du; N dDiv doj N dDiv Oug

Div = function(u;, ug, O-L%) e du:. 0z & g2 9z
i l l B L

Oup | 0z;

i { |

+ Zl’lu:-jléy

Batch normalization

IN=1
Zi — Up
U = Zi=yu;+p
2 l l
iy JOj t+€

Up =

B 1 B
Zzi of = EE(ZL' — Ug)?
' =

ool [l

187

Batch normalization:
Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

dDiv _ dDiv du; 0Div dof ODiv dug

7 om oz do2 0z e oo

Batch normalization:
Backpropagation

Influence diagram Influence diagram
Dotted lines show

dependence through
other u;s because
Divergence is computed
over a minibatch

6Dlv dDiv Oul @l\aaB dDiv Jdug
d

0z; aldazl oug 0z;
T e aDw — _3 2 aDiv
U = — / -

i=1

Batch normalization:
Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

dDiv _ dDiv Oui_l_ODiv dos \ 0Div Oug
dz; Ow; 0z; 0ok \0z) dug 0z

Zi — Up

} Joi +€

B
dDiv

L. Ju;
=1

dDiv —1 -3
dos "2 (o +) 72

(z; — up)

B

2 _ 1 2 aO-Bg Z(Zi - HB)
9% = g (zi — pp) 57 B

i=1 .

Batch normalization:
Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

0Div _ 0Div 0u; 0Div 0of 0Div\ouz
dz; dw; 0z dof 0z \dup J 0z

Batch normalization:
Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

0Div _ 0Div 0u; 0Div 0of 0Div\0us
dz; Ou; 0z; 00f 0z; \dup 0z S:::?g Ef)erm
Zi — Up /
u; =
Joi + €
B v [~ adiv -1 . 0Div TE, ~2(z ~ pup)
dup s 0up (o2 + € doj B

B
1
JBZ = EZ(ZL' — .UB)Z
i=1

Batch normalization:
Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

dDiv _ dDiv du; 0Div dop (ODiv\dup
aZi aui

dz; doZ 0z

Oug 0z;

Zi — Up

Joi +€

u; =

B
1
JBZ = EZ(ZL' — .UB)Z
i=1

dDiv B

dDiv

Oug

B
JoZ +e& 0w

Batch normalization:

Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

aZi

dDiv _ dDiv du; 0Div dof dDiv 5#3\> a'“B=

|

du; 0z; 0of 9z * dug \ 0z;

ool =

aZi

Zi — Up

- Joi +€

dDiv B dDiv

B
Oup \JoZ + e& O

Batch normalization:
Backpropagation

Influence diagram

Dotted lines show
dependence through
other u;s because
Divergence is computed
over a minibatch

6Dlv dDiv Oul dDiv OGB dDiv Jdug
9z dos Ozl Oug 0z;

Zi — Up

- Joi +€

dDiv 1

Ou; .w/ag + €

Batch normalization:
Backpropagation

oDiv -1 5 3/ dDiv
= (0F+€) 2) = (2~ up)
of 2 i O,
i=1
B
dDiv -1 zaDw
Oup \JoZ + & Ou;
Ly oDiv _oDiv 1 9Div Z(Zi_“3)+ dDiv 1
- oy [62+¢ 00 B dug B
(2

ﬁ () —

Batch normalization

Zi — Up

u; =

Z;=yu; +
Jgrd ererd

196

- 1< 1w

l

N Up = Ezzi of = EZ(ZL' — Ug)?
i=

Batch normalization:
Backpropagation

I
ou; [oZ+e 003 B dug

Batch normalization

The rest of backprop continues from

0Div

Zj

197

Batch normalization: Inference

N>

7 atch normalizatio
D~ () —

. Z. —
lN—l l :uBN

U = Z;=yu; +
| Jogyre PSR

* Ontest data, BN requires ug and JB?.

We will use the average over all training minibatches

1
HBN = Nbatches Zh up (batch)

batc
B

v = Z(batch
BN (B — 1)Nbatches bZh o5 (batch)
atc

* Note: these are neuron-specific

ug(batch) and o (batch) here are obtained from the final converged network

— The B/(B — 1) term gives us an unbiased estimator for the variance 108

Batch normalization
X,

%

1 1 1

* Batch normalization may only be applied to some layers
— Or even only selected neurons in the layer

* Improves both convergence rate and neural network performance
— Anecdotal evidence that BN eliminates the need for dropout

— To get maximum benefit from BN, learning rates must be increased
and learning rate decay can be faster
* Since the data generally remain in the high-gradient regions of the activations

— Also needs better randomization of training data order

Batch Normalization: Typical result

08
\ = == M e m e a - -4
07fF - M" o
0.6
— = = Inception
- = BN-Baseline
os54-¢ e BN-x5
BN-x30
+ -+ BN—-x5-Sigmoid
4 Steps to match Inception
1 [] |

0.4

10M 15M 20M 25M 30M

* Performance on Imagenet, from loffe and Szegedy, JMLR
2015

200

Story so far

Gradient descent can be sped up by incremental
updates

Convergence can be improved using smoothed updates

The choice of divergence affects both the learned
network and results

Covariate shift between training and test may cause
problems and may be handled by batch normalization

201

The problem of data
underspecification

* The figures shown to illustrate the learning
problem so far were fake news..

202

Learning the network
/ B
@

* We attempt to learn an entire function from just

a few snapshots of it

203

General approach to training

Black lines: error when
_\function is above desired
output

Blue lines: error when
function is below desired
output

F=) 0= f(x, W))?

* Define an error between the actual network output for
any parameter value and the desired output

— Error typically defined as the sum of the squared error over
individual training instances os

Overfitting

~
-

-
-
-

P
SN
)
Y

(f
~

-
-——-——-——-—--

=
-
’f

* Problem: Network may just learn the values at

the inputs
— Learn the red curve instead of the dotted blue one

e Given only the red vertical bars as inputs
205

Data under-specification

-

”{<E xﬁ
e

Consider a binary 100-dimensional input
There are 2190=1030 possible inputs

Complete specification of the function will require specification of 103° output
values

A training set with only 10*° training instances will be off by a factor of 10!°

206

Data under-specification in learning

/

Find the function!

Consider a binary 100-dimensional input
There are 2190=1030 possible inputs

Complete specification of the function will require specification of 103° output
values

A training set with only 10*° training instances will be off by a factor of 10!°

207

Need “smoothing” constraints

* Need additional constraints that will “fill in”
the missing regions acceptably

— Generalization

208

Smoothness through weight

Jolg

lat

manipu

A

y

* [llustrative example: Simple binary classifier

— The “desired” output is generally smooth

209

Smoothness through weight
; manipulation

y

\

* [|llustrative example: Simple binary classifier

— The “desired” output is generally smooth
» Capture statistical or average trends
— An unconstrained model will model individual instances
instead

210

. The unconstrained model

* [|llustrative example: Simple binary classifier

— The “desired” output is generally smooth
» Capture statistical or average trends

— An unconstrained model will model individual instances
instead

211

Why overfitting

s 355

0 240

o, |

KA D
A

TR
SRR AN
177799 S AN\
2707 DAV RN
GCQQQOALND.
NN 77
N2

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes
in output

212

The individual perceptron

-

* Using a sigmoid activation
— As |w| increases, the response becomes steeper

213

Smoothness through weight

manipulation

J

/]\ 1
pYe () 0.8
////)’)'l)’4 \(‘\\\\\
B A SN
NN A
‘\ { g&*g’ggj/’ 04r
\'_!1 ,' " \:?:‘: s[‘ 0.3
X j@) 0.2
0.1
0
-10

* Steep changes that enable overfitted responses are

facilitated by perceptrons with large w

-5

0

214

10

Smoothness through weight
manipulation

e "- ;v{ \
/)'r A5 \'\\\
799 0N \
X/ (\(
/A///, X ‘.\».\\\&\\

06|

35«0.5-

047

03r

Steep changes that enable overfitted responses are
facilitated by perceptrons with large w

e Constraining the weights w to be low will force slower
perceptrons and smoother output response

215

Objective function for neural
networks

Y, Desired output of network: d;

Error on i-th training input: Div(Y,, d; Wi, W5, ..., Wx)

Batch training error:

1
Brr(Wy, Wy, .., W) = = Div(Y;, do; W, W, ., W)
t

* Conventional training: minimize the total error:

Wi, Wy, ..., Wy = argmin Err(W;, W, ..., Wg)
Wi Wa,. . Wi

216

Smoothness through weight
constraints

* Regularized training: minimize the error while also minimizing the
weights

1
L(W11 WZ) eny WK) — ETT(W11 WZ) eny WK) T 512””/]{”%
k

Wl' WZ'"'JWK — argmin L(Wl, WZI""WK)
Wi ,Ws,..,.Wg

e Aisthe regularization parameter whose value depends on how
important it is for us to want to minimize the weights

* Increasing A assigns greater importance to shrinking the weights

— Make greater error on training data, to obtain a more acceptable network

217

Regularizing the weights

1 1
L(Wl,Wz, ---;WK) — TE Div(Ytl dt) + EAEHWRH%
t k
Batch mode:

1
AWk — ?2 VWkDiv(Yt' dt)T + /’ka
t

SGD:
AWy, = Vy, Div(Yy, d)" + AWy
Minibatch:
1t+b—1
AW, = 5 Z Vw, Div(Yy, dp)" + AWy
T=t
Update rule:

Wk — Wk — UAWk

218

Incremental Update: Mini-batch
update

* Given (Xq,d,), (X,,d5),..., X7, d7)
* |Initialize all weights W, W,, ..., Wy, j=0
* Do:
— Randomly permute (X, d,), (X,,d5),..., X, dr)
— Fort = 1:b:T
c j=j+1
* For every layer k:
— AW, =0
e Fort’'=t:t+b-1

— For every layer k:
» Compute Vy, Div(Y;, d;)

» AW, = AW, + Vy, Div(Y,, d;)
* Update

— For every layer k:

Wk = Wk — n](AWk + AWR)

* Until Err has converged 219

Smoothness through network

structure
MLPs naturally impose constraints X/K\
[y
MLPs are universal approximators M
— Arbitrarily increasing size can give <>
you arbitrarily wiggly functions /
— The function will remain ill-defined /\

on the majority of the space

For a given number of parameters deeper networks impose
more smoothness than shallow ones

— Each layer works on the already smooth surface output by the
previous layer

220

Even when we get it all right

n = Mm
[=]-5%

e Typical results (varies with initialization)

e 1000 training points — orders of magnitude more than you
usually get

e All the training tricks known to mankind

221

But depth and training data help

3 layers 4 layers

6 layers 11 Iayers 6 layers 11 layers

 Deeper networks seem to learn better, for the same 10000 trainin
number of total neurons

— Implicit smoothness constraints

* As opposed to explicit constraints from more conventional
classification models

instances

e Similar functions not learnable using more usual

Qg 222
pattern-recognition models!!

Regularization..

* Other techniques have been proposed to
improve the smoothness of the learned
function
— L, regularization of network activations
— Regularizing with added noise..

* Possibly the most influential method has been
“dropout”

Story so far

Gradient descent can be sped up by incremental updates
Convergence can be improved using smoothed updates

The choice of divergence affects both the learned network
and results

Covariate shift between training and test may cause
problems and may be handled by batch normalization

Data underspecification can result in overfitted models and
must be handled by regularization and more constrained
(generally deeper) network architectures

224

A brief detour.. Bagging

New

Test Data

Learning = (lassifier 1

—
Sample 1 Algorithm l
Training 53:;; 9 — Learhf:g —= (lassifier 2 Combined
Examples Algorithm Classifiers
Test Learning 1
— —_—
Sample 3 Algorithm Classifier 3
Prediction

Popular method proposed by Leo Breiman:
— Sample training data and train several different classifiers
— Classify test instance with entire ensemble of classifiers

— Vote across classifiers for final decision

— Empirically shown to improve significantly over training a single
classifier from combined data

Returning to our problem....

225

Dropout

'M%A\

»o‘\o
w;’/% u’rpu‘r
\»
<)

L
S M7 . WY

Boodiho
N7 A\
ks A

G S //C
O &V/

N
b N A
»

)
V’%ﬂ ﬁ'
)

“A
A
ol

2
N

e

W

* During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a

Dropout

* During training: For each input, at each iteration,

“turn off” each neuron with a probability 1-a

— Also turn off inputs similarly

Dropout

%A\

/7 X\\\w‘

!

il 5 Output
WY > DO
N, ~ 2000

DX
LR
il

'&
;M'/l,’ \ /

* During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a

— In practice, set them to 0 according to the success of a Bernoulli
random number generator with success probability 1-a

Dropout

Input /A
N1/ /

Input; @ Input;

(s "/“\ X 'K
NS ORI

/i WA I
NI AN N O O
R T AN TN 7N NNV
4\‘),’3)}"0\ A 4\‘)&"4\ SR QIR SR i
X S A’éwﬁ.‘\, Y% X Vi AYgaValY: Y% X W OEMIN ¥ Y
1 A7~ N 1 2 il 2 3 PR~ N 3
i
Y7
|/
)

i/
BN 0 w‘\’/
AP

A AR
PN R
XN

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

* During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a

— In practice, set them to 0 according to the success of a Bernoulli
random number generator with success probability 1-a

Dropout

'
i

A9
N

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

During training: Backpropagation is effectively performed only over the remaining
network
— The effective network is different for different inputs

— Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes
* For the remaining, the gradient is just 0

230

Statistical Interpretation

)

/)

NV

i
X\ /"
e

()
\

* For a network with a total of N neurons, there are 2N
possible sub-networks

— Obtained by choosing different subsets of nodes
— Dropout samples over all 2N possible networks

— Effectively learns a network that averages over all possible
networks

* Bagging

Dropout as a mechanism to increase
pattern density

 Dropout forces the neurons to
learn “rich” and redundant
patterns

 E.g. without dropout, a non-
compressive layer may just
“clone” its input to its output
— Transferring the task of learning

to the rest of the network
upstream

* Dropout forces the neurons to
learn denser patterns

— With redundancy

232

The forward pass

Input: D dimensional vectorx = [x;, j =1...D]
Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—y]-()=xj,]=1...D; yé)=x0=1

Forlayerk =1..N

— Forj=1..Dy
«) _ () ., (k=1) (k)
z;” = Zl oWV +b

i

v = fi (J'(k))

* If (k = dropout layer):
— mask(k,j) = Bernoulli(a)
— If mask(k,j) ==

» y](k) =0

Output:

- Y= y](),]—1 Dy

233

Backward Pass

e Qutput layer (N) :

oDiv __ dDiv(Y,d)

aY; ay.(N)
_ 9Dy — ((k)) dDiv
6zi(k) k ayi(k)
 Forlayerk =N —1downto 0

— Fori=1..D,
* If (not dropout layer OR mask(k,i))

dDiv =Y. w (k+1) d0Div
jW

e S mask(+ 1)
dDiv (k) dDiv
- 6zi(k) fk()Byi(k)
- av?/?’.‘lr'l) = yi(k) ajjgclfﬂ mask(k +1,j) forj=1..Dyss
* Else
dDi

(k) =0 234

What each neuron computes

e Each neuron actually has the following activation:

Do (z w0y D +b(k)>

— Where D is a Bernoulli variable that takes a value 1 with probability a

* D may be switched on or off for individual sub networks, but over
the ensemble, the expected output of the neuron is

i —aa(z w{ .(k 1)+b(k)>

e During test time, we will use the expected output of the neuron

— Which corresponds to the bagged average output
— Consists of simply scaling the output of each neuron by a

Dropout during test: implementation

Inpuf apply a here (to the output of the neuron) OR..

Y.
v = a0 (z") z

>

J

Push the a to all outgoing weights

(00D y 0

®ag (7070) + b0
l

ocwj(lk)) o (Zj(k 1)) + bi(k)

Wiest = W ergined

* |nstead of multiplying every output by a, multiply

all weights by

236

Dropout : alternate implementation

* Alternately, during training, replace the activation
of all neurons in the network by a"ta(.)
— This does not affect the dropout procedure itself

— We will use g(.) as the activation during testing, and not
modify the weights 237

The forward pass (testing)

* Input: D dimensional vector x = [x;, j = 1...D]

e Set:

— Dy = D, is the width of the 0™ (input) layer

0 . k=1..N
yj()=xj,]=1...D; yé)—x0=1

* Forlayerk=1..N
— Forj=1..D
200 = ¥ 06D 00

i
o)

If (k = dropout layer) :

» y® =30

— Else

» yj(k) 0

* |Output:

N
y=y™,j=1.Dy

238

Dropout: Typical results

2.5H

2.0

Classification Error %

1.0

é -'u‘xjitli'tiftjijtiiitn_,...._._w
h “\; ;.?:_,P‘, T

0 200000

* From Srivastava et al., 2013. Test error for different
architectures on MNIST with and without dropout

400000 600000
Number of weight updates

800000 1000000

— 2-4 hidden layers with 1024-2048 units

239

Variations on dropout

Zoneout: For RNNs

— Randomly chosen units remain unchanged across a time transition
Dropconnect

— Drop individual connections, instead of nodes

Shakeout
— Scale up the weights of randomly selected weights
o lw|l->alw|l+ (1 —-a)
— Fix remaining weights to a negative constant
* W —C
Whiteout

— Add or multiply weight-dependent Gaussian noise to the signal on
each connection

Story so far

Gradient descent can be sped up by incremental updates
Convergence can be improved using smoothed updates

The choice of divergence affects both the learned network and
results

Covariate shift between training and test may cause problems and
may be handled by batch normalization

Data underspecification can result in overfitted models and must be
handled by regularization and more constrained (generally deeper)
network architectures

“Dropout” is a stochastic data/model erasure method that
sometimes forces the network to learn more robust models

Other heuristics: Early stopping

validation

error

training

epochs

e Continued training can result in over fitting to
training data
— Track performance on a held-out validation set

— Apply one of several early-stopping criterion to
terminate training when performance on validation
set degrades significantly

242

Additional heuristics: Gradient
clipping

Loss j

* Often the derivative will be too high

— When the divergence has a steep slope
— This can result in instability

* Gradient clipping: set a ceiling on derivative value
if o,D > 0 then 0,,D =0
— Typical 6 value is 5

243

Additional heuristics: Data
Augmentation

T

| d /‘
R\k 4 = = L "d
CocaColaZerol_l.png CocaColaZerol_2.png CocaColaZerol 3png CocaColaZerol_4.png
} ﬁ V! . D .
* 4 . /
| rﬂ
1
[‘ - e e h rut

ch

* Available training data will often be small
 “Extend” it by distorting examples in a variety of
ways to generate synthetic labelled examples
— E.g. rotation, stretching, adding noise, other distortion

244

Other tricks

* Normalize the input:

— Apply covariate shift to entire training data to make it O
mean, unit variance

— Equivalent of batch norm on input

* Avariety of other tricks are applied

— Initialization techniques
* Typically initialized randomly

* Key point: neurons with identical connections that are identically
initialized will never diverge

— Practice makes man perfect

Setting up a problem

Obtain training data

— Use appropriate representation for inputs and outputs
Choose network architecture

— More neurons need more data

— Deep is better, but harder to train
Choose the appropriate divergence function

— Choose regularization
Choose heuristics (batch norm, dropout, etc.)
Choose optimization algorithm

— E.g. Adagrad
Perform a grid search for hyper parameters (learning rate, regularization
parameter, ...) on held-out data
Train

— Evaluate periodically on validation data, for early stopping if required

In closing

* Have outlined the process of training neural
networks

— Some history

— A variety of algorithms

— Gradient-descent based techniques
— Regularization for generalization

— Algorithms for convergence

— Heuristics

* Practice makes perfect..

