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Neural Networks

Representations



Learning in the net

* Problem: Given a collection of input-output
pairs, learn the function
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Learning for classification

X1

When the net must learn to classify..

— Learn the classification boundaries that separate
the training instances



Learning for classification
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— In general not really cleanly separated
* So what is the function we learn?



In reality: Trivial linear example

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors



Non-linearly separable data: 1-D example

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



Undesired Function
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* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?
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* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?

V4

90 instances
\'J/ 10 instances
\/ ]

X

e What must the value of the function be at this
X?
— 1 because red dominates?

— 0.9 : The average?



What if?

V4

90 instances
\'J/ 10 instances
\/ ]

X

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic




What if?

y

Should an infinitesimal hudge 90 instances

of the red dot change the function
estimate entirely?

If not, how do we estimate P(1]X)? 10 instances
(since the positions of the red and blue X
Values are different) \ S

v

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic




The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of Y=1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
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The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probgbility of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

y

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The logistic regression model

1
P(y=1x)=
(y ‘ ) 1+ e—(Wo"‘WNC)

y=1

y=0

* Class 1 becomes increasingly probable going left to right
— Very typical in many problems
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The logistic perceptron

* Asigmoid perceptron with a single input models
the a posteriori probability of the class given the
input



Non-linearly separable data

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors
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Logistic regression

P(Y =1]|X) = ! Decision: y > 0.5?

1+ exp(—(Ziwixi + WO))

When X is a 2-D variable X,

* This the perceptron with a sigmoid activation
— It actually computes the probability that the input belongs to class 1

— Decision boundaries may be obtained by comparing the probability to a threshold
* These boundaries will be lines (hyperplanes in higher dimensions)

* The sigmoid perceptron is a linear classifier -



Estimating the model

y

|
P(y‘x) = f(x) = —(Wp+wix)
l+e

* Given the training data (many (x, y) pairs
represented by the dots), estimate wy and wy
for the curve
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Estimating the model

* Easier to represent using ay = +1/-1 notation

y

| |
P(y=1x)= P(y=-lx)=
S ‘ ) |4 o) o ‘ ) ] 4o
|
P(y‘x) = 1+e—y(w0+wlx)
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Estimating the model

* Given: Training data
(X1, ¥1), (X2, ¥2), o, (XN, YN)

* Xs are vectors, ys are binary (0/1) class values
* Total probability of data

P((X1:Y1)» (X2,¥2)) v (XN»)’N)) = HP(Xi:Yi)

1
= | [Pouxoreo = | | mmmms P00
l

l
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Estimating the model

* Likelihood
P(Training data) = 1_[

l

P(X;)

1 + e Yilwotw'X;)

* Log likelihood
log P(Training data) =

Z log P(X;) — Z log (1 + e‘yl'(WOJrWTXi))
i i
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Maximum Likelihood Estimate

Wy, Wy, = argmaxlog P(Training data)
Wo,W1q

Equals (note argmin rather than argmax)

Wo, Wy = argminz: log (1 -+ e—Yi(W0+WTXi))
l

Wo, W

ldentical to minimizing the KL divergence

between the desired output y and actual output
1

14+e~ (W0+WTXi)

Cannot be solved directly, needs gradient descent

33




So what about this one?
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* Non-linear classifiers..



First consider the separable case..
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* When the net must learn to classify..



First consider the separable case..
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e For a “sufficient” net




First consider the separable case..
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e For a “sufficient” net

* This final perceptron is a linear classifier




First consider the separable case..
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* This final perceptron is a linear classifier over
the output of the penultimate layer



First consider the separable case..
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* For perfect classification the
output of the penultimate layer must be
linearly separable



First consider the separable case..
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* The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features



First consider the separable case..

* The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features

— We can now attach any linear classifier above it for perfect classification
— Need not be a perceptron
— In fact, for binary classifiers an SVM on top of the features may be more generalizable!



First consider the separable case..

* This is true of any sufficient structure
— Not just the optimal one
* For insufficient structures, the network may attempt to transform the inputs to
linearly separable features
— Will fail to separate
— Still, for binary problems, using an SVM with slack may be more effective than a final perceptron!



Mathematically..

Yout = 1+exp(b+WTY)  1+exp(b+WTf(X))
The data are (almost) linearly separable in the space of Y
The network until the second-to-last layer is a non-linear function

f(X) that converts the input space of X into the feature space
Y where the classes are maximally linearly separable



Story so far

* A classification MLP actually comprises two
components

— A “feature extraction network” that converts the
inputs into linearly separable features

* Or nearly linearly separable features

— A final linear classifier that operates on the
linearly separable features



An SVM at the output?

* For binary problems, using an SVM with slack may be more effective than'a final
perceptron!
* How does that work??

— Option 1: First train the MLP with a perceptron at the output, then detach the feature extraction,
compute features, and train an SVM

— Option 2: Directly employ a max-margin rule at the output, and optimize the entire network
* Left as an exercise for the curious



How about the lower layers?

How do the lower layers respond?
— They too compute features
— But how do they look
Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold
Layers sequentially “straighten” the data manifold

— Until the final hidden layer, which fully linearizes it



The behavior of the layers

2-3-1 NN: Forward transformations
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* Synthetic example: Feature space



The behavior of the layers

Acenracy (epoch 0)
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The behavior of the layers

NN: Ir = 0.001

W Acenracy (epoch 0} PCAX) PCA(H))
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When the data are not separable and
boundaries are not linear..
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* More typical setting for classification
problems



Inseparable classes with an output
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 The “feature extraction” layer transforms the data
such that the posterior probability may now be

modelled by a logistic



Inseparable classes with an output
logistic perceptron

1
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e

 The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic

— The output logistic computes the posterior probability of the class
given the input



When the data are not separable and
boundaries are not linear..
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* The output of the network is P(y|x)

— For multi-class networks, it will be the vector of a
posteriori class probabilities
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There’s no such thing as inseparable
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* A sufficiently detailed architecture can separate nearly any
arrangement of points
— “Correctness” of the suggested intuitions subject to various

parameters, such as regularization, detail of network, training
paradigm, convergence etc..



Changing gears..




Intermediate layers

We've seen what the network learns here




Recall: The basic perceptron

1 lf Z W;X; >T
Welghts y = >

X —— 0 else
W T _

X2 j{f \ Sum 4‘_'7 D;.tput
W ] [

X3 // H___,/
: S y = -
. S 0 else
Wy .

 What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold
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Recall: The weight as a “template”

X'w>T
Waeights
W)
W: \“\«\/”\\S /j‘J: Output cos 0 ~ m
a Y U }—» y T
;W \:(/\// ThEshoIdT 0 < (,'OS_1 —_—
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The perceptron fires if the input is within a specified angle of the weight
— Represents a convex region on the surface of the sphere!
— The network is a Boolean function over these regions.

* The overall decision region can be arbitrarily nonconvex
Neuron fires if the input vector is close enough to the weight vector.
— If the input pattern matches the weight pattern closely enough
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Recall: The weight as a template

W X

Correlation = 0.57 Correlation = 0.82\‘
Y = - y

Qelse

 |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

* The perceptron is a correlation filter!
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Recall: MLP features

DIGIT OR NOT?

|2

=i

The lowest layers of a network detect significant features in the

signal

The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal 61



Making it explicit
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* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

—  Will this work?

* Simply recompose the detected features



Making it explicit
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* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

* Simply recompose the detected features

—  Will this work?
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Making it explicit: an autoencoder
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* A neural network can be trained to predict the input itself

* This is an autoencoder

* An encoder learns to detect all the most significant patterns in the signals

* A decoder recomposes the signal from the patterns



The Simplest Autencoder

* Asingle hidden unit
e Hidden unit has linear activation
e What will this learn?
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The Simplest Autencoder

Training: Learning W by minimizing

X L2 divergence
R =wlwx
div(®,x) = [lx — &[|* = [lx — w'wx]|?

W = argmin E[div(%,x)]
w

W = argmin E[||x — wT wx||?]
w

* This is just PCA!
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The Simplest Autencoder

e The autoencoder finds the direction of maximum
energy

— Variance if the input is a zero-mean RV

e All input vectors are mapped onto a point on the
principal axis

67



The Simplest Autencoder

e Simply varying the hidden representation will
result in an output that lies along the major
axis

68



The Simplest Autencoder

* Simply varying the hidden representation will result in
an output that lies along the major axis

* This will happen even if the learned output weight is
separate from the input weight

— The minimume-error direction is the principal eigen vector

69



For more detailed AEs without a non-
linearity

Y=WX| | X=WTY | E =X —W"WX]||* Find W to minimize Avg[E]
* This is still just PCA

— The output of the hidden layer will be in the principal subspace

* Even if the recomposition weights are different from the “analysis”
weights 70



Terminology

DECODER

ENCODER

 Terminology:

— Encoder: The “Analysis” net which computes the hidden

representation

— Decoder: The “Synthesis” which recomposes the data from the

hidden representation
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Introducing nonlinearity

DECODER

ENCODER

*  When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data

— Varying the hidden value will move along this linear manifold
*  When the hidden layer has non-linear activation, the net performs nonlinear PCA
— The decoder represents the best non-linear manifold to fit the data
— Varying the hidden value will move along this non-linear manifold 72



The AE

DECODER

With non-linearity

“Non linear” PCA
— Deeper networks can capture more complicated manifolds

* “Deep” autoencoders



Some examples

G
)

e 2-Dinput
* Encoder and decoder have 2 hidden layers of 100
neurons, but hidden representation is unidimensional

* Model seems to learn underlying helix structure




The learned manifold
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* Not a “clean” function even in range of training points (Red)
— Color shows value of z
— z does not vary smoothly along the curve, but bounces back and forth
— Learns manifold structure (bar) that is not represented in training data
* Does not generalize outside the range of training points (Blue)

— Extending the range towards the center of the spiral resulted in decoded
values outside the page!



The learned manifold
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* Not a “clean” function even in range of training points (Red)
— Color shows value of z
— z does not vary smoothly along the curve, but bounces back and forth
— Learns manifold structure (bar) that is not represented in training data
* Does not generalize outside the range of training points (Blue)

— Extending the range towards the center of the spiral resulted in decoded
values outside the page!



Another example

* Learning to reconstruct a sinusoid

— Input (left): data on a spiral manifold
— Output (right): Decoded data

 AE seems to “learn” the underlying curved manifold



Some examples

/
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0 2 4 6 8

 The model is specific to the training data..

— Varying the hidden layer value only generates data along the
learned manifold

S

* May be poorly learned
— Any input will result in an output along the learned manifold



The AE

* When the hidden representation is of lower dimensionality

often called a “bottleneck” network

— Nonlinear PCA

’

than the input

— Learns the manifold for the data

* |If properly trained



 The decoder can only generate data on the
manifold that the training data lie on

* This also makes it an excellent “generator” of the
distribution of the training data

— Any values applied to the (hidden) input to the
decoder will produce data similar to the training data



The Decoder:
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 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!
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Sax dictionary

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!
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The Decoder:

Clarinet dictionary

ASS **
\‘§ — CO DER

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!
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A cute application..

* Signal separation...

* Given a mixed sound from multiple sources,
separate out the sources



Dictionary-based techniques

Compose

* Basicidea: Learn a dictionary of “building blocks” for
each sound source

All signals by the source are composed from entries
from the dictionary for the source
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Dictionary-based techniques

Compose

S22
I )] ] ]| T
H — o

[ON P
Crash  Closed Open Ride Left Right Snare Floor Bass Hi-H

e Learn a similar dictionary for all sources
expected in the signal
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Guitar Drum
music music

Compose Compose

N L]

Cymbal Hi-Hat Hi-Hat Cymbal Rack Rack Drum  Tem Drum  Ped:

* A mixed signal is the linear combination of
signals from the individual sources

— Which are in turn composed of entries from its
dictionary
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e Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal
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L Drum
\music

Compose Compose

TT
Tt
Crash ¢l

T
] (N

1{[{}

e Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal

 The composition from the identified dictionary entries gives you

the separated signals
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Learning Dictionaries

D;(0,t) -+ Dy(F,t) D,(0,t) -+  Dy(F,t)
11~/ AN A
foeE1 0 \ / foe O
fen10O / \ fen20
ST ST TN

D:(0,t) - D1(F t) D,(0,t) ™ Dy(F,t)

e Autoencoder dictionaries for each source

— Operating on (magnitude) spectrograms

For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source
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Model for mixed signal

testset Cost function
X(f,t)

Yo YL YED ] =Y IX(F,0 =Y O

fDElO\/_V—/ \;/fDEZ 0

L,(0,t) - I(H,1) I,(0,t) - I(H,1)

Estimate I; () and I, () to minimize cost function J()

The sum of the outputs of both neural
dictionaries

— For some unknown input
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Separation

Test Process testset B Cost function
X(f, o) 5 LA

von Ywn - YED 1= >0 - ¥ Ol

fDElO\/_V—/ \;/fDEZ 0

1,(0,¢t) -+ I;(H,¢) 1,(0,t) - I,(H,t) H : Hidden layer size

Estimate I; () and I, () to minimize cost function J()

* Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal

— Simple backpropagation
* |Intermediate results are separated signals
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Example Results

Mixture Separated Separated

Original Original

5-layer dictionary, 600 units wide

* Separating music
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Story for the day

* C(Classification networks learn to predict the a posteriori
probabilities of classes

— The network until the final layer is a feature extractor that
converts the input data to be (almost) linearly separable

— The final layer is a classifier/predictor that operates on linearly
separable data

* Neural networks can be used to perform linear or non-
linear PCA

— “Autoencoders”
— Can also be used to compose constructive dictionaries for data

* Which, in turn can be used to model data distributions



