! MachineLeaming For SignalProcesing‘ Group

Neural Networks

Representations

Learning in the net

* Problem: Given a collection of input-output
pairs, learn the function

X

Learning for classification

X1

When the net must learn to classify..

— Learn the classification boundaries that separate
the training instances

Learning for classification
v/

*
P s & s =@

. .o....
St T e

P
. P
* % a8 @

*

Xy e

L IR) *s »
. e,

* |n reality

— In general not really cleanly separated
* So what is the function we learn?

In reality: Trivial linear example

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors

Non-linearly separable data: 1-D example

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots

Undesired Function

A

(]
)

GO @ p0 GICD F-SSTT-TC

e o s see alecsslielsldel ld o

v

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots

What if?

y

o ooohe ..ﬁ. ooee oo

o s seatie e X

v

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots

What if?

V4

90 instances
\'J/ 10 instances
\/]

X

e What must the value of the function be at this
X?
— 1 because red dominates?

— 0.9 : The average?

What if?

V4

90 instances
\'J/ 10 instances
\/]

X

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic

What if?

y

Should an infinitesimal hudge 90 instances

of the red dot change the function
estimate entirely?

If not, how do we estimate P(1]X)? 10 instances
(since the positions of the red and blue X
Values are different) \ S

v

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic

The probability of y=1

A\
) eo 0po 0000 0 000 0 0 0

“\

\

|

\ \

‘x o f
_/

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of Y=1 at that point

The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

Y
A
. o0 O PO 0000 O 000 O O O
\
| |
| |
\\ //
AN

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

e | 0O O PO 0000 O 000 O O O
“ |

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

y

P
N\
/

* 0@ 0“.

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

y

A\

o®

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

y

N\
/

/ \
[] o0 O PO 0000 © 000 0 O O

|
/

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

20

The probgbility of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

21

The probability of y=1

/"\
\

. L....

\

\ \ / /
N2

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

22

The probability of y=1

y
/// \\

o L... ...

|

/

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

23

The probability of y=1

y

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The logistic regression model

1
P(y=1x)=
(y ‘) 1+ e—(Wo"‘WNC)

y=1

y=0

* Class 1 becomes increasingly probable going left to right
— Very typical in many problems

25

The logistic perceptron

* Asigmoid perceptron with a single input models
the a posteriori probability of the class given the
input

Non-linearly separable data

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors

27

Logistic regression

P(Y =1]|X) = ! Decision: y > 0.5?

1+ exp(—(Ziwixi + WO))

When X is a 2-D variable X,

* This the perceptron with a sigmoid activation
— It actually computes the probability that the input belongs to class 1

— Decision boundaries may be obtained by comparing the probability to a threshold
* These boundaries will be lines (hyperplanes in higher dimensions)

* The sigmoid perceptron is a linear classifier -

Estimating the model

y

|
P(y‘x) = f(x) = —(Wp+wix)
l+e

* Given the training data (many (x, y) pairs
represented by the dots), estimate wy and wy
for the curve

29

Estimating the model

* Easier to represent using ay = +1/-1 notation

y

| |
P(y=1x)= P(y=-lx)=
S ‘) |4 o) o ‘)] 4o
|
P(y‘x) = 1+e—y(w0+wlx)

30

Estimating the model

* Given: Training data
(X1, ¥1), (X2, ¥2), o, (XN, YN)

* Xs are vectors, ys are binary (0/1) class values
* Total probability of data

P((X1:Y1)» (X2,¥2)) v (XN»)’N)) = HP(Xi:Yi)

1
= | [Pouxoreo = | | mmmms P00
l

l

31

Estimating the model

* Likelihood
P(Training data) = 1_[

l

P(X;)

1 + e Yilwotw'X;)

* Log likelihood
log P(Training data) =

Z log P(X;) — Z log (1 + e‘yl'(WOJrWTXi))
i i

32

Maximum Likelihood Estimate

Wy, Wy, = argmaxlog P(Training data)
Wo,W1q

Equals (note argmin rather than argmax)

Wo, Wy = argminz: log (1 -+ e—Yi(W0+WTXi))
l

Wo, W

ldentical to minimizing the KL divergence

between the desired output y and actual output
1

14+e~ (W0+WTXi)

Cannot be solved directly, needs gradient descent

33

So what about this one?
/

»
» »
X) se® _a®* o

. te? o

o 2%, . ®s s s @ »
s s snnse %
»

PY
& P S a%seanss

* Non-linear classifiers..

First consider the separable case..

Wk
*
. » s~ & = . ®
.8
. pe 0t Bt e
® e ..'.‘
Y ** T,/ ® %
o« T * 8% see . .
« ¥ % @ .
* * .
X)<wa® _o® soe o
v e e e 8%
P s s o/%
'..tttl..'.t —
* P L a%seavpsn ® .
..

* When the net must learn to classify..

First consider the separable case..

*
P s~ & = P
.« 0% »
. pe 0t Bt e
..t'.'.’
Y ** T,/ ® %
o« T * 8% see .'
."ct:...
.'..'.t'.. * *
Xy wa® _» R A
v e e e 8%
P s s o/%
.ttt'.t..'.'
* % L a%seavpan ® .
..

e For a “sufficient” net

First consider the separable case..

*
P s~ & = P
s L%
..'.... s s @
® e PR Vi
Y .:Ot. ‘:t

* 2 2" sae
* » Pt :.
c'.o'.t'.. * *
X)<wa® _o® soe o
*\® e v se,.e%e
o ® P * .
o 2% o %8 s & @ Py
..tt'....'o.
* % L a%seavpan ® .
..,

X1

e For a “sufficient” net

* This final perceptron is a linear classifier

First consider the separable case..

»
P s~ & = . @
. 'o.t.c
;.'o.. . s s "
."to'.'. P
* se/® P
o« T * 8% s0e . *
P e L I
* Y * ot *

e For a “sufficient” net

* This final perceptron is a linear classifier over
the output of the penultimate layer

First consider the separable case..

*
‘0
<@
*
L 2
<@
*
F 4 e
<
s YOS SR
yz . .

.0
L 4
.0
*

.0
*
L 4
.0
*

Y1

* For perfect classification the
output of the penultimate layer must be
linearly separable

First consider the separable case..

A t S
. * o .’" »
., e te .,
.0
. 0% $e e **
» o e, B85 4 @
”» *e v »
aa e v, # ¥ em
$.7 ¢ . o%e 8
) PO R P
‘.‘ * L 0t
» .
. .‘o‘. ' ® .,
*e s & ‘e,
s *
»
Y1

* The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features

First consider the separable case..

* The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features

— We can now attach any linear classifier above it for perfect classification
— Need not be a perceptron
— In fact, for binary classifiers an SVM on top of the features may be more generalizable!

First consider the separable case..

* This is true of any sufficient structure
— Not just the optimal one
* For insufficient structures, the network may attempt to transform the inputs to
linearly separable features
— Will fail to separate
— Still, for binary problems, using an SVM with slack may be more effective than a final perceptron!

Mathematically..

Yout = 1+exp(b+WTY) 1+exp(b+WTf(X))
The data are (almost) linearly separable in the space of Y
The network until the second-to-last layer is a non-linear function

f(X) that converts the input space of X into the feature space
Y where the classes are maximally linearly separable

Story so far

* A classification MLP actually comprises two
components

— A “feature extraction network” that converts the
inputs into linearly separable features

* Or nearly linearly separable features

— A final linear classifier that operates on the
linearly separable features

An SVM at the output?

* For binary problems, using an SVM with slack may be more effective than'a final
perceptron!
* How does that work??

— Option 1: First train the MLP with a perceptron at the output, then detach the feature extraction,
compute features, and train an SVM

— Option 2: Directly employ a max-margin rule at the output, and optimize the entire network
* Left as an exercise for the curious

How about the lower layers?

How do the lower layers respond?
— They too compute features
— But how do they look
Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold
Layers sequentially “straighten” the data manifold

— Until the final hidden layer, which fully linearizes it

The behavior of the layers

2-3-1 NN: Forward transformations
Mean Squared Error (epoch () X

0.5
0.4
0.3
0
0.2
0.1
0 -0.5

50 100 150

A=XiWi+b

5+ 1
0 / 0
5

5.l 0 1
5 1

0 5 -5

Ay =Hye Wi+ by

0.5 0.5
0 S 0
-05 0.5

5 0 5

* Synthetic example: Feature space

The behavior of the layers

Acenracy (epoch 0)

80
60 [
40

20

5 10 15

»x10% PCA(H;)

20

25

PCAHY)

5

-1 -0.5 0 0.5

15

%10%3

10

-10

NN: Ir = 0.001

PCA(X)
0
»10°
6 5 -4 3 2 1 0 1 2
%102
w0 12
%10°
2 1 0 1 2 3 4
x10%

600

400

200

0.5

2555}

15

PCA(HL)

-600

-400 -200 0 200 400

PCA(H,)

<107
PCA(Hy)

3 4
%101
2 A 0 1 2 3 4
»104

The behavior of the layers

NN: Ir = 0.001

W Acenracy (epoch 0} PCAX) PCA(H))
1
80 20 500
60 o
40
-500
20 1000
(4]
10 20 30 40 50 60 70 80 90 -500 -1000
PCA(H,) PCA(H))
108
5
4]
-5
=
22) 107 el
PCA(H,) PCA(H;)

10
%10°

When the data are not separable and
boundaries are not linear..

v/

*
. ® s & = P
.t
Y » s s @
..' e * @
"'.t'.'. P
Py *e @ *
o« ¥ ® 2% soe . .
P ';0:' . *
;'..'.t'o. * *
X) 08 _a® s0e o
*8® e se.et o
-® . * .
o 8%, ., %8s s 8 @ Py
...tcott,’ot
* P L a%sasnpan ® .
..

X4

* More typical setting for classification
problems

Inseparable classes with an output

y2 *e 5".

Y1

logistic perceptron
$ | /@NIZ
s AN

.
. e s W s e
X o;o:':':'.o. X
1 :..".::: ., 2
* e aene *
......t.'... :. .
et Tt e "
s ofe g -.:o'.o
. .'.'a'o.t:o.oo..$ P
. s e®sssnne * ’{'

 The “feature extraction” layer transforms the data
such that the posterior probability may now be

modelled by a logistic

Inseparable classes with an output
logistic perceptron

1

—(wy +wa)

P(yx)=f(x)=
I+

e

 The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic

— The output logistic computes the posterior probability of the class
given the input

When the data are not separable and
boundaries are not linear..

*
. ® s & = .
.« * _®
*pt Pt e T e
..t‘t’.'
Y * % L8 *
.'t.'to. .'
P .:n:...
o‘.o"t'o. * *
X) ae® _s® soe s
* e e s ss.8" o
-® . * .
o %, . % s 8 @ Py
......tt.'oc
* P L a%sasnpan ® .
..

* The output of the network is P(y|x)

— For multi-class networks, it will be the vector of a
posteriori class probabilities

Lo very Ké/}y w this book may be a//‘o/g//

= Richard Bach (lllusions)

ILLUSIONS

The Adventures of a
Reluctant Messiah

L
* » o
L]
sel
L

'i"llegluriuusbc lerby >
Richard Bach
author of Jonat! ivingston Seagull

st

There’s no such thing as inseparable

Py
P s & = PR
A .Q.t..
t.';.. . PP
*en a® g @
'Y ': .e W ’:.
* 2 a"sae
* 'Y P :.
.'..'.o'.. » d
X5 @ e sase s
. @ * o
PN W »
. ?® . Py .
o 8%, 4 % s e » »
..ttocct.".
* 8 S %y epeae ® .
..,

* A sufficiently detailed architecture can separate nearly any
arrangement of points
— “Correctness” of the suggested intuitions subject to various

parameters, such as regularization, detail of network, training
paradigm, convergence etc..

Changing gears..

Intermediate layers

We've seen what the network learns here

Recall: The basic perceptron

1 lf Z W;X; >T
Welghts y = >

X —— 0 else
W T _

X2 j{f \ Sum 4‘_'7 D;.tput
W] [

X3 // H___,/
: S y = -
. S 0 else
Wy .

 What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold

58

Recall: The weight as a “template”

X'w>T
Waeights
W)
W: \“\«\/”\\S /j‘J: Output cos 0 ~ m
a Y U }—» y T
;W \:(/\// ThEshoIdT 0 < (,'OS_1 —_—
-/ X
WN//

The perceptron fires if the input is within a specified angle of the weight
— Represents a convex region on the surface of the sphere!
— The network is a Boolean function over these regions.

* The overall decision region can be arbitrarily nonconvex
Neuron fires if the input vector is close enough to the weight vector.
— If the input pattern matches the weight pattern closely enough

59

Recall: The weight as a template

W X

Correlation = 0.57 Correlation = 0.82\‘
Y = - y

Qelse

 |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

* The perceptron is a correlation filter!

60

Recall: MLP features

DIGIT OR NOT?

|2

=i

The lowest layers of a network detect significant features in the

signal

The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal 61

Making it explicit

H3hb

x |24

1

all

x |24

=i

* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

— Will this work?

* Simply recompose the detected features

Making it explicit

x |24

13k

x |24

all

* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

* Simply recompose the detected features

— Will this work?

63

Making it explicit: an autoencoder

H3hb

x |24

1

all

x |24

=i

* A neural network can be trained to predict the input itself

* This is an autoencoder

* An encoder learns to detect all the most significant patterns in the signals

* A decoder recomposes the signal from the patterns

The Simplest Autencoder

* Asingle hidden unit
e Hidden unit has linear activation
e What will this learn?

65

The Simplest Autencoder

Training: Learning W by minimizing

X L2 divergence
R =wlwx
div(®,x) = [lx — &[|* = [lx — w'wx]|?

W = argmin E[div(%,x)]
w

W = argmin E[||x — wT wx||?]
w

* This is just PCA!

66

The Simplest Autencoder

e The autoencoder finds the direction of maximum
energy

— Variance if the input is a zero-mean RV

e All input vectors are mapped onto a point on the
principal axis

67

The Simplest Autencoder

e Simply varying the hidden representation will
result in an output that lies along the major
axis

68

The Simplest Autencoder

* Simply varying the hidden representation will result in
an output that lies along the major axis

* This will happen even if the learned output weight is
separate from the input weight

— The minimume-error direction is the principal eigen vector

69

For more detailed AEs without a non-
linearity

Y=WX| | X=WTY | E =X —W"WX]||* Find W to minimize Avg[E]
* This is still just PCA

— The output of the hidden layer will be in the principal subspace

* Even if the recomposition weights are different from the “analysis”
weights 70

Terminology

DECODER

ENCODER

 Terminology:

— Encoder: The “Analysis” net which computes the hidden

representation

— Decoder: The “Synthesis” which recomposes the data from the

hidden representation

71

Introducing nonlinearity

DECODER

ENCODER

* When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data

— Varying the hidden value will move along this linear manifold
* When the hidden layer has non-linear activation, the net performs nonlinear PCA
— The decoder represents the best non-linear manifold to fit the data
— Varying the hidden value will move along this non-linear manifold 72

The AE

DECODER

With non-linearity

“Non linear” PCA
— Deeper networks can capture more complicated manifolds

* “Deep” autoencoders

Some examples

G
)

e 2-Dinput
* Encoder and decoder have 2 hidden layers of 100
neurons, but hidden representation is unidimensional

* Model seems to learn underlying helix structure

The learned manifold

40 e 700
350

3 650

300

201
250 600

10 A
200

550

0 F 150

- 500
2 - 100
—10 4

50 F 450
_20 -

T T T T T
=20 —10 0 10 20

* Not a “clean” function even in range of training points (Red)
— Color shows value of z
— z does not vary smoothly along the curve, but bounces back and forth
— Learns manifold structure (bar) that is not represented in training data
* Does not generalize outside the range of training points (Blue)

— Extending the range towards the center of the spiral resulted in decoded
values outside the page!

The learned manifold

700

650

250 600
200
550

F 150

F 100

450

T T T T T
=20 —10 0 10 20

* Not a “clean” function even in range of training points (Red)
— Color shows value of z
— z does not vary smoothly along the curve, but bounces back and forth
— Learns manifold structure (bar) that is not represented in training data
* Does not generalize outside the range of training points (Blue)

— Extending the range towards the center of the spiral resulted in decoded
values outside the page!

Another example

* Learning to reconstruct a sinusoid

— Input (left): data on a spiral manifold
— Output (right): Decoded data

 AE seems to “learn” the underlying curved manifold

Some examples

/
o4
14

T T T T T

0 2 4 6 8

 The model is specific to the training data..

— Varying the hidden layer value only generates data along the
learned manifold

S

* May be poorly learned
— Any input will result in an output along the learned manifold

The AE

* When the hidden representation is of lower dimensionality

often called a “bottleneck” network

— Nonlinear PCA

’

than the input

— Learns the manifold for the data

* |If properly trained

 The decoder can only generate data on the
manifold that the training data lie on

* This also makes it an excellent “generator” of the
distribution of the training data

— Any values applied to the (hidden) input to the
decoder will produce data similar to the training data

The Decoder:

I2d45h6 1HH0

() ((
T > —— -
\\\s%;ég::‘?t;?“ CODER
"//“a"};o‘\’\w/-?&:\\\'

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!

81

Sax dictionary

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!

82

The Decoder:

Clarinet dictionary

ASS **
\‘§ — CO DER

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!

83

A cute application..

* Signal separation...

* Given a mixed sound from multiple sources,
separate out the sources

Dictionary-based techniques

Compose

* Basicidea: Learn a dictionary of “building blocks” for
each sound source

All signals by the source are composed from entries
from the dictionary for the source

85

Dictionary-based techniques

Compose

S22
I)]]]| T
H — o

[ON P
Crash Closed Open Ride Left Right Snare Floor Bass Hi-H

e Learn a similar dictionary for all sources
expected in the signal

86

Guitar Drum
music music

Compose Compose

N L]

Cymbal Hi-Hat Hi-Hat Cymbal Rack Rack Drum Tem Drum Ped:

* A mixed signal is the linear combination of
signals from the individual sources

— Which are in turn composed of entries from its
dictionary

87

oy
) ==
3 ION <=

I\ o N

e Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal

88

L Drum
\music

Compose Compose

TT
Tt
Crash ¢l

T
] (N

1{[{}

e Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal

 The composition from the identified dictionary entries gives you

the separated signals

89

Learning Dictionaries

D;(0,t) -+ Dy(F,t) D,(0,t) -+ Dy(F,t)
11~/ AN A
foeE1 0 \ / foe O
fen10O / \ fen20
ST ST TN

D:(0,t) - D1(F t) D,(0,t) ™ Dy(F,t)

e Autoencoder dictionaries for each source

— Operating on (magnitude) spectrograms

For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source

90

Model for mixed signal

testset Cost function
X(f,t)

Yo YL YED] =Y IX(F,0 =Y O

fDElO\/_V—/ \;/fDEZ 0

L,(0,t) - I(H,1) I,(0,t) - I(H,1)

Estimate I; () and I, () to minimize cost function J()

The sum of the outputs of both neural
dictionaries

— For some unknown input

91

Separation

Test Process testset B Cost function
X(f, o) 5 LA

von Ywn - YED 1= >0 - ¥ Ol

fDElO\/_V—/ \;/fDEZ 0

1,(0,¢t) -+ I;(H,¢) 1,(0,t) - I,(H,t) H : Hidden layer size

Estimate I; () and I, () to minimize cost function J()

* Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal

— Simple backpropagation
* |Intermediate results are separated signals

92

Example Results

Mixture Separated Separated

Original Original

5-layer dictionary, 600 units wide

* Separating music

93

Story for the day

* C(Classification networks learn to predict the a posteriori
probabilities of classes

— The network until the final layer is a feature extractor that
converts the input data to be (almost) linearly separable

— The final layer is a classifier/predictor that operates on linearly
separable data

* Neural networks can be used to perform linear or non-
linear PCA

— “Autoencoders”
— Can also be used to compose constructive dictionaries for data

* Which, in turn can be used to model data distributions

