! MachineLeaming For SignalProcwing_ Group

Neural Networks:
Optimization Part 1

Intro to Deep Learning, Spring 2019

Story so far

Neural networks are universal approximators
— Can model any odd thing

— Provided they have the right architecture

We must train them to approximate any function
— Specify the architecture
— Learn their weights and biases

Networks are trained to minimize total “error” on a training
set

— We do so through empirical risk minimization
We use variants of gradient descent to do so

The gradient of the error with respect to network
parameters is computed through backpropagation

Recap: Gradient Descent Algorithm

* |In order to minimize any function f(x) w.r.t. x
A

e |nitialize:
f(X)
_xO
k=0

—

» While |f(x**1) — f(x*)| > ¢
—Xk+1 — xk _TIfoT
—k=k+1

> X

Xo X1X%; xsfi“ X3

Training Neural Nets by Gradient Descent

Total training error:

1
Err = Tz Div(yt, dt, Wl,Wz, ...,WK)
t

* Gradient descent algorithm:
* Initialize all weights W, W,, ..., Wy
* Do:
— For every layer k, compute:
* Vw, Err =~ %, T, Div(Y,, d,)
* Wy = W, —nlhy, Err’

* Until Err has converged

Training Neural Nets by Gradient Descent

Total training error:

1
Err = Tz Div(yt, dt, Wl,Wz, ...,WK)
t

* Gradient descent algorithm:
* Initialize all weights W, W,, ..., Wy
* Do:
— For every layer k, compute:
* Vw, Err = %
* Wy = Wy —nlhy, Err

* Until Err has converged

Vector formulation

* For layered networks it is generally simpler to
think of the process in terms of vector
operations

— Simpler arithmetic
— Fast matrix libraries make operations much faster

* We can restate the entire process in vector
terms
— This is what is actually used in any real system

Vector formulation

. - (k) - (k)
y y(1) X1 Zi) 3’1()
1 < = |*? () (k)
: Zp = |2 Vi = |7 2
(1) XD :
- (k) (k)
X2 _ZDk J _ka i
", (k)
- (k) GO () b
Wii Wy - Wp,_ 1 btk)
(k) (k) : (k) —
W, = Wizw Wy - Wp, 2 by 2
© b ® o
D1
(1) \Wip, Wop, = Wp._.D,. o

 Arrange all inputs to the network in a vector x

* Arrange the inputs to neurons of the kth layer as a vector z;,

* Arrange the outputs of neurons in the kth layer as a vector yj
* Arrange the weights to any layer as a matrix W,

— Similarly with biases

Vector formulation

(1

X1

(1)
Wpbp

 The computation of a single layer is easily expressed in matrix

notation as (setting yo = X):

Zy = Wiyg—1 1 by

Yk

_Zik)
(k)
z), = |2
")
_ZDk i
(k) : (k)
W21 - Wp,_ 1
k) . (k)
Ws2 - Wp, 2
© W
Wob, °° Wp,_.D.d

Vi = fr(Zi)

L
()

(O

L Dg414

The forward pass: Evaluating the
network

The forward pass

The forward pass

y1 = f1(zy)
The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
V2 = f2(W2f1(Wix + b;) + by)

The forward pass

o Yn_1

The Complete computation
V2 = f2(W2f1(Wix + b;) + by)

The forward pass

The Complete computation
Y = fiy(Wyfy-1(.. 2(Wo f1(Wix + by) +by)...) + by) i

Forward pass

Forward pass:
Initialize

Fork =1to N:

Output

Yo =X

— Div

Z, = Wiyi—1 + by

Vi = fr(Zy)

Y=y

The Forward Pass

* Setyp, =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

The backward pass

e The network is a nested function

Y = fy(Wy fy—1(Co fo(Wo fi(Wix + by) +by) ..) + by)
* The error for any X is also a nested function

Div(Y,d) = Div(fy(Wyfy-1(... (W f;(Wyx+by) +b;)...) +by),d)

Calculus recap 2: The Jacobian

* The derivative of a vector function w.r.t. vector input is called
a Jacobian

* |tis the matrix of partial derivatives given below

L o Oy Oy Oy
Y2 =f 2 dz; 0z, 9z

dy, 0dy, %
il A, W@ =2z, 3z, " 9z
Using vector notation
y = f(@) Iy OYu - m

| dzy 02z, d0zp .

Check: | Ay = J,(z)Az

19

Jacobians can describe the derivatives
of neural activations w.r.t their input

=S dy,]
(e 0 ;
\./]y(Z) = de
— 0 0 4Yp
dzp
\—|

* For Scalar activations
— Number of outputs is identical to the number of inputs
e Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs
— Not showing the superscript “(k)” in equations for brevity 20

Jacobians can describe the derivatives
of neural activations w.r.t their input

z [

-------- *

y

vi = f(z;)
_f’(Z1)
Jy(z) = 0
0

0
f'(z2)

0

* For scalar activations (shorthand notation):

— Jacobian is a diagonal matrix

0
0

f'(zu).

— Diagonal entries are individual derivatives of outputs w.r.t inputs

21

For Vector activations

P...
v
fffff
e
k R
.

. RS
. o~
s o m
s e ay
- x n
R oy
L0
LI 2
* 8 ':

* u as
P sad
e v 3
s e
0. e
. apy s
. agte "
(X *0 E
:‘ 3
LRI
a s Ele
- v
s 0
‘ue "o
* ne W
L] "-
o
® ag®
& e
153 .
* gu
» g
) : ’Q -
-
LY .
5 .
» Cs
il ‘q
e *
Ll +*
~ .*
fo°

]y(z) —

e Jacobian is a full matrix

— Entries are partial derivatives of individual outputs
w.r.t individual inputs

[0y,

0z,
Y2
0z,

5%y

9y,
0z,
9y,
0z,

5%y

| 074

0z,

%0

0z

dy;
0z

%Y

dzp .

22

Special case: Affine functions

Z=Wy+b

4

]Z(Y) =W

* Matrix W and bias b operating on vector y to
produce vector z

* The Jacobian of z w.r.t y is simply the matrix W

23

Vector derivatives: Chain rule

e We can define a chain rule for Jacobians
* For vector functions of vector inputs:

z=g(x)
y=f(2)

y=f(g (X))f‘ Jy(X) = Jy(z)],(x)
@ Check

Az = J,(x)Ax
Ay = Jy(z)Az

Ay = Jy(2)](x)Ax = Jy(X)AX

Note the order: The derivative of the outer function comes first

24

Vector derivatives: Chain rule

e The chain rule can combine Jacobians and Gradients

* For scalar functions of vector inputs (g () is vector):

D =f(g(x)

{

z = g(x)
D = f(z)

ViD = V;(D)],(x)

Check [7z = J,(x)Ax
AD = V,(D)Az

AD =V,(D)],(x)Ax = V,DAx

Note the order: The derivative of the outer function comes first 25

Special Case

e Scalar functions of Affine functions

Derivatives w.r.t
parameters

D = f(Wy + b) 7,D = V,(D)W
z=Wy+b %D = 1(D)
VwD = yV,(D)
D = f(z) 1

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

26

The backward pass

Y — Div

In the following slides we will also be using the notation VY to represent
the Jacobian Jy(z) to explicitly illustrate the chain rule

In general I/,b represents a derivative of b w.r.t. a and could be a gradient (for scalar b)
Or a Jacobian (for vector b)

The backward pass

— Div

First compute the gradient of the divergence w.r.t.Y.
The actual gradient depends on the divergence function.

The backward pass

v, Div = VyDiv.V, Y

The backward pass

V,yDiv = VyDiv Jy(zy)

The backward pass

Wy Div =V, Div.Vy Zy YN-1

The backward pass

Vyy_,Div =V, Div Wy Vyn_ Div

The backward pass

V,._,Div =V, Div Wy

— Div

Vw,Div = yy_1V;, Div

VbNDiU = |7ZNDiU

The backward pass

VZN_lDiU = VYN—lDiU' VZN_1YN—1 ZN—-1

The backward pass

— Div

O i .
Vay_ DIV = VYN—1Div]YN—1 (Zyn-1)

V. Div

The Jacobian will be a diagonal ZN-1
matrix for scalar activations

The backward pass

Wy, Div="V,, Div.l Zy_ 4

The backward pass

V,._,Div =", _Div Wy_4

The backward pass

— Div

V., Div =", _DivWy_ No
N e N gy Div=", _Div

The backward pass

v, Div =V, Div], (z,)

The backward pass

— Div

Vw,Div = XV, Div | Insome problems we will also want to compute
. . the derivative w.r.t. the input
Vp, Div = 1 Div P

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:
— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass
— Recursion:
V., Div =V, Div], (z)
.., Div =V, Div W
— Gradient computation:
Vw, Div = y,_1V,, Div
Vp, Div =V, Div

41

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:

— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass

— Recursion: Note analogy to forward pass
V., Div ="V, Div], (z)

V., Div =V, Div W,

— Gradient computation:
Vkaiv — yk_1\7sziv
kaDiU = \7ZkDiU

42

For comparison: The Forward Pass

* Setyp, =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

Neural network training algorithm

* Initialize all weights and biases (W;,b;,W,,b,, ..., Wy, by)
* Do:

— Err=20
— Forall k, initialize Wy, Err = 0, V, Err = 0
— Forallt = 1:T

* Forward pass : Compute
— Output Y(X;)
— Divergence Div(Y,, d;)
— Err += Div(Y,, d,)
* Backward pass: For all kK compute:
~ W, Div =V, 1,Div Wy,
- W, Div ="V, Div], (2)
- Vw,Div(Y, dy); Vy, Div(Y,, d,)
— Vw Err +=Vyw, Div(Yy, dy); Vy Err += Vy, Div(Yy, dy)

— For all k, update:
T T
Wk = Wk - g (VWRETT) ; bk = bk _g(VWkETT)

* Until Err has converged

44

Setting up for digit recognition

Training data

(‘:S.I O) (2_,’ 1) AN AN
(2,1) (4,0
(6,0) (#,1)

neuron

* Simple Problem: Recognizing “2” or “not 2”
* Single output with sigmoid activation

— Y €(0,1)

— diseitherOor1
* Use KL divergence

Backpropagation to learn network parameters 45

Recognizing the digit

Training data

(3,0) (%, 1)
(1) (+,0)
(60) (=,1)

* More complex problem: Recognizing digit
 Network with 10 (or 11) outputs

— First ten outputs correspond to the ten digits
e Optional 11th is for none of the above

* Softmax output layer:
— ldeal output: One of the outputs goes to 1, the others go to O
* Backpropagation with KL divergence to learn network

46

Issues

Convergence: How well does it learn

— And how can we improve it

How well will it generalize (outside training
data)

What does the output really mean?
Etc..

Onward

48

Onward

Does backprop always work?

Convergence of gradient descent
— Rates, restrictions,

— Hessians

— Acceleration and Nestorov

— Alternate approaches

Modifying the approach: Stochastic gradients
Speedup extensions: RMSprop, Adagrad

Does backprop do the right thing?

* |s backprop always right?

— Assuming it actually find the global minimum of
the divergence function?

50

Does backprop do the right thing?

Is backprop always right?

— Assuming it actually find the global minimum of the
divergence function?

In classification problems, the classification error is a
non-differentiable function of weights

The divergence function minimized is only a proxy for
classification error

Minimizing divergence may not minimize classification
error

Backprop fails to separate where

perceptron succeeds

('110)

5
O

& (0.1),+1

(1,0),@>

* Brady, Raghavan, Slawny, ‘89

y

¢

Z

O
x 1

* Simple problem, 3 training instances, single neuron

* Perceptron training rule trivially find a perfect solution

52

Backprop vs. Perceptron

=0

* Back propagation using logistic function and L,
divergence (Div = (y — d)?)

* Unique minimum trivially proved to exist, Preceptron
rule finds it -

Unique solution exists

y
A
('110)1
> Z
e letu = f71(1-9)
— E.g.u = f71(0.99) representing a 99% confidence in the class @) 1
X

 From the three points we get three independent equations:

Wy.1+w,.0+b=u
Wye.0+wy,. 1+b=u
Wy.—14+w,.0+b = —u
* Unique solution (w,= u,w, = u,b = 0) exists

— represents a unique line regardless of the value of u 54

Backprop vs. Perceptron

y
A
& (0.1),+1
(-1,0),-1)
O O (1'0)'@> z
| @ (0"t)'@ O
x 1

* Now add a fourth point
e tisverylarge (point near —oo)

* Perceptron trivially finds a solution (may take t2
iterations)

55

Backprop

R y
Notation:
y = 0(z) = logistic activation 6 (01)
('110);@ (1 0)
@ O > Z

* Consider backprop:
e Contribution of fourth point

to derivative of L, error: — @ (0,-t),@ o

x 1

div, = (1 —&— O'(—Wyt + b)) 2
ddiv, 1-¢ is the actual

dw, 2 (1 —e—o(-wyt+ b)) o'(-wyt + b)t achievable value

ddiv,
db

-2 (1 —&— O'(—Wyt + b)) 0’(—Wyt +b)

56

Backprop

Notation: d divy _
y = d(z) = logistic activation dw,,

2 (1 —c— O'(—Wyt + b)) O"(—Wyt +b)t

L e [2 '
div, = (1 £ a(wyt + b)) % _ 9 (1 _ a(—wyt n b)) a’(—wyt + b)t

* For very large positive t, ‘Wy‘ > € (Where w = [Wx, Wy, b])

(1—8—0‘(—Wyt+b))—>1 ast — oo

0’(—Wyt + b) — 0 exponentially ast — oo

* Therefore, for very large positive t

ddiv4_ddiv4_0
dw, db

57

Backprop

y
A
('110)1
> Z
t very large
\ . (Ol-t)l@ O
xy 1

The fourth point at (0, —t) does not change the gradient of the L,
divergence near the optimal solution for 3 points

The optimum solution for 3 points is also a broad local minimum (0
gradient) for the 4-point problem!

— Will be trivially found by backprop nearly all the time

* Although the global minimum will separate for unbounded weights 58

Backprop

A
® (0,1), +1 }
('110)1 -

O (0,-t), +1

O
x 1
Local optimum solution found by backprop

Does not separate the points even though the
points are linearly separable!

59

Backprop

y
: A
:.: ‘ (011)1 +1
('110)1 -1 (1’0)’ +1
> Z
. (Ol-t)l +1 O
x 1

Solution found by backprop

Does not separate the points even though the points are linearly
separable!

Compare to the perceptron: Backpropagation fails to separate

where the perceptron succeeds -

Backprop fails to separate where
perceptron succeeds .

@

— B0 s

=0

* Brady, Raghavan, Slawny, ‘89
e Several linearly separable training examples

* Simple setup: both backprop and perceptron
algorithms find solutions .

A more complex problem

@

y

¢

Z

O
. “« TP, . x 1
* Adding a “spoiler” (or a small number of spoilers)

— Perceptron finds the linear separator,

62

A more complex problem
H Y

O

* Adding a “spoiler” (or a small number of spoilers) x 1
— Perceptron finds the linear separator,
— Backprop does not find a separator

* Asingle additional input does not change the loss function
significantly

— Assuming weights are constrained to be bounded 63

A more complex problem
y

O
. “« TP/, . x 1
* Adding a “spoiler” (or a small number of spoilers)
— Perceptron finds the linear separator,

— For bounded w, backprop does not find a separator

* Asingle additional input does not change the loss function
significantly o4

A more complex problem

L
LJ
L]

y

O
. “« TP/, . x 1
* Adding a “spoiler” (or a small number of spoilers)
— Perceptron finds the linear separator,

— For bounded w, backprop does not find a separator

* Asingle additional input does not change the loss function
significantly 65

A more complex problem
y

O
. “« TP/, . x 1
* Adding a “spoiler” (or a small number of spoilers)
— Perceptron finds the linear separator,

— For bounded w, Backprop does not find a separator

* Asingle additional input does not change the loss function
significantly o6

So what is happening here?

* The perceptron may change greatly upon adding just a
single new training instance

— But it fits the training data well

— The perceptron rule has low bias
* Makes no errors if possible

— But high variance

e Swings wildly in response to small changes to input

* Backprop is minimally changed by new training
Instances

— Prefers consistency over perfection

— It is a low-variance estimator, at the potential cost of bias

67

Backprop fails to separate even when

possible
o" ° “

* This is not restricted to single perceptrons

* |Inan MLP the lower layers “learn a representation”
that enables linear separation by higher layers

— More on this later

* Adding a few “spoilers” will not change their behavior

68

Backprop fails to separate even when

possible
o" ° “ o)

* This is not restricted to single perceptrons

* |Inan MLP the lower layers “learn a representation”
that enables linear separation by higher layers

— More on this later

* Adding a few “spoilers” will not change their behavior

69

Backpropagation

Backpropagation will often not find a separating
solution even though the solution is within the
class of functions learnable by the network

This is because the separating solution is not a
feasible optimum for the loss function

One resulting benefit is that a backprop-trained
neural network classifier has lower variance than
an optimal classifier for the training data

70

Variance and Depth

3 layers 4 layers

6 layers 11 Iayers 6 layers 11 layers

* Dark figures show desired decision boundary (2D)

10000 training instances

— 1000 training points, 660 hidden neurons
— Network heavily overdesigned even for shallow nets

e Anecdotal: Variance decreases with
— Depth

— Data
71

The Error Surface

 The example (and statements)
earlier assumed the loss
objective had a single global
optimum that could be found

— Statement about variance is

assuming global optimum

 What about local optima

‘."L.

The Error Surface

Popular hypothesis:

— In large networks, saddle points are far more
common than local minima
* Frequency exponential in network size
— Most local minima are equivalent

* And close to global minimum

— This is not true for small networks

Saddle point: A point where
— The slope is zero
— The surface increases in some directions, but
decreases in others

* Some of the Eigenvalues of the Hessian are positive;
others are negative

— Gradient descent algorithms often get “stuck” in
saddle points

73

The Controversial Error Surface

Baldi and Hornik (89), “Neural Networks and Principal Component
Analysis: Learning from Examples Without Local Minima” : An MLP with a
single hidden layer has only saddle points and no local Minima

Dauphin et. al (2015), “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization” : An exponential number of
saddle points in large networks

Chomoranksa et. al (2015), “The loss surface of multilayer networks” : For
large networks, most local minima lie in a band and are equivalent

— Based on analysis of spin glass models

Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible local
minima

Watch this space...

74

Story so far

Neural nets can be trained via gradient descent that minimizes a
loss function

Backpropagation can be used to derive the derivatives of the loss

Backprop is not guaranteed to find a “true” solution, even if it
exists, and lies within the capacity of the network to model

— The optimum for the loss function may not be the “true” solution

For large networks, the loss function may have a large number of
unpleasant saddle points

— Which backpropagation may find

Convergence

In the discussion so far we have assumed the
training arrives at a local minimum

Does it always converge?
How long does it take?

Hard to analyze for an MLP, but we can look at
the problem through the lens of convex
optimization

A quick tour of (convex) optimization

-\.-\-\-\-\-\":__#"'---- - f

.

The streetlight effect is a type of observational bias where people only look for whatever

they are searching by looking where it is easiest

“I'm searching for my keys.”

77

Convex Loss Functions

9(*) ¢

Convex 9
* Asurfaceis “convex” if it is /
continuously curving upward |
— We can connect any two points T Y

Contour plot of convex function

above the surface without
intersecting it
— Many mathematical definitions

that are equivalent

 (Caveat: Neural network error
surface is generally not convex
— Streetlight effect

v

78

Convergence of gradient descent

converging
An iterative algorithm is said to r \

converge to a solution if the value
updates arrive at a fixed point

— Where the gradient is 0 and further
updates do not change the estimate

The algorithm may not actually
converge

— It may jitter around the local
minimum

— It may even diverge

Conditions for convergence?

79

Convergence and convergence rate

Convergence rate: How fast the
iterations arrive at the solution

converging

Generally quantified as

o UG = £
|f (8 — f ()

— x&+Djs the k-th iteration /|

— x"is the optimal value of x N

If R is a constant (or upper bounded),
the convergence is linear

— In reality, its arriving at the solution
exponentially fast

[F(x®) = f@)] = c*[f(x©@) = F (=)

80

Convergence for quadratic surfaces

Minimize E = =aw? + bw + ¢

2
dE (w(k))

wk+D) = o _ g

dw

Gradient descent with fixed step size n
to estimate scalar parameter w

- (1)

Gradient descent to find the
optimum of a quadratic,
starting from w (%)

Assuming fixed step size iy

What is the optimal step size
1 to get there fastest?

81

Convergence for quadratic surfaces

1 . An dratic obiecti :
_ 2 y quadratic objective can be written as
E=—-aw*+bw+c - W BN)

2 Ew)=E(w®)+E'(w)(w—-wk)
dE W(k) 1 2
wktD) =) _ 4 Elw) +EE (W(k))(w — W(k))
— Taylor expansion
E(w)
'y
/ * Minimizing w.r.t w, we get (Newton’s method)
n=m _
ka Wmin — W(k) _ E”(W(k)) 1E,(W(k))
* Note:
dE (w®
() — E’(W(k))
; > (0 dw
b) ®min

 Comparing to the gradient descent rule, we see
that we can arrive at the optimum in a single step
using the optimum step size

Nopt = E”(W(R))_l =a!

82

With non-optimal step size

dE (w(k)) Gradient descent with fixed step size
to estimate scalar parameter w

wk+D) — o _ g

dw

E(w)

) * Formn < nyp: the algorithm

)
\ N <Mgp = / will converge monotonically
\
N\ .
= | For 2nope > 1 > Nope We

El(c

= (1D

b) - have oscillating

Em) H? convergence

)
/ b N>27g,
N >Ny .
\ RIS * Formn > 21,,: we get
divergence

é])]
[} =
c) min d)

a)

83

For generic differentiable convex

objectives
R E(w)
'y |
: N =My /
approx /
- [;}mm = (0
Any differentiable convex objective E (w) can be approximated as
dE(w®) 1 2 d2E(w()
~ (k) — w®) “(w — w®
E E(w)+(w W) . +2(W W) T2 +

— Taylor expansion

Using the same logic as before, we get (Newton’s method)

d2E(w®N ™
Nopt = ()

dw?

We can get divergence if n = 21,
84

For functions of multivariate inputs

E = g(w),wisavectorw = [wy,ws, ..., wy]
Consider a simple quadratic convex (paraboloid) function

1
E =§wTAw+wa+c

— Since ET = E (E is scalar), A can always be made symmetric

* For convex E, A is always positive definite, and has positive eigenvalues

When A is diagonal:

1
E = Ez(aiiwiz + biWi) + c
l

— The wj;s are uncoupled
— For convex (paraboloid) E, the a;; values are all positive
— Just an sum of N independent quadratic functions

85

Multivariate Quadratic with Diagonal A

1 1
E = EWTAW‘FWTb +c = EZ(aiiWiz + biWi) + C
l

* Equal-value contours will be parallel to the
axis

86

Multivariate Quadratic with Diagonal A

1 1
E = EWTAW‘FWTb +c = EZ(aiiWiz + biWi) + C

L

5 0 5 10

* Equal-value contours will be parallel to the axis

— All “slices” parallel to an axis are shifted versions of one another

1
E = Eaiiwiz + b;w; + ¢ + C(—wy)

87

Multivariate Quadratic with Diagonal A

1 1
E = EWTAW‘FWTb +c = EZ(aiiWiz + biWi) + C

L

* Equal-value contours will be parallel to the axis

— All “slices” parallel to an axis are shifted versions of one another

1
E = Eaiiwiz + b;w; + ¢ + C(—wy)

88

“Descents” are uncoupled

450

350

400
300 -

350 |

250 -
300

250 F 200

200 150 -

150 -
100
100 -

50
50

of 1 0F

750 1 L 1 1 L 1 L
-20 -15 -10 5 0 5 10 15 2C

_50 I Il ik Il I Il Il
-20 -15 -10 5 0 5 10 15 20

1 1
E = Eallwlz + b1W1 + c + C(_le) E = Eazzwzz + b2W2 + c + C(_IW2)

_ -1 _ -1
N1,0pt = A11 N2,0pt = Q22

 The optimum of each coordinate is not affected by the other coordinates
— |l.e. we could optimize each coordinate independently

* Note: Optimal learning rate is different for the different coordinates

89

Vector update rule

wk+D) wk) _pp E

dE (Wl-(k))

dw

k+1 k
WD = 00

-20 -15 -10 -5 0 5 10 15 20

e Conventional vector update rules for gradient descent:
update entire vector against direction of gradient

— Note : Gradient is perpendicular to equal value contour

— The same learning rate is applied to all components

90

Problem with vector update rule

dE W-(k)
wktD) Wik _ nV,ET Wi(k+1) _ Wi(k) — E{V\;)
-1
d?E (Wi(k))
— R |
Ni,opt = T2 = Ay
l

* The learning rate must be lower than twice the smallest
optimal learning rate for any component

n<?2 ml_in Niopt
— Otherwise the learning will diverge

* This, however, makes the learning very slow

— And will oscillate in all directions where 1; o, =1 < 27; ot

Dependence on learning rate

20 E \ 20 / T .
10 1 10} = ! 10 F ‘ !
= - - > R :
5 8 5t 1 5t |
0 - 0 4 0 |
5 1 . 5 A 5 i
z s\ |
\ \
\ \ \\
0 ‘] -0\ A0 (L
l! ‘|\‘, ‘:'i(‘a
\ W\ A\
\ / 1 -15 A\ 1 15 A\ 7
. \ L /s 20 N . . // 20 A . . L
10 0 10 20 .20 -10 0 10 20 -20 -10 0 10 20
: : 20 ‘ ;
15 g —_ . J—
1 t » 1[2,0pt .
4 10
5 x
0

\\
. 7]1,op—177 = 0.33

* N =21n0pe
* N = 2M2,0pt

* 1N =15M0p
* N =Tzopt

: /‘jjlo ® 77 = 0.75772,0pt

Dependence on learning rate

/ \

10 |

15

10 F

15 AN\

20 e '
-20 -10 0 10 20

* N,opt = 1; N2,0pt = 0.91; n=19 M2,0pt

93

Convergence

e Convergence behaviors become increasingly
unpredictable as dimensions increase

* For the fastest convergence, ideally, the learning rate n
must be close to both, the largest 1; ,,, and the

smallest 1; ot

— To ensure convergence in every direction
— Generally infeasible

: : . MaXTiopt
* Convergence is particularly slow if — is large
mim Ni,opt

— The “condition” humber is small

More Problems

For quadratic (strongly) convex functions, gradient descent is
exponentially fast

— Linear convergence
— Assuming learning rate is non-divergent

For generic (Lifschitz Smooth) convex functions however, it is very slow

1
Fw®) =)] & 7w ®) = Fow)

— And inversely proportional to learning rate

Fw) = fwl < 57

— Takes O(1/¢) iterations to get to within € of the solution

An inappropriate learning rate will destroy your happiness

The reason for the problem

o ~
The objective function has different eccentricities in different directions
— Resulting in different optimal learning rates for different directions

— The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two
directions are coupled! Moving in one direction changes the gradient along the other

Solution: Normalize the objective to have identical eccentricity in all directions
— Then all of them will have identical optimal learning rates
— Easier to find a working learning rate

Solution: Scale the axes

* Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
— Equal-value contours are circular

— Movement along the coordinate axes become independent

* Note: equation of a quadratic surface with circular equal-value contours can be
written as

E=-wIw+bTw+c

N =

97

Scaling the axes
* Original equation:
1
E = EWTAW-I-bTW-F c

 We want to find a (diagonal) scaling matrix S such that

e And

98

Scaling the axes
* Original equation:
1
E = EWTAW-I-bTW-F c

 We want to find a (diagonal) scaling matrix S such that

N

S=1|:], W = Sw

* And By inspection:

S = AO.S

99

e We have

* Equating linear and quadratic coefficients, we get
STS = A,

* Solving:

Scaling the axes

1
E=—-wlAw+bTw +

2

E_1
—oW
1

Sw

W

+bTw

E)

wTSTSw + bTSw + ¢

bTS = bT

S =A"

b=A"%Db

100

Scaling the axes

e We have
1
EzszAw+bTw+c
W = Sw
| P
EZEWTW bW + c

* Solving for S we get

w=A%w, b=A"D

101

Scaling the axes

e We have

1
E =EWTAw+bTw+c

w = Sw

1 .
Ezzv’\?Tv’\? b'W + ¢

* Solving for S we get

@=@3w, b=/

102

The Inverse Square Root of A

* For any positive definite A, we can write
A = EAE!
— Eigen decomposition
— E is an orthogonal matrix
— A is a diagonal matrix of non-zero diagonal entries

e Defining A%> = EA’°ET
— Check (A°°)TA%> = EAET = A

e Defining A"%> = EA~9°ET
— Check: (A™%)TA7%> = EAT'E" = A™!

103

Returning to our problem

» Computing the gradient, and noting that A%is

symmetric, we can relate Vi E and V;, E":
VwE — WT + i)T
— WTAO.S _I_ bTA—O.S
= (WA + b")A 0>
=V, ,E.A70>

Returning to our problem

e Gradient descent rule:

_wlkHD) — @ — anE(W(R))T

— Learning rate is now independent of direction

» Using W = A%w, and VgE(W)T = A% E(w)T

wlkD = W) _ A—lvwE(w(k))T

105

Modified update rule

1
E ZEWTAW+bTW+C

e Wk — @ _ anE(@(k))T
* Leads to the modified gradient descent rule

wk+D) = W) _ pa-1 VWE(Wac))T

106

1
E = EWTAW+ wib +c
1 E 2 §
E = E aiiwi + al’jWin

[#]

[
+2biwi+c
l

 If Ais not diagonal, the contours are not axis-aligned

— Because of the cross-terms a; ;w;w;

— The major axes of the ellipsoids are the Eigenvectors of A, and their diameters are
proportional to the Eigen values of A

e But this does not affect the discussion
— This is merely a rotation of the space from the axis-aligned case

— The component-wise optimal learning rates along the major and minor axes of the equal-
contour ellipsoids will be different, causing problems
* The optimal rates along the axes are Inversely proportional to the eigenvalues of A

107

For non-axis-alighed quadratics..

* The component-wise optimal learning rates along the major and
minor axes of the contour ellipsoids will differ, causing problems

— Inversely proportional to the eigenvalues of A

e This can be fixed as before by rotating and resizing the different
directions to obtain the same normalized update rule as before:

W(k+1) — W(k) — r]A_lb 108

Generic differentiable multivariate
~convex functions

Taylor expansion ™

1
E(w) ~ E(Ww®) + 7, E(w®)(w—wh) + 2 (w— w(k))THE(w(k>)(w —wk) 4 ...

109

Generic differentiable multivariate
convex functions

20 przzzs

-10
-15

op S >
-20 -10 0 10 2c

Taylor expansion
1
E(w) ~ E(Ww®) + 7, E(w®)(w—wk) + > (w— w("))THE(W("))(w —wk) 4+ ...

Note that this has the form %WTAW +w'b+c
Using the same logic as before, we get the normalized update rule
wlktD = wk) —p HE(W("))_leE(w("))T

For a quadratic function, the optimal 1 is 1 (which is exactly Newton’s method)
— And should not be greater than 2!
110

Minimization by Newton’s method (n = 1)

20 7

15

10
Fit a quadratic at each

point and find the
minimum of that
guadratic

10
-15

~20 e il
-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

111

Minimization by Newton’s method (n = 1)

20 ~

15

10

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

112

Minimization by Newton’s method (n = 1)

20

15§

10

10
-15

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

113

Minimization by Newton’s method (n = 1)

20 ~

15

10

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

114

Minimization by Newton’s method

2 7

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

115

Minimization by Newton’s method

2 7

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

116

Minimization by Newton’s method

2 7

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

117

Minimization by Newton’s method

2 7

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

118

Minimization by Newton’s method

2 7

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

119

Minimization by Newton’s method

2 7

-20 -10 0 10 2

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

120

-10 0 10

* |terated localized optimization with quadratic approximations
wk+D) = wk) g HE(w<k>)‘1\7wE(w<k>)T

121

Issues: 1. The Hessian

* Normalized update rule
wlk+D = k) _ g HE(W("))_lvwE(w("))T

* For complex models such as neural networks, with a
very large number of parameters, the Hessian

Hy (w)) is extremely difficult to compute

— For a network with only 100,000 parameters, the Hessian
will have 1019 cross-derivative terms

— And its even harder to invert, since it will be enormous

122

Issues: 1. The Hessian

* For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge

— Goes away from, rather than towards the minimum

123

Issues: 1. The Hessian

* For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge

— Goes away from, rather than towards the minimum

— Now requires additional checks to avoid movement in
directions corresponding to —ve Eigenvalues of the Hessian

124

Issues: 1 — contd.

* A great many approaches have been proposed in the
literature to approximate the Hessian in a number of ways
and improve its positive definiteness

— Boyden-Fletcher-Goldfarb-Shanno (BFGS)

* And “low-memory” BFGS (L-BFGS)
e Estimate Hessian from finite differences

— Levenberg-Marquardt
* Estimate Hessian from Jacobians
e Diagonal load it to ensure positive definiteness

— Other “Quasi-newton” methods

* Hessian estimates may even be local to a set of variables

* Not particularly popular anymore for large neural networks..

Issues: 2. The learning rate

E(m) E(w) E(w) E(w)
\ A A 4 n> 2 n
- n > nopl ha
T— - ;-- > (D “:‘ (D h:-- > (D
a) Omin b) Omin c) Om d) ®min

* Much of the analysis we just saw was based on trying
to ensure that the step size was not so large as to cause
divergence within a convex region

— 1N < Znopt

126

Issues: 2. The learning rate

* For complex models such as neural networks the loss
function is often not convex

— Having n > 21,, can actually help escape local optima

* However always having n > 21, will ensure that you
never ever actually find a solution

127

Decaying learning rate

Note: this is actually a
reduced step size

e Start with a large learning rate
— Greater than 2 (assuming Hessian normalization)

— Gradually reduce it with iterations

128

Decaying learning rate

e Typical decay schedules

— Linear decay: 1y = %

No
(k+1)2

— Exponential decay: 1, = npe #¥, where 8 > 0

— Quadratic decay: n,, =

A common approach (for nnets):

1. Train with a fixed learning rate n until loss (or performance on
a held-out data set) stagnates

2. 1< an,wherea <1 (typically 0.1)
3. Return to step 1 and continue training from where we left off

Story so far : Convergence

e Gradient descent can miss obvious answers
— And this may be a good thing

* Convergence issues abound
— The error surface has many saddle points

* Although, perhaps, not so many bad local minima
* Gradient descent can stagnate on saddle points

— Vanilla gradient descent may not converge, or may
converge toooooo slowly

* The optimal learning rate for one component may be too
high or too low for others

Story so far : Second-order methods

e Second-order methods “normalize” the variation
along the components to mitigate the problem of
different optimal learning rates for different
components

— But this requires computation of inverses of second-
order derivative matrices

— Computationally infeasible
— Not stable in non-convex regions of the error surface

— Approximate methods address these issues, but
simpler solutions may be better

Story so far : Learning rate

* Divergence-causing learning rates may not be a
bad thing

— Particularly for ugly loss functions

* Decaying learning rates provide good
compromise between escaping poor local minima
and convergence

* Many of the convergence issues arise because we
force the same learning rate on all parameters

132

Lets take a step back

wk+D) wk) _pp E

dE (W-(k))

LD 0 i

dw

* Problems arise because of requiring a fixed
step size across all dimensions

— Because step are “tied” to the gradient

* Lets try releasing these requirements

133

Derivative-inspired algorithms

e Algorithms that use derivative information for
trends, but do not follow them absolutely

* Rprop
* Quick prop

RProp

Resilient propagation
Simple algorithm, to be followed independently for each
component

— l.e. steps in different directions are not coupled

At each time

— If the derivative at the current location recommends continuing in the
same direction as before (i.e. has not changed sign from earlier):
* increase the step, and continue in the same direction
— If the derivative has changed sign (i.e. we’ve overshot a minimum)

* reduce the step and reverse direction

Rprop

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

»
»

Wo w

* Select an initial value W and compute the derivative

— Take an initial step Aw against the derivative

* |n the direction that reduces the function

— Aw = sign (dflff)) Aw

=w—-Aw

S

136

Rprop

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

W0 ahw,,

Wo Wy W

»
»

 Compute the derivative in the new location

— |If the derivative has not changed sign from the previous
location, increase the step size and take a longer step

a>1| « Aw = aAw

e W=w-—Aw

137

Rprop

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

»
»

Wo Wy W W

 Compute the derivative in the new location

— |If the derivative has not changed sign from the previous
location, increase the step size and take a step

a>1| *« Aw = aAw

e W=w-—Aw

138

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

»
»

Wo Wy W W3 W

* Compute the derivative in the new location
— If the derivative has changed sign

139

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

Wo W Wy W3 w
* Compute the derivative in the new location
— If the derivative has changed sign

— Return to the previous location

s W=w+Aw

140

Rprop

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

Ao abwy i | N

Wo Wy W W

»
»

* Compute the derivative in the new location
— If the derivative has changed sign
— Return to the previous location

s W=w+Aw

— Shrink the step
p<1 « Aw = fAw

141

E(w)

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

»

»

Wo Wy W W

Compute the derivative in the new location

If the derivative has changed sign
Return to the previous location
s W=w+Aw
Shrink the step
« Aw = fAw
Take the smaller step forward

® W:W—AW 142

Rprop (simplified)

e Seta=1.2,=05
* Foreach layer [, foreach i, j:

— Initialize wy; j, Aw;; ; > 0,

— prevD(l,i,j) = dErr(wWiij)

dWl,i,j
— Awy; ;= 51gn(prevD (1,]))Awl,l-, j
— While not converged:

Wy =Wy~ Awg

dErr(Wi)

* DAL = Ceiling and floor on step
« Ifsign(prevD(L,i,))) == sign(D(, i,))):
— Awy; ;= min(aldwy; ;, Apax)

— prevD(l,i,j) = D(,1i,j)
e else:

— wy i =wyit+Awy
— Awy; ;= max(BAwy; j, Amin)

143

Rprop (simplified)

e Seta=1.2,=05
* Foreach layer [, foreach i, j:

— Initialize wy; j, Aw;; ; > 0,

— prevD(l,i,))

— While not converged: Note: Different parameters updated

independently

Wy =Wy~ Awg

.. dErr(wi j)
« D(i,))\= Tilj]

« Ifsign(prevD(L,i,))) == sign(D(, i,))):
— Awy;; = alwy;
— prevD(l,i,j) = D(,1i,j)
* else:
— Wyij =W+ Awg
— Awy;; = BAwy,
144

RProp

* A remarkably simple first-order algorithm,
that is frequently much more efficient than
gradient descent.

— And can even be competitive against some of the
more advanced second-order methods

* Only makes minimal assumptions about the
loss function

— No convexity assumption

QuickProp

15 1

10

10
-15

.-20 T, - .|
-20 -10 0 10 2

* Quickprop employs the Newton updates with two modifications
wk+D) = W) — g HE(W("))_lvwE(w("))T

e But with two modifications

146

QuickProp: Modification 1

Within each component

20

15

10
E(w)

v

10 B

=15

..20 Ty - L
-20 -10 0 10 2

* |t treats each dimension independently
e Fori = 1:N
) A1 :)
witt = wf —E"(wilw,j = i) E'(wfw/,j # 1)

* This eliminates the need to compute and invert expensive Hessians

147

Within each component

E(w)

v

Wigi+1 Wi w

* It approximates the second derivative through finite differences
e Fori = 1:N
-1\ 1 . .
witt = wf — D(wf, wf) E’(W{‘|ij,] * i)

* This eliminates the need to compute expensive double derivatives
148

QuickProp

1
E'(w®) — E'(wk-D) ,
wlk+1l) — (k) _ < D) E'(w®)

\ J
|

Finite-difference approximation to double derivative
obtained assuming a quadratic E()

Updates are independent for every parameter

For every layer [, for every connection from node i in the (I — 1)t
layer to node j in the [t" layer:

Awl(’.(-_ 1)
(k) _ ij . (k)
Aw = Err (Wl,ij)

Y (Wl(f])) — Err’ (W(k_l))

Lij

(k+1) _ (k) (k)
Wiij = Wiij — AWl,ij

149

QuickProp

~1
E'(w®) — E'(wk-D) ,
wlk+1l) — (k) _ < D) E'(w®)

\ J
|

Finite-difference approximation to double derivative
obtained assuming a quadratic E()

Updates are independent for every parameter

For every layer [, for every connection from node i in the (I — 1)t
layer to node j in the [t" layer:

(k=1)
A — AWij

" B (Wl(f])) — Err’ (Wl(fj_l))

(k+1) _ (k) (k) Computed using
Wy = wy — Aw

Lij backprop

150

Quickprop

* Prone to some instability for non-convex
objective functions

e But is still one of the fastest training
algorithms for many problems

Story so far : Convergence

Gradient descent can miss obvious answers
— And this may be a good thing

Vanilla gradient descent may be too slow or unstable due to
the differences between the dimensions

Second order methods can normalize the variation across
dimensions, but are complex

Adaptive or decaying learning rates can improve convergence

Methods that decouple the dimensions can improve
convergence

20

15

10}

-10

A5t

-20

A closer look at the convergence
problem

20 20 7
I .'.If
15| 15 ?
| |
| |
10 b 10 %
5'—]% 5 !<
1 il
o\ 04\
\ \\
5 M -5 {1\
\
"""‘ ‘::
-10 AN A0 AN
415 B\ \“\x 15 RN\
20 20
20 -20
[]

With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

153

20

15

10}

-10

A5t

-20

A closer look at the convergence
problem

20 77 20 7

15| 15|

10 | 10 H

-10 A\\\ 10 A\

45 A\ 15

_20 \ L L r A . 20 - L
20 -10 0 10 20 20 -10 0

With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

Proposal:
— Keep track of oscillations
— Emphasize steps in directions that converge smoothly
— Shrink steps in directions that bounce around..

154

The momentum methods

* Maintain a running average of all
past steps

e
[

— In directions in which the il
convergence is smooth, the
average will have a large value

— In directions in which the
estimate swings, the positive and |

negative swings will cancel out in il
the average

* Update with the running

average, rather than the current |
gradient ||

155

Momentum Update

Plain gradient update With momentum

> >

* The momentum method maintains a running average of all gradients until
the current step

AW ® = gAw *=D) — 7, Err(W *-1)
wE = k=1 L Aw k)
— Typical § value is 0.9

 The running average steps
— Get longer in directions where gradient stays in the same sign
— Become shorter in directions where the sign keeps flipping

Training by gradient descent

* Initialize all weights W, W,, ..., Wy
* Do:

— For all i, j, k, initialize Vw Err =10
— Forallt = 1:T

* Forevery layer k:
— Compute Vy,, Div(Y:, d;)

- Compute VWRETT += %VWkDiv(Yt’ dt)
— For every layer k:
Wi = Wi —nVy Err

* Until Err has converged

157

Training with momentum

* Initialize all weights W, W,,, ..., W}

* Do:
— For all layers k, initialize Vw Err =0, AW, =0
— Forallt = 1:T

* Forevery layer k:
— Compute gradient Vi, Div(Y;, d;)
1 .
— VWkETT' += ; VWlev(Yt' dt)
— For every layer k

AWy = AWy, —nVy, Err
Wk — Wk + AWk

* Until Err has converged

158

Momentum Update

CE=»

e The momentum method
AW = pAW *=D — p7, Err(W *-1)

* At any iteration, to compute the current step:

159

Momentum Update

&>

e The momentum method
AW = pAW *=D — p7, Err(W *-1)

* At any iteration, to compute the current step:

— First computes the gradient step at the current location

160

Momentum Update

&>

e The momentum method
AW = pAW *=D — p7, Err(W *-1)

* At any iteration, to compute the current step:

— First computes the gradient step at the current location

— Then adds in the scaled previous step

* Which is actually a running average

161

Momentum Update

e The momentum method

AW = gaw &= — pi, Err(W &-1)

e At any iteration, to compute the current step:

— First computes the gradient step at the current location
— Then adds in the scaled previous step

* Which is actually a running average

— To get the final step

162

Momentum update

* Takes a step along the past running average
after walking along the gradient

 The procedure can be made more optimal by
reversing the order of operations..

Nestorov’s Accelerated Gradient

&>

* Change the order of operations

* At any iteration, to compute the current step:

164

Nestorov’s Accelerated Gradient

&

=

* Change the order of operations

* At any iteration, to compute the current step:

— First extend the previous step

165

Nestorov’s Accelerated Gradient

* Change the order of operations

e At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position

166

Nestorov’s Accelerated Gradient

* Change the order of operations

e At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position
— Add the two to obtain the final step

167

Nestorov’s Accelerated Gradient

e Nestorov’s method
AW = gAw &= — 7, Err(W D 4+ gaw k=1))
W& = wk-1 L A

168

Nestorov’s Accelerated Gradient

e Comparison with momentum (example from
Hinton)

* Converges much faster

169

Training with Nestorov

* Initialize all weights W;, W,, ..., Wy
* Do:
— For alllayers k, initialize Vy, Err = 0, AW}, =0

— For every layer k
Wk - Wk + BAWR
— Forallt = 1:T
* Forevery layer k:

— Compute gradient Vy, Div(Y;, d;)

— VWRETT' += %VWkDiv(Yt, dt)
— For every layer k

Wi = Wi —nWy, Err
AWk = IBAWR — T]VWkET'T'
e Until Err has converged

170

Momentum and trend-based
methods..

 We will return to this topic again, very soon..

171

Story so far : Convergence

Gradient descent can miss obvious answers
— And this may be a good thing

Vanilla gradient descent may be too slow or unstable due to the
differences between the dimensions

Second order methods can normalize the variation across
dimensions, but are complex

Adaptive or decaying learning rates can improve convergence
Methods that decouple the dimensions can improve convergence

Momentum methods which emphasize directions of steady
improvement are demonstrably superior to other methods

Coming up

Incremental updates
Revisiting “trend” algorithms
Generalization

Tricks of the trade

— Divergences..
— Activations
— Normalizations

