Neural Networks
Learning the network: Backprop

11-785, Spring 2019
Lecture 4

Recap: The MLP can represent any

fu nction/
g(X)

* The MLP can be constructed to represent anything

e But how do we construct it?

— l.e. how do we determine the weights (and biases) of the network to
best represent a target function

* Assuming that the architecture of the network is given

Recap: How to learn the function

%\

* By minimizing expected error

—

W = argmin j div(f(X; W), g(X))P(X)dX
w X

= argmin E[div(f(X; W), g(X))|
w

Recap: Sampling the function

* g(X) is unknown, so sample it

— Basically, get input-output pairs for a number of samples of
input X;

— Good sampling: the samples of X will be drawn from P(X)

e Estimate function from the samples

The Empirical risk

/

 The empirical estimate of the expected error is the average error over the samples

E[div(f G W), g(0)] ~ Zdw(f(Xl,W) dy)

e This approximation is an unbiased estimate of the expected divergence that we
actually want to estimate
— We can hope that minimizing the empirical loss will minimize the true loss
— Caveat: This hope is generally not based on anything but, well, hope.. 5

Empirical Risk Minimization

Y =fX;W)

* Given a training set of input-output pairs (X;,d;), (X5, d,), ..., X7,dr)
— Error on the i-th instance: div(f(X; W), d;)
— Empirical average error on all training data:

Err(W) = %z div(f (X; W), d;)

* Estimate the parameters to minimize the empirical estimate of expected
error

—

W = argmin Err(W)
w

— l.e. minimize the empirical error over the drawn samples

Empirical Risk Minimization

Y =fX;W)

This is an instance of
function minimization
(optimization)

|

* Given a training set of input-output pairs (X;,d;), X5, d,), ..., (X7,dr)
— Error on the i-th instance: div(f(X; W), d;)
— Empirical average error on all training data:

Err(W) = %z div(f (X; W), d;)

* Estimate the parameters to minimize the empirical estimate of expected
error

—

W = argmin Err(W)
w

— l.e. minimize the empirical error over the drawn samples 5

* A CRASH COURSE ON FUNCTION
OPTIMIZATION

Finding the minimum of a scalar
function of a multi-variate input

* The optimum point is a turning point — the
gradient will be 0

Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the gradient equation equals to
Zero

VI (X)=0

2. Compute the Hessian Matrix 74 f (X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) ->to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

Closed Form Solutions are not always
1 available

f(X)

> X

» Often it is not possible to simply solve Vf(X) = 0

— The function to minimize/maximize may have an
intractable form

* In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained

Iterative solutions

f(x)

> >

Xo X% Xsf X3
X4

* |terative solutions
— Start from an initial guess x for the optimal x
— Update the guess towards a (hopefully) “better” value of f(x)
— Stop when f(x) no longer decreases
* Problems:
— Which direction to step in
— How big must the steps be

12

The Approach of Gradient Descent

A

_

f(x)

> >

Xo X1X%; XST X3
Xy

* |terative solution: Trivial algorithm

— Initialize x°

— While ||7.f (x®)|| > & (or while |f(x**1) — f(x*)]| > &)
o xk+1 — xk _ r]kvxf(xk)

— 1" is the “step size”

Overall Gradient Descent Algorithm

e |nitialize:
— 9
k=0

* While |f(x**1) — f(x*)| > ¢
Xt =k gk f (k)T

_k=k+1

11-755/18-797

14

Convergence of Gradient Descent

* For appropriate step
size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

* For non-convex
functions it will find a
local minimum or an
inflection point

15

* Returning to our problem..

Problem Statement

* Given a training set of input-output pairs
(Xl; dl)i (XZ; dZ)J L (XTJ dT)

* Minimize the following function

Err(W) = %2 div(f(X;; W), d;)
w.rt W

* This is problem of function minimization

— An instance of optimization

Preliminaries

* Before we proceed: the problem setup

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)i L (XT' dT)
- \/

 |What are these input-output pairs?
Err(W) =3) div(f (X W),)

19

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)
- \/

. |What are these input-output pairs?
Err(W) = %2 div(f('Xi;\W), d;)

What is f() and
what are its
parameters W?

Problem Setup: Things to define

Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)
- \/

What are these input-output pairs?

1
Erﬁdiv(f(xi; wW),d;)
| L \

What is the mlﬁfai:efi(,r)sand
divergence div()?

parameters W?

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

Err(W) = %2 div(f('Xi;\W), d;)

What is f() and
what are its
parameters W?

22

What is f()? Typical network

Input Hidden units
units] Output

= 0T ¢ & units

* Multi-layer perceptron
* Adirected network with a set of inputs and outputs
— No loops

* Generic terminology

— We will refer to the inputs as the input units
* No neurons here — the “input units” are just the inputs

— We refer to the outputs as the output units
— Intermediate units are “hidden” units

Typical network

Input _
L P Hidden Layers
ayer T, T _Fy Output
= SN O Layer
e e\ Y e
/ .

* We assume a “layered” network for simplicity

— We will refer to the inputs as the input layer
 No neurons here — the “layer” simply refers to inputs

— We refer to the outputs as the output layer

— Intermediate layers are “hidden” layers

24

—_— _{_\—_
= ﬂ'"‘::,_r_::—.::_'_"_-_ g
S e <
T R S TR output layer
) = z R
o : N
S R :
- B
= it ; >
o - z A
4 R e 25
s e e
St S W e
py

The individual neurons

Individual neurons operate on a set of inputs and produce a single
output

— Standard setup: A differentiable activation function applied to an
affine combination of the input

yzf(zwixi+b>

— More generally: any differentiable function
y — f(xl’xZ""’xN; W) 25

The individual neurons

output layer

o}
iy
X

* Individual neurons operate on a set of inputs and produce a single

output

— Standard setup: A differentiable activation function applied to an

affine combination of the input

yzf(zwixi'l'b) —

— More generally: any differentiable function

y = f(x1:xz» o XN W)

We will assume this
unless otherwise
specified

Parameters are weights

w; and bias b

26

Activations and their derivatives

f'(2) = f(2)(A - f(2)

f(2) = 1+ exp(—2z)

/. f(@=tanh(z) f'@=Q0-f*@)

; . . 0, z<0 e ! = 1'Z20
E= V f(z):{z, z>0 7@ {0,Z<0

f(z) =log(1 + exp(z)) f@) = 1+ exp(—2z)

 Some popular activation functions and their
derivatives

Vector Activations

Input Hidden Layers
Layer) Output

— — —

- e = Layer

* We can also have neurons that have multiple coupled
outputs

[yl' Y2, ---;yl] — f(lexZJ ey X W)

— Function f () operates on set of inputs to produce set of
outputs

— Modifying a single parameter in W will affect all outputs

28

Vector activation example: Softmax

— > VI

X o 3+ HhoQo v

* Example: Softmax vector activation

Zi = z W]lX] ~+ bi
J

y:

Parameters are
WelghTS le'
C(nd biC(S bi

exp(z;)

% exp(z;)

29

Multiplicative combination: Can be
viewed as a case of vector activations

X z y

Zi = Z Wjin ~+ bi
J

Yi = H(Zz)“”
l

Parameters are
welghTS le'
and bias b;

* A layer of multiplicative combination is a special case of vector activatiogO

Typical network

Input

Hidden Layers

i W

* |n a layered network, each layer of

perceptrons can be viewed as a single vector
activation

31

Notation

The input layer is the 0" layer

We will represent the output of the i-th perceptron of the k" layer as y.(k)

l
— Input to network: y.(o)

i =X

(V)

i

— Output of network: y; =
We will represent the weight of the connection between the i-th unit of

the k-1th layer and the jth unit of the k-th layer as Wl-(;c)

— The bias to the jth unit of the k-th layer is bj(k)

32

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)i L (XT' dT)
- \/

 |What are these input-output pairs?
Err(W) =3) div(f (X W),)

33

Vector notation

X1 - ey
= _.—f:;/ \._;E <t
= output layer
)
= ’
v . y 1
“ 2
! =
i o
e ~ YL
= s ¢~
L e oo
X — i e
D py

Given a training set of input-output pairs (X;,d,), (X5, d,), ..., X, dr)
Xy = [Xn1, Xn2, -, Xnp] is the nth input vector
d, = |dn1,dya, ..., dyyp] is the nth desired output

Y, = [Vn1, Yn2 -, Ynr] is the nth vector of actual outputs of the
network

We will sometimes drop the first subscript when referring to a specific
instance

34

Representing the input

Input
Layer

* Vectors of numbers

Hidden Layers
Output

—— - — i

- = Layer

(or may even be just a scalar, if input layer is of size 1)

E.g. vector of pixel values

E.g. vector of speech features

E.g. real-valued vector representing text

* We will see how this happens later in the course

Other real valued vectors

35

input layer

Representing the output

Input

Layer

Hidden Layers

"

R

z i =

>

If the desired output is real-valued, no special tricks are necessary

— Scalar Output : single output neuron

* d=scalar (real value)

— Vector Output : as many output neurons as the dimension of the

desired output

* d=[d,d,..d] (vector of real values)

36

Representing the output

* |f the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

— 1 =Yesit’s a cat
— 0 =No it’s not a cat.

37

Representing the output

i 1

* |f the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

e Qutput activation: Typically a sigmoid
— Viewed as the probability P(Y = 1|X) of class value 1

* Indicating the fact that for actual data, in general a feature value X
may occur for both classes, but with different probabilities

e |s differentiable .,

Representing the output

Input Hidden Output
layer layer layer

If the desired output is binary (is this a cat or not), use a simple 1/0 representation
of the desired output

— 1=VYesit'sacat

— 0=Noit’s not a cat.

Sometimes represented by two independent outputs, one representing the desired
output, the other representing the negation of the desired output
— Yes: 2> [10]

— No: 2> [01]
39

Multi-class output: One-hot
representations

Consider a network that must distinguish if an input is a cat, a dog, a
camel, a hat, or a flower

We can represent this set as the following vector:
[cat dog camel hat flower]’
For inputs of each of the five classes the desired output is:
cat: [10000]T
dog: [01000]"
camel: [00100]T
hat: [00010]T
flower: [00001]7

For an input of any class, we will have a five-dimensional vector output
with four zeros and a single 1 at the position of that class

This is a one hot vector

Multi-class networks

Input

Hidden L
Laver idden Layers

BT V. E— Output
= 0% 0 =% Layer

—

L

= e
vt 2l *

S 7 3 . - o

For a multi-class classifier with N classes, the one-hot
representation will have N binary outputs

— An N-dimensional binary vector

The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

More realistically, it will be a probability vector
— N probability values that sum to 1.

41

Multi-class classification: Output

Input Hidden Layers
Layer N Output

~S—— = P == Layer

.
- A

Softmax vector activation is often used at the output of multi-class
classifier nets

This can be viewed as the probability y; = P(class = i|X)

42

Typical Problem Statement

* We are given a number of “training” data instances

* E.g.images of digits, along with information about
which digit the image represents

* Tasks:
— Binary recognition: Is thisa “2” or not
— Multi-class recognition: Which digit is this? Is this a digit in
the first place?

43

Typical Problem statement:
binary classification

Training data

(3,0) (Z, 1)

(2,1) (4,0)

(0,0) (2,1)

Output: sigmoid

Input: vector of
pixel values

e Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job

44

Typical Problem statement:
multiclass classification

Training data

(35,5) (2, 2)
(2, 2) (4, 4)
(0,0) (2, 2)

Input Hidden Layers
Layer _ ~ Output
—_:2__::::_, — T :_::cj:_:: e L ay er

2 s =
1 ;?; e PE% S N
et i o
e -

Input: vector of Output: Class prob

pixel values

e Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job

45

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

Erﬁzfdw(ﬂxi; W), dy)

What is the
divergence div()?

46

Examples of divergence functions

—() = d1d2d3 d4

e !
el A\ i
; /
b

L, Div() Div

* For real-valued output vectors, the (scaled) L, divergence is popular

. 1 2 1 2
Div(Y,d) = > Y —d||? = EZ(YL’ —d;)
i

— Squared Euclidean distance between true and desired output
— Note: this is differentiable

dDiv(Y, d)
= (5 — dy)
dyl yl l

VyDiv(Y, d) = [yl - dl’ Yo — dz,]

47

For binary classifier

For binary classifier with scalar output, Y € (0,1), d is 0/1, the cross entropy
between the probability distribution [Y, 1 — Y] and the ideal output probability
[d,1 — d] is popular
Div(Y,d) = —dlogY — (1 — d)log(1 —Y)
— Minimumwhend =Y

Derivative

1 .
CMWWJ)_<_71fd:1
awv

ifd=0

1-Y
48

For binary classifier

hidden layers

d

output layer
—— y .
Div

For binary classifier with scalar output, Y € (0,1), d is 0/1, the cross entropy
between the probability distribution [Y, 1 — Y] and the ideal output probability
[d,1 — d] is popular

Div(Y,d) = —dlogY — (1 — d)log(1 —Y)

— Minimumwhend =Y

input layer

Derivative Note: wheny = d the
(derivative is not 0
dDiv(Y,d) —y fd=
) 1 Even though div() =0
ifd=0 -)
1-Y (minimum) wheny =d

49

For multi-class classification

AN — d;d,d;d,

: S

= 2 # 2 LR . .
: - ’% KL Div() Div

— x: i

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)

Actual output will be probability distribution [y,, V5, ...]
The cross-entropy between the desired one-hot output and actual output:

Div(Y,d) = — z d;logy; = —logy,
i

Derivative If y. < 1, the slopeis
. negative w.r.t. y,
dDiv(Y,d) _)- " for the ¢ — th component
aYi 0 Cfor remaining component Indicates increasing Yc
_1 will reduce divergence
VyDiv(Y,d) = [0 0 om0 0] 0

For multi-class classification

== O g d,d,d;d,

KL Div() Div

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)

Actual output will be probability dis.tribution [V1, Vo, .] If y, < 1, the slope is
The cross-entropy between the desired one-hot output and actual output: .
negative w.r.t. y,

Div(Y,d) = — z d;logy, = —logy,
l. Indicates increasing vy,

will reduce divergence

Derivative
vy, d) 1 Note: wheny = d the
(Y, —— for the ¢ — th component TR
———=1 % ! P derivative is not O
‘ 0 for remaining component
7, Div(Y. d) [0 N 0] Even though div() =0
iv(Y,d) = e ..
! c (minimum) when y = d

For multi-class classification

= Ao S — dl d2 d3 d4
\ oA
: - ! KL Div() Div

- . e
- g — e sl

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)€ in the c-th position (for class c) and € elsewhere for

some small €

“Label smoothing” -- aids gradient descent

The cross-entropy remains:
Div(Y,d) = — z d; log y;
i

Derivative

(11— (K—1)e
dDiv(Y,d) _) V.

dY; € .
l —— for remaining components

L Vi

for the c — th component

52

Problem Setup

Given a training set of input-output pairs
(XlI dl)J (Xz, dZ)I L (XT' dT)

The error on the it" instance is div(Y;, d;)
The total error

1
Err = Tz div(Y;, d;)
i

1), p®)

Minimize Err w.r.t {Wij) D;

53

Recap: Gradient Descent Algorithm

* |In order to minimize any function f(x) w.r.t. x

e |nitialize:
— %0
—k=0

» While |f(x**1) — f(x*)| > ¢
Xt = kR f (k)T

—k=k+1

11-755/18-797 54

Recap: Gradient Descent Algorithm

* |In order to minimize any function f(x) w.r.t. x

e |nitialize:
—x9

k=0

» While |f(x**1) — f(x*)| > ¢

— For every component i

d
o xft = xf -2l
dx;

—k=k+1

Explicitly stating it by component

11-755/18-797 55

Training Neural Nets through Gradient
Descent

Total training error:

1
Err = ?Z Div(Y, d,)
t

* Gradient descent algorithm: Assuming the bias is also
(k) represented as a weight

ij }

— Using the extended notation: the bias is also a weight

* Do:

— For every layer k for all i, j, update:

* |nitialize all weights and biases {W

o R _ (k) dETT
Wi = Wi T G,®
LJ

e Until Err has converged

56

Training Neural Nets through Gradient
Descent

Total training error:

1
Err = ?Z Div(Y, d,)
t

Gradient descent algorithm:

ey : (k)
Initialize all weights {Wl-j }
* Do:

— For every layer k for all i, j, update:

. (k) _ (k) __[(dEr
LJ

Until Err has converged

57

The derivative

Total training error:

1
Err = TZ Div(Y, d,)
t

 Computing the derivative

Total derivative:

dErr z dDiv(Y, d;)
T

(k) (k)
J

58

Training by gradient descent

* Initialize all weights {Wi(jk)}
* Do:

.. dEr
— Forall i, J, k, initialize — — =0
dw;;

— Forallt = 1:T
* For every layer k for all i, j:

aDiv(Y.d
— Compute ((,‘;) 2
l]
dErr lev(Yt dy)

w® w®
U l]

— For every Iayer k forall i, j:
(k) (k) n dErr

w.. = w..) ——
i, i,j T (k)
dWi' i

e Until Err has converged

59

The derivative

Total training error:

1
Err = —z Div(Y, d;)

Total derivative:
dErr dDiv (Yt, d;)
(k) (k)

* So we must first figure out how to compute the
derivative of divergences of individual training
iInputs

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y = f(x)
with derivative
d_y

dx d
the following must hold for sufficiently small Ax [» Ay ~ — Ax

For any differentiable function

y = (1, %2, 0, xp)
with partial derivatives

dy 0dy ay

a_xl,a_xz, ...,M

the following must hold for sufficiently small Axy, Ax,, ...,

dy dy dy
Ay =~ ——Ax; + =——Axy + -+ ——A
Y= 0x4 d0x, 0Xx *M

AXM

61

Calculus Refresher: Chain rule
For any nested function y = f(g(x))

dy _ 9f dg(x)

dx 0dg(x) dx
. dy
Check - we can confirm that: Ay = d—Ax
X
d
z=g(x) = Az = ‘Zlgcx) Ax

y=f(z)=> Ay= 2’; Zé d‘;ﬁj‘) Ax \/

Calculus Refresher: Distributed Chain
rule
y = f(gl(x),gl(x), ---»gM(x))

dy 0f dgi(x) 9f dga(x) of dgm(x)

i oo ar eme ar o Banc) on

of of of
59,00 92 Tt e 5

Agy(x)

_ _Of dgi(x) af dgx(x) of dgm(x)
Ay_agl(x) dx Ax-l_agz(x) dx Ax + +6gM(x) dx Ax

_(_Of dgi(@) | Of dg(@) , |, Of dgu®) v
Ay_(agl(x) dx +agz(x) dx T +6gM(x) dx)Ax 63

Distributed Chain Rule: Influence
Diagram

y = f(9:1(0), 91 (), ---'gM
AP

* x affects y through each of g; ... gy

64

Distributed Chain Rule: Influence
Diagram

* Small perturbations in x cause small
perturbations in each of g4 ... g5, each of
which individually additively perturbs vy

65

Returning to our problem

dDiv(Y,d)

(k)
dwi’ i

* How to compute

66

A first closer look at the network

X1

X2

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons
and inputs

A first closer look at the network
[X
1

O—(O)—> ¥

1 1

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs

* Explicitly separating the weighted sum of inputs from the
activation

68

Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs
Expanded with all weights and activations shown

The overall function is differentiable w.r.t every weight, bias
and input

69

Computing the derivative for a single
input

(3) .
W31 Each yellow ellipse

represents a perceptron

* Aim: compute derivative of Div(Y, d) w.r.t. each of the
weights

e But first, lets label all our variables and activation functions

70

Computing the derivative for a single

input
w® £1() W1<21> FQ
Zl(l) (1) Zfz) 9
(1) |
W12 ' W(Z) [/ W1(31)
1,2 d
f3() l
(3)

71

Computing the gradient

dDiv(Y,d)

(k)
dwi) j

e Whatis:

— Derive on board?

72

Computing the gradient

dDiv(Y,d)

(k)
dwi) j

e Whatis:

e Derive on board?

* Note: computation of the derivative requires
intermediate and final output values of the
network in response to the input

BP: Scalar Formulation

* The network again

Wl
A\,‘/L A\?‘/A
WO O
A AR

PP
SN/t N/ g

Vi

o

)

Setting yi(o = x; for notational convenience

Assuming wéf) = bj(k) and yék) = 1 -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

7
AL (7 AN AN
AN AN

M~ IO

oY

(1) _ (1), (0)
Z; = Zwil Y

l

(M
@<
A
)

oy % Expanding it out
/ Z1)

Va2A VsV

WL
4 gy /N (%) /AN
/i W W
N~ N o N
/ . y

P-()4

(1) _ (1), .(0)
Z; —ZWU Y;
i

yO = x %

/ z4! y o 2 70
ValavaOay

WOV ®y
AN AN

ON o

NI TN
AV AN
)~ :) |

' y 20 vy Z0)
WM
A\!I/L/ e A,’,I \ @ A@/A
OOy
AN (7 AN (%) AN
'l[;},v Y i\

N

A %'
AN) //A
y = /-

\m“\m

‘M ‘M
‘/»‘/A / »‘/A

i ﬂ
N

y(o) = X

,/ z(1) yo z@
VACAV

Y

AR

O O<p
PN PN PN

Y

) "
N

I iy
N

%

N

Y = x Forward Computation

/ 2(1) v 72 y© S(N-1) y(N-1)

v z(3)

Vi

\\" \" \" z(N) yiN)
(o (2 e @A‘V‘

IIA‘

ITERATE FOR k= 1IN g, j= 1°1ayer width

0 (k) (k=1)
yi(= Xi ZWU Yi

yj(= fk(J'(k))

-

N\ /

\ /\ AN
“v @ //'«;9\ @

m@mama

Forward “Pass”

Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj = 1..D;, | D,is the size of the kth layer

o () _ yDPk-1 (K) (k-1)
2z = Xizo Wi ¥,

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

85

Computing derivatives

y(N-Z)

y(1)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives

Computing derivatives

y(N-Z)

Div(Y,d)

First, we compute the divergence between the output of the net y = y) and the
desired output d

Computing derivatives
yN-2) A—

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

We then compute V7, v)div(.) the derivative of the divergence w.r.t. the pre-activation affine
combination zN) using the chain rule

Computing derivatives

y(N-Z)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the ouput layer

Computing derivatives

y(N-2) l

y(1)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the ouput layer

Then continue with the chain rule to compute V, w-1)div(.) the derivative of the
divergence w.r.t. the output of the N-1th layer

Computing derivatives

y(N-2) i
N-1

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

Backward Gradient Computation

* Lets actually see the math..

99

Computing derivatives

Div(Y,d)

Computing derivatives

y(N-Z)

y(1)

The derivative w.r.t the actual output of the
network is simply the derivative w.r.t to the
output of the final layer of the network

aDiv(Y,d) aDiw(Y,d)

dy; 0 y.(N)

l

Div(Y,d)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

oD ay") D
N) N N
azf) azf >ay1()

Computing derivatives

y(1)

Div(Y,d)

Already computed

dDiv 6y1(N)ﬁ)iv
(N) o (M5 (V)
0z, 0z, \le

N

Computing derivatives

y(N-Z)

z(N-2) 2(N-1) y(N-1) l

Div(Y,d)

fi(4")

Derivative of

™) activation function
dDiv [0y, \giv
0

Computing derivatives

y(N-Z)

z(N-2) 2(N-1) y(N-1) l

Div(Y,d)

A

V
Derivative of
™) activation function
dDiv [0y, \giv TR
Computed in forwar
3, jym ol

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

obiv 9z aDiv

ﬁwl(llv) - ﬁwl(llv) asz)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

oDiv _ 9z"(oDiv
awl(’l") - awl(llv azl(N) Just computed

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

Because
dDiv 5Z§N) Div yl(N_l) sz) = Wl(llv)yl(N_l) + other terms
(N) (N) R, (N)
dw,, dwy, " Pz,

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)
—
Because
dDiv 5Z§N) Div yl(N_l) sz) = Wl(llv)yl(N_l) + other terms
(N) N) j_ (V)
ow, ow, .’ Pz,

Computed in forward pass

Computing derivatives

Div(Y,d)

Computing derivatives
yN-2) <

y(1)

For the bias term yéN_l) =1

Computing derivatives

Div(Y,d)

Computing derivatives

y(1)

Div(Y,d)

~
dDiv z HZJ-(N)@W >\’
1 _ Alread ted
(N 1) . (N 1 aZ(N) reagy compu

Computing derivatives

y(N-2) l

Div(Y,d)

dDi 0z W\f_\ Because
; N-1 _
v 4 i Wl(j W = Wl(l.v)yl(N Y 4 other terms
(N-1) (N-1)/4 _(N) j j
TR 9%

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)

Computing derivatives

-

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—2 fn-1
z(N) yN
fy _
fn-2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fy
d
fn—2 fn-1

We continue our way backwards in the order shown

aDlv . ’ ((N—l)) aDlU
-1y ~ JN-1] —
azi(N 1) i ayi(zv 1)

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
z(N) y(N)
fy -
fn—2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1
We continue our way backwards in the order shown
dDiv _ ., (N-2) dDiv For the bias term yéN_z) =1

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—-2 fr-1
z(N) yN
Uiy _
fn—2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn-2 fn-1

We continue our way backwards in the order shown

aDlU (N—l) aDlU
= E W S —

(N=-2) Lj (N-1)
ay; > 0z

l y(N-2)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 fn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
fn—2 fr-1

We continue our way backwards in the order shown

aDlv . ’ ((N—Z)) aDlv
-2y~ JN-2] —
azi(N 2) i ayi(zv 2)

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
z(N) yN
Uiy _
fn—2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1

We continue our way backwards in the order shown

dDiv Z (2) dDiv
- = w -
J

d yl(l) Y azj@

y(N-Z)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 fn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
fn—2 fr-1

We continue our way backwards in the order shown

dDiv e (Z(l)) dDiv
(D) —J1 [
0z;

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
2(N) yiN
Uiy _
fn—2 fn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fi
d
fn—2 fn-1

dDiv (1) dDiv
We continue our way backwards in the order shown aw(l) l azj(l)

tj

Gradients: Backward Computation

7(k-1) y(k) - (k) yik o Z(N-1) y(N-1)

Ne N

\ / z(N) Yy

‘A\%%/A‘ ‘AQY& S o
1\ e)

OO0

Q/‘\Q (L

Initialize: Gradient |Fork = N-1.0
Fori = 1:layer width
w.r.t network output

dDiv dDiv | dDiv dDiv
. . _ (k+1) _ e (k)
0y oy Vi j j i Vi

dDiv (Z(N)) dDiv

W = fi ™)
0z; ay;

i

Backward Pass

* Output layer (N) :

— Fori =1..Dy
. 9Di__ dDiv(v.d)
dyi ayi(N)

apiv _ apiv ay")

azi(N) T ayi(N) azi(N)

e Forlayerk = N — 1 downto 0
— Fori=1..D

. 9Div _y (k+1) ODiv
ayi(k) J Vi aZ](_k+1)

d0Div d0Div ,((k))
[J —_— Z
aZi(k) ayi(k) fk i

dDiv (k) 9Di .
¢ (k+1) - y] (k+1) for_] - 1 e Dk+1
aWji aZi

127

Backward Pass

. : Called "Backpropagation” because
Output layer (N) : the derivative of the error is

— Fori=1..Dy propagated “"backwards” through
., 9Div _ aDiv(v,d) the network
oy ayf"’)

, 0Div _ dDiv ayi(N)

0z ay™ 9z Very analogous to the forward pass:
* Forlayerk =N —1downto 0
— Fori=1..D Backward weighted combination

aDi (k+1) dDiv / of next layer

o =) .W..
ay(k) z:J ij aZ](_k+1)

i

_ /
aZi(k) ayi(k) fk i

obiv (k) OdDiv .
* ®k+D — Vj G forj=1..Dkyq
awji azi

128

For comparison: the forward pass

again
Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj=1..D;

o B _ yNe (K (k=1)
27 = Yito Wy Y

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

129

Special cases

e Have assumed so far that

1. The computation of the output of one neuron does not directly affect
computation of other neurons in the same (or previous) layers

2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
— All of these conditions are frequently not applicable

* Not discussed in class, but explained in slides
— Will appear in quiz. Please read the slides

130

Special Case 1. Vector activations

ylk1) 7k

y(k) yl1) z(k) y(k)
—

* Vector activations: all outputs are functions of
all inputs

131

Special Case 1. Vector activations

Scalar activation: Modifying a z;
only changes corresponding y;

(k-1)

\
o)

Vector activation: Modifying a
z; potentially changes all, y; ... vy,

f

132

“Influence” diagram

y(k)

Scalar activation: Each z; Vector activation: Each z;
influences one v; influences all, y; ... vy

133

The number of outputs

y(k)
1®

y (k)

* Note: The number of outputs (y*)) need not be the

same as the number of inputs (z%)
 May be more or fewer

134

Scalar Activation: Derivative rule

aDiv _ dDiv dy,"”
k) k k
0z 9y dz

* In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

135

Derivatives of vector activation

yikD) 2 Yk
)) (k)
j oDiv Z dDiv 0Y;
N 0z0 L ay.(k) 0z
Div l J 7 l
-
Note: derivatives of scalar activations
are just a special case of vector
activations:
] _ . .
- = 0 fori #j

 For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

— Regardless of the number of outputs yj(k) -

Special cases

 Examples of vector activations and other
special cases on slides

— Please look up
— Will appear in quiz!

Example Vector Activation: Softmax

(k)
yike1) z(yi y-(k) _ exp (Zi)
=@ l k
5o (")
dDiv Z dDiv ay,-(k)
= =
(k) (k) 5, (k)
» Div 0z, > ay]. 0z,
(
k k O\ e
Lo 5y]§)_ yl_()(_yl_()) ifi =
5Zi(k) \ —yl.(k)yj(k) ifi#j
—® 2 2
dDiv _ z dDiv y(k) (5_]_ _ y(k))
K K) 7 L /
azi() - ayj() J

 For future reference

* 0, isthe Kroneckerdelta: 0, =1 ifi=j, 0if i #j

Vector Activations

YD) 2 Yk
k - (k
e
() (0
LS y2 — f 2
9
(i) \ (i) /
> Ym Zp
+
* |In reality the vector combinations can be anything

— E.g. linear combinations, polynomials, logistic (softmax),
etc.

139

Special Case 2: Multiplicative
networks

S(k-1) C yt)
((k=1) {,(k-1)

Forward: Oik) =Y, YV

* Some types of networks have multiplicative combination

— |In contrast to the additive combination we have seen so far

 Seen in networks such as LSTMs, GRUs, attention models,
etc.

Backpropagation: Multiplicative
Networks

S(k-1) ytked
O . Forward:

wi **° (k) — (k=1 1 (k=T)

_y] yl

dDi dDi
Backward: v z w970

aoi(k) - Lj aZ.(k+1)

oDiv Oo (k) oDiv ;) ODiv oDiv -1y ODIv

ay(k n 8y(k D 3, (k) =V % i(k) - Y % i(k)

 Some types of networks have multiplicative
combination

Multiplicative combination as a case
of vector activations

Yy

.—F.
0
0

e
e
0

e
*e
0

YK
K k-1
|, Zi() =3’i()
(k) _ (k) _(k)
i = Z2i-1%2i

A layer of multiplicative combination is a special case of vector activation

142

Multiplicative combination: Can be
viewed as a case of vector activations

y

y(k)

K3 -
o
o

k k k-1
7® = Z W,-(-)y]_()
j
(k) ik
i =] (=)
l
k (k) (k)
oy _ L0 (Z<k))“ﬁ - (Z<k))“li
aZ(}!c) i J l
j 1]
dDiv Z dDiv ayi(k)
(k) ~ (k) 5, ()
azj — dy; azj

* A layer of multiplicative combination is a special case of vector activatiolgB

Gradient5° Backward Computation

(1) 7 y(kl) Z(k) E y(N-l)

‘ W (N)E .

‘A‘.’A‘ ‘A‘v Div(Y,d)
vty P ——

For k=N...1 If layer has vector activation Else if activation is scalar

For i = 1:layer width | 9Div Z aDiv 3y || aDiv aDiv 9y
2

® 9, | |2 EOREPN P 7 ®
l

9z ay,

dDiv (k) ODiv
Z Wij S0
(k 2 az

Backward Pass for softmax output

layer d
y(N)
e OQOutput layer (N) : zN
— Fori =1..Dy o o
_ 9Div _ dDiv(v,d) "§
% B 6yi(N)

, 9Dbiv _ aDiv(Y,d) (N) (N)
W = X 5, Vi (5 —Jj)
i j

 Forlayerk = N —1downto 0

— Fori=1..D,

, 9Div _Z (k+1) 0dDiv
0y (k) Lj aZ](_k+1)
oDiv (k) oDiv
oz (k) = fx (2 ()ayi(k)

obiv (k) ODiv

‘oY g)= 1D

145

Special Case 3: Non-differentiable

f(2)=0

activations
Z, o=
fOF»y
y = RELU(Z) z, o
Z3 o—
Z, &

Yy = max z;

* Activation functions are sometimes not actually differentiable
— E.g. The RELU (Rectified Linear Unit)

* And its variants: leaky RELU, randomized leaky RELU

— E.g. The “max” function

* Must use “subgradients” where available

— Or “secants”

146

The subgradient

A

—_——

i >
rd C
A subgradient of a function f(x) at a point x, is any vector v such that
(f () = f(x0)) = v" (x — x0)

Guaranteed to exist only for convex functions

— “bowl” shaped functions
— For non-convex functions, the equivalent concept is a “quasi-secant”

The subgradient is a direction in which the function is guaranteed to
increase

If the function is differentiable at x, the subgradient is the gradient
— The gradient is not always the subgradient though

Subgradients and the RELU

f(2) =z

 Can use any subgradient

f(z) = {

fl(z) =1

YA
0, z <0
1, z=0

— At the differentiable points on the curve, this is the

same as the gradient

— Typically, will use the equation given

148

Subgradients and the Max

Y = maxz;
J)
Z, 0~
- 0y 1, [= argmax z;
’ —— = J
0z \O, otherwise
ZNQ—

* Vector equivalent of subgradient

— 1 w.r.t. the largest incoming input
* Incremental changes in this input will change the output

— O for the rest

* Incremental changes to these inputs will not change the output ”

Subgradients and the Max

Z
. Y1 y; = argmax z;
- Y, lEcg]
3
(:
: : . 1, [= argmax z;
: "><h> : 9y -y €S
Oz :
/1 Y { \O, otherwise

* Multiple outputs, each selecting the max of a different subset of
inputs
— Will be seen in convolutional networks
* Gradient for any output:

— 1 for the specific component that is maximum in corresponding input
subset

— 0 otherwise 150

Backward Pass: Recap

e Qutput layer (N) :

— Fori=1..Dy
. oDiv _ dDiv(Y,d)
N
dDiv _ 0Di oy N =

- oDiv 9Y;
. = L OR - .__ (vector activation
azi(N) 6yl.(N) azi(N) Z] ay](N) 6zi(N) ()

e Forlayerk = N —1downto O

— Fori=1..D,
, 9Div _) (k+1) 0Div
ayi(k)] 7ij aZ](.k+1)
k
dDiv _ dDiv 0y %

oDiv 90Y;
. = L OR : J_ (vector activation
aZi(k) ayi(k) aZi(k) Z] ay}gk) aZi(k) ()

oDiv (k) OdDiv -
kA Y arp forj=1..Dgiq
awjl. 0z;

151

Overall Approach

For each data instance

— Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation

— Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

Actual Error is the sum of the error over all training instances

Brr = o z Div(Y(X), d(X))

Actual gradient is the sum or average of the derivatives computed
for each training instance

ViwErr = z VwDiv(Y (X),d(X)) W < W —nV,Err

[{X3

Training by BackProp

* Initialize all weights (W™, w®) . w))
* Do:

— Initialize Err = 0; Forall i, J, k, |n|t|aI|ze§ o = =0
L,j
— Forallt = 1:T (Loop over training instances)
* Forward pass: Compute
— Output Y,
— Err += Div(Y,, d;)
* Backward pass: For all i, j, k:

le'U(Yt dt)
— Compute ~®
Wij
dErr dDw(Yt dy)

l] l]
— Forall i, j, k, update:
(k) (k) n dET'T'

] L, T (k)
dWl.J.

* Until Err has converged

Vector formulation

* For layered networks it is generally simpler to
think of the process in terms of vector operations

— Simpler arithmetic
— Fast matrix libraries make operations much faster

* We can restate the entire process in vector terms
— On slides, please read
— This is what is actually used in any real system
— Will appear in quiz

Vector formulation

. - (k) - (k)
y y(1) X1 Zi) 3’1()
1 < = |*? () (k)
: Zp = |2 Vi = |7 2
(1) XD :
- (k) (k)
X2 _ZDk J _ka i
", (k)
- (k) GO () b
Wii Wy - Wp,_ 1 btk)
(k) (k) : (k) —
W, = Wizw Wy - Wp, 2 by 2
© b ® o
D1
(1) \Wip, Wop, = Wp._.D,. o

 Arrange all inputs to the network in a vector x

* Arrange the inputs to neurons of the kth layer as a vector z;,

* Arrange the outputs of neurons in the kth layer as a vector yj
* Arrange the weights to any layer as a matrix W,

— Similarly with biases

Vector formulation

(1

X1

(1)
Wpbp

 The computation of a single layer is easily expressed in matrix

notation as (setting yo = X):

Zy = Wiyg—1 1 by

Yk

_Zik)
(k)
z), = |2
")
_ZDk i
(k) : (k)
W21 - Wp,_ 1
k) . (k)
Ws2 - Wp, 2
© W
Wob, °° Wp,_.D.d

Vi = fr(Zi)

L
()

(O

L Dg414

The forward pass: Evaluating the
network

The forward pass

The forward pass

y1 = f1(zy)
The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
V2 = f2(W2f1(Wix + b;) + by)

The forward pass

The Complete computation
V2 = f2(W2f1(Wix + b;) + by) 162

The forward pass

The Complete computation
Y = fiy(Wyfy-1(.. 2(Wo f1(Wix + by) +by)...) + by) 163

Forward pass

Forward pass:
Initialize

Fork =1to N:

Output

Yo =X

— Div

Z, = Wiyi—1 + by

Vi = fr(Zy)

Y=y

The Forward Pass

* Setyp, =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

The backward pass

e The network is a nested function

Y = fy(Wy fy—1(Co fo(Wo fi(Wix + by) +by) ..) + by)
* The error for any X is also a nested function

Div(Y,d) = Div(fy(Wyfy-1(... (W f;(Wyx+by) +b;)...) +by),d)

Calculus recap 2: The Jacobian

* The derivative of a vector function w.r.t. vector input is called
a Jacobian

* |tis the matrix of partial derivatives given below

L o Oy Oy Oy
Y2 =f 2 dz; 0z, 9z

dy, 0dy, %
il A, W@ =2z, 3z, " 9z
Using vector notation
y = f(@) Iy OYu - m

| dzy 02z, d0zp .

Check: | Ay = J,(z)Az

167

Jacobians can describe the derivatives
of neural activations w.r.t their input

=S dy,]
(e 0 ;
\./]y(Z) = de
— 0 0 4Yp
dzp
\—|

* For Scalar activations
— Number of outputs is identical to the number of inputs
e Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs
— Not showing the superscript “(k)” in equations for brevity 168

Jacobians can describe the derivatives
of neural activations w.r.t their input

z [

-------- *

y

vi = f(z;)
f'(v1)

Jy(z) = O

0

0
' (y2)

0

* For scalar activations (shorthand notation):

— Jacobian is a diagonal matrix

0
0

).

— Diagonal entries are individual derivatives of outputs w.r.t inputs

169

For Vector activations

P...
v
fffff
e
K R
.

. RS
. o~
s o m
s e ay
- x n
I‘ 4y
L0
LI 2
* 8 ':

* u as
P sad
e v 3
s e
0. e
. apy s
. agte "
(X *0 E
:‘ 3
ae N %0
a s Ele
- v
s 0
‘ue "o
* ne W
L] "-
o
® ag®
& e
153 .
* gu
» g
~ : e W
-
LY .
5 .
» Cs
il ‘q
e *
ar .
~ .*
2

]y(z) —

e Jacobian is a full matrix

— Entries are partial derivatives of individual outputs
w.r.t individual inputs

[0y,

0z,
Y2
0z,

5%y

9y,
0z,
9y,
0z,

5%y

| 074

0z,

%0

0z

dy;
0z

%Y

dzp .

170

Special case: Affine functions

Z=Wy+b

4

]Z(Y) =W

* Matrix W and bias b operating on vector y to
produce vector z

* The Jacobian of z w.r.t y is simply the matrix W

171

Vector derivatives: Chain rule

e We can define a chain rule for Jacobians
* For vector functions of vector inputs:

z=g(x)
y=f(2)

y=f(g (X))f‘ Jy(X) = Jy(z)],(x)
@ Check

Az = J,(x)Ax
Ay = Jy(z)Az

Ay = Jy(2)](x)Ax = Jy(X)AX

Note the order: The derivative of the outer function comes first

172

Vector derivatives: Chain rule

e The chain rule can combine Jacobians and Gradients

* For scalar functions of vector inputs (g () is vector):

D =f(g(x)

{

z = g(x)
D = f(z)

ViD = V;(D)],(x)

Check [7z = J,(x)Ax
AD = V,(D)Az

AD =V,(D)],(x)Ax = V,DAx

Note the order: The derivative of the outer function comes first 173

Special Case

e Scalar functions of Affine functions

Derivatives w.r.t
parameters

D = f(Wy + b) 7,D = V,(D)W
z=Wy+b %D = 1(D)
VwD = yV,(D)
D = f(z) 1

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

174

The backward pass

Y — Div

In the following slides we will also be using the notation VY to represent
the Jacobian Jy(z) to explicitly illustrate the chain rule

In general I/,b represents a derivative of b w.r.t. a and could be a gradient (for scalar b)
Or a Jacobian (for vector b)

The backward pass

— Div

First compute the gradient of the divergence w.r.t.Y.
The actual gradient depends on the divergence function.

The backward pass

v, Div = VyDiv.V, Y

The backward pass

V,yDiv = VyDiv Jy(zy)

The backward pass

Wy Div =V, Div.Vy Zy YN-1

The backward pass

Vyy_,Div =V, Div Wy Vyn_ Div

The backward pass

V,._,Div =V, Div Wy

— Div

Vw,Div = yy_1V;, Div

VbNDiU = |7ZNDiU

The backward pass

VZN_lDiU = VYN—lDiU' VZN_1YN—1 ZN—-1

The backward pass

— Div

O i .
Vay_ DIV = VYN—1Div]YN—1 (Zyn-1)

V. Div

The Jacobian will be a diagonal ZN-1
matrix for scalar activations

The backward pass

Wy, Div="V,, Div.l Zy_ 4

The backward pass

V,._,Div =", _Div Wy_4

The backward pass

— Div

V., Div =", _DivWy_ No
N e N gy Div=", _Div

The backward pass

v, Div =V, Div], (z,)

The backward pass

— Div

Vw,Div = XV, Div | Insome problems we will also want to compute
. . the derivative w.r.t. the input
Vp, Div = 1 Div P

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:
— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass
— Recursion:
V., Div =V, Div], (z)
.., Div =V, Div W
— Gradient computation:
Vw, Div = y,_1V,, Div
Vp, Div =V, Div

189

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:

— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass

— Recursion: Note analogy to forward pass
V., Div ="V, Div], (z)
., Div =V, Div Wy,
— Gradient computation:
Vw, Div = y,_1V,, Div

kaDiU = \7ZkDiU

190

For comparison: The Forward Pass

* Setyp, =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

Neural network training algorithm

* Initialize all weights and biases (W;,b;,W,,b,, ..., Wy, by)
* Do:

— Err=20
— Forall k, initialize Wy, Err = 0, V, Err = 0
— Forallt = 1:T

* Forward pass : Compute
— Output Y(X;)
— Divergence Div(Y,, d;)
— Err += Div(Y,, d,)
* Backward pass: For all kK compute:
~ W, Div =V, 1,Div Wy,
- W, Div ="V, Div], (2)
- Vw,Div(Y, dy); Vy, Div(Y,, d,)
— Vw Err +=Vyw, Div(Yy, dy); Vy Err += Vy, Div(Yy, dy)

— For all k, update:
T T
Wk = Wk - g (VWRETT) ; bk = bk _g(VWkETT)

* Until Err has converged

192

Setting up for digit recognition

Training data

2,00 {5 1)
(2,1) (H,0)

..J /, -f :a'; . o 4 - : - “*\Ylf .]
N/ / _/ Sigmoid output

(0,0) (2,1))

-

* Simple Problem: Recognizing “2” or “not 2”
* Single output with sigmoid activation

— Y €(0,1)

— diseitherOor1
* Use KL divergence

Backpropagation to learn network parameters 193

Recognizing the digit

Training data

(3,0) (%, 1)
(1) (+,0)
(60) (=,1)

* More complex problem: Recognizing digit
 Network with 10 (or 11) outputs

— First ten outputs correspond to the ten digits
e Optional 11th is for none of the above

* Softmax output layer:
— ldeal output: One of the outputs goes to 1, the others go to O

* Backpropagation with KL divergence to learn network o

Issues

Convergence: How well does it learn

— And how can we improve it

How well will it generalize (outside training
data)

What does the output really mean?
Etc..

Next up

* Convergence and generalization

